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Modern swine production facilities typically house dense populations of pigs and may 
harbor a variety of potentially zoonotic viruses that can pass from one pig generation 
to another and periodically infect human caretakers. Bioaerosol sampling is a common 
technique that has been used to conduct microbial risk assessments in swine produc-
tion, and other similar settings, for a number of years. However, much of this work seems 
to have been focused on the detection of non-viral microbial agents (i.e., bacteria, fungi, 
endotoxins, etc.), and efforts to detect viral aerosols in pig farms seem sparse. Data gen-
erated by such studies would be particularly useful for assessments of virus transmission 
and ecology. Here, we summarize the results of a literature review conducted to identify 
published articles related to bioaerosol generation and detection within swine production 
facilities, with a focus on airborne viruses. We identified 73 scientific reports, published 
between 1991 and 2017, which were included in this review. Of these, 19 (26.7%) used 
sampling methodology for the detection of viruses. Our findings show that bioaerosol 
sampling methodologies in swine production settings have predominately focused on 
the detection of bacteria and fungi, with no apparent standardization between different 
approaches. Information, specifically regarding virus aerosol burden in swine production 
settings, appears to be limited. However, the number of viral aerosol studies has mark-
edly increased in the past 5 years. With the advent of new sampling technologies and 
improved diagnostics, viral bioaerosol sampling could be a promising way to conduct 
non-invasive viral surveillance among swine farms.
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inTRODUCTiOn

Bioaerosols can be defined as fine particles ranging in size and composition that are suspended in 
the air and considered to be derived from a biological source or to affect a biological target (1). Such 
particles can contain or consist of bacteria, fungi, organic and inorganic particulates, toxins, and 
viruses. Considerable research has been conducted to understand how bioaerosols impact human 
health in both indoor and outdoor settings, with a particular emphasis on occupational exposures 
(2–7). With the intensification of animal production over the past 30 years, and the rise of farms 
housing large number of animals, bioaerosols have become a particular concern to the health of 
other animals, workers, and the communities located near such facilities (8). There have been efforts 
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directed at evaluating these bioaerosol risks (9–17), though data 
related specifically to the detection of airborne viruses still remain 
largely limited. Most studies have instead focused their sampling 
strategies on bacteria, fungi, particulates, and endotoxins. This 
lack of targeted virus sampling is worrisome given that the 
airborne transmission pathway has been identified as important 
to the movement of viruses in and between production facilities  
(18, 19). As such, methodologies that fully assess the risks of 
bioaerosol exposures in animal production facilities are impor-
tant for the design and implementation of effective interventions 
to mitigate the exposure risks to humans and animals in the  
surrounding environment.

This literature review was conducted to better understand the 
source and types of viral bioaerosols within and around swine 
production facilities, the scope of sampling methodologies, 
and the current state of research. The information summarized 
from this review may also serve as a collated resource for other 
researchers.

MATeRiALS AnD MeTHODS

Search Strategy and Selection Criteria
Following PRISMA guidelines, a systematic online search of three 
scientific abstract indexing databases (PubMed, Web of Science, 
and CAB Abstracts), with no restriction on year of publication, 
was performed using the following structured query: (bioaerosol* 
or bio-aerosol*) and (swine or pig* or hog* or barrow* or gilt* 
or sow or sows or boar or boars or porcine or pork or suidae or 
sus scrofa). Given that PubMed is a database specific to biomedi-
cal and life science research, Web of Science and CAB Abstract 
databases were included to capture a broader range of disciplines 
and information sources, including engineering, agriculture, and 
other technical journals. Search results were manually reviewed 
and abstracts meeting the following inclusion criteria were 
retained: (1) peer-reviewed and published scientific report, (2) 
research occurred in an experimental swine unit, swine produc-
tion facility, or market, and (3) a bioaerosol sampling strategy 
was utilized. Articles that were reviews, comments to editor, 
perspectives, personal opinions, did not present sampling result 
data, did not have a full-text article available in English, or did 
not meet the inclusion criteria listed above were excluded. Full 
reports were reviewed and summarized according to their date 
of publication.

ReSULTS

Search Results and Study Selection
From a search conducted April 5, 2017, results yielded 68 publica-
tions from PubMed, 180 publications from Web of Science, and 
90 publications from CAB Abstracts. After 128 duplicates were 
removed, 210 publications remained. These were screened, and 
114 articles that did not meet the initial inclusion criteria were 
removed leaving 96 articles. Finally, 23 full-text articles that did 
not present sufficient data, were not available in English, or did not 
sufficiently describe the methods were also removed, resulting in 
a final article count of 73 (Figure S1 in Supplementary Material).

Study Characteristics
After the selection and screening procedures were completed, 
73 scientific reports that met the inclusion criteria for this 
review remained (Table S1 in Supplementary Material) (19–91). 
Articles were published between 1991 and 2017 (Figure S2 in 
Supplementary Material). Only 8 of 73 (11.0%) articles were 
published in the 1990s (20–27), whereas 40 of 73 (54.8%) have 
been published since the beginning of 2010 (52–91). Of the 73 
reviewed articles, 41 (56.2%) included methodologies to evaluate 
bacteria, 25 (34.2%) to evaluate fungi, 19 (26.0%) to evaluate 
viruses, 16 (21.9%) to evaluate dust and particulates, 11 (15.1%) 
to evaluate endotoxins, 8 (11.0%) to evaluate gases, 6 (8.2%) to 
evaluate 16s rRNA genes, 3 (4.1%) each to evaluate antibiotic 
resistance and organic compounds, and 1 (1.4%) each to evalu-
ate archaea and chemical markers (Table S2 in Supplementary 
Material). Studies were conducted in the United States (n = 35), 
Canada (n = 9), Republic of Korea (n = 8), China (n = 4), Denmark 
(n = 4), Poland (n = 4), Germany (n = 3), Australia (n = 2), The 
Netherlands (n = 2), Belgium (n = 1), Portugal (n = 1), Sweden 
(n = 1), Switzerland (n = 1), and the United Kingdom (n = 1). 
Primary bioaerosol sampling methodologies utilized across the 
studies included a single, two- and six-stage Andersen sampler, 
all-glass impingers, button sampler, various filter collection 
cassettes in combination with molecular sequencing and mass 
spectrometry, slit sampler, and liquid cyclonic collector.

DiSCUSSiOn

In this literature review, articles were searched and summa-
rized to better understand the source and types of bioaerosols 
detected in and around swine production facilities, as well as 
the sampling methods used to detect them. Based on the articles 
evaluated, different bacteria were the predominantly sampled 
bioaerosol targets, with several studies identifying elevated levels 
of both Gram-positive and Gram-negative bacteria, including 
Actinobacillus pleuropneumoniae, Escherichia coli, Staphylococcus 
aureus, and Streptococcus suis, among others. Antibiotic resistance 
among detected bacterial pathogens was also assessed in several 
studies, which found a high rate of antibiotic-resistant bacteria 
both within and downwind from swine production facilities  
(35, 40, 81). Gibbs et al. found that antibiotic-resistant microbes 
were detectable at least 150 m downwind from the sampled swine 
barn at concentrations that could pose a threat to individuals 
working in the barns, as well as those living within close proximity 
(40). Arfken et al. found that fecal spray fields using swine feces as 
fertilizer could be a source of aerosolization and introduction of 
antibiotic-resistant bacteria into the environment (81).

Seasonal variation was assessed in multiple studies identifying 
trends in the rates of bioaerosol detection between seasons, which 
also varied based on the type of target being sampled (21, 44, 46, 
51, 77). Kim et al. found that fungal spores were more likely to be 
detected during the warmer summer months, whereas bacteria 
and particulates were found at higher concentrations during the 
winter (44). Anderson et  al. compared detections of influenza  
A virus (IAV) RNA between summer and winter, finding an 
association between an increased detection rate during the winter 
and temperatures below 20°C (85).

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


TABLe 1 | Evaluation of reviewed bioaerosol studies assessing viruses (n = 19).

Reference Target virus(es) Strength(s)

Torremorell  
et al. (25)

Porcine 
reproductive 
and respiratory 
syndrome virus 
(PRRSV)

•	 Evaluated virus viability
•	 Confirmation of source population 

infection using virus isolation and 
serology

•	 Assessed strain differences
•	 Robust controls

Otake et al. (19) PRRSV •	 Evaluated virus viability
•	 Confirmation of source population 

infection using virus isolation and 
serology

•	 Assessed strain differences
•	 Robust controls
•	 Evaluated long-distance transport

Pitkin et al. (50) PRRSV •	 Evaluated virus viability
•	 Confirmation of source population 

infection
•	 Robust sampling strategy
•	 Year-long sampling

Dee et al. (47) PRRSV •	 Evaluated virus viability
•	 Confirmation of source population 

infection
•	 Robust controls
•	 Evaluated long-distance transport

Otake et al. (55) PRRSV •	 Evaluated virus viability
•	 Confirmation of source population 

infection
•	 Robust controls
•	 Evaluated long-distance transport

Verreault et al. (56) Porcine 
circovirus type 2 
(PCV2)

•	 Multi-year sampling
•	 Sensitivity of detection assay explored

Linhares et al. (61) PRRSV •	 Evaluated virus viability
•	 Confirmation of source population 

infection
•	 Robust controls
•	 Pigs sampled concomitantly with air

Corzo et al. (63) Influenza A virus 
(IAV)

•	 Evaluated virus viability
•	 Confirmation of source population 

infection
•	 Subtyping conducted
•	 Evaluated long-distance transport

Corzo et al. (64) IAV •	 Bioaerosol detection and viral 
secretion in pigs directly compared

de Evgrafov  
et al. (65)

PCV2 •	 Used controls to rule out 
contamination

•	 Used advanced genomic methods

Alonso et al. (71) Porcine epidemic 
diarrhea virus 
(PEDV)

•	 Evaluated virus viability
•	 Confirmation of source population 

infection
•	 Evaluated long-distance transport

Brito et al. (74) PRRSV •	 Used controls to rule out 
contamination

•	 Used GIS modeling to correlate 
sampling with farm density

•	 Used sequencing techniques and 
phylogenetic analysis

Corzo et al. (75) IAV •	 Evaluated virus viability
•	 Confirmation of source population 

infection
•	 Robust controls
•	 Viral shedding assessed over time

(Continued )
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One of the first studies to assess bioaerosol transmission of 
viruses between swine was conducted in 1997 by Torremorell 
et  al., which evaluated the airborne transmission of porcine 
reproductive and respiratory syndrome virus (PRRSV) under 
experimental conditions among nursery pigs (25). In this study, 
the authors documented short-distance airborne transmission of 
PRRSV and found that transmission was strain dependent. Otake 
et  al. then conducted a study in 2002 which also evaluated the 
propensity of PRRSV to be transmitted by aerosol, but this time 
under field conditions (19). Results demonstrated that naïve pigs 
with direct or indirect contact with PRRSV-infected pigs also 
became infected, while sentinel pigs placed 1 and 30 m away from 
exhaust fans of the barn containing the infected pigs did not. Four 
years later in 2006, Hermann et al. carried out an optimization 
study using an all-glass impinger for the detection of PRRSV and 
IAV under experimental conditions (92). The study ultimately 
concluded that given the lack of standard methodology for iso-
lating certain pathogens in aerosols, future methods should be 
individually optimized and validated for each pathogen of interest.

These seminal works were followed by 16 additional stud-
ies (47, 50, 55, 56, 61, 63–65, 71, 74, 75, 80, 82, 85, 87, 88, 90) 
between 2009 and 2017, which found detectable levels of viral 
RNA from aerosolized PRRSV, IAV, porcine epidemic diarrhea 
virus (PEDV), and porcine circovirus type 2 (PCV2) (Table 1). 
These studies were either experimental or field based in their 
design and varied greatly in their research objectives, including 
the evaluation of collection efficiencies for different sampling 
devices, estimating the burden of aerosolized viruses, and 
evaluating the efficiency of air cleaning systems or other similar 
interventions aimed at reducing bioaerosols in pig facilities. 
Notably, the experimental studies appeared to benefit greatly 
from inclusion of more robust controls in their assessment, while 
the field-based studies seemed to be able to better address the 
questions of transmission risk associated with bioaerosol genera-
tion in actual production farms. Given the lack of standardized 
methodology and the diversity in study designs, it is difficult to 
make direct comparisons between studies. Such standardization 
would be essential to verify the consistency and reproducibility of 
bioaerosol detection results across studies. Furthermore, it would 
be useful for future aerosol detection studies to incorporate more 
comprehensive epidemiological approaches to better ascertain 
the association between human, animal, and environmental risk 
factors with aerosolization of target viruses. These epidemiologi-
cal approaches should include larger sample sizes, appropriate 
controls, and a prospective sampling strategy.

Several studies have documented detection of PRRSV, IAV, 
and PEDV virus genomic RNAs at various distances downwind 
from swine barns with infected source populations (47, 50, 
55, 63, 71). PEDV RNA was detected up to 16.1 km (71) away, 
PRRSV RNA up to 9.1 km (47, 50, 55) away, and IAV up to 2.1 km 
(75) downwind from infected source populations (Figure  1). 
Furthermore, PRRSV was shown to be infectious 120  m and 
4.7 km away from an infected herd (47, 50). These findings sug-
gest that viral bioaerosols could pose a potential risk to other 
farms and their livestock, or communities located within close 
proximity to barns with infected pigs, which may undermine 
current biosecurity practices.
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Reference Target virus(es) Strength(s)

Alonso et al. (80) IAV
PRRSV
PEDV

•	 Multiple viruses concomitantly 
assessed

•	 Particle size evaluated
•	 Evaluated virus viability
•	 Confirmation of source population 

infection
•	 Robust controls
•	 Pigs sampled concomitantly with air
•	 Infectivity of air samples assessed 

using swine bioassay

Choi et al. (82) IAV •	 Human, animal, and environmental 
sampling conducted concomitantly

•	 Evaluated virus viability
•	 Documented possible aerosol 

transmission of swine-sourced virus 
to humans

•	 Sequencing used to compare 
detected virus RNA gene segments

Anderson  
et al. (85)

IAV •	 Human, animal, and environmental 
sampling conducted concomitantly

•	 Seasonal comparisons made
•	 Risk factors evaluated
•	 Sampling types statistically compared

Neira et al. (87) IAV •	 Sampling captured during outbreaks 
under field settings

•	 Animal, environmental, and air 
sampling conducted concomitantly

•	 Evaluated virus viability
•	 Sampling types statistically compared

O’Brien and 
Nonnenmann (88)

IAV •	 Human exposure directly assessed
•	 Two samplers compared
•	 Confirmation of source population 

infection
•	 Physical conditions of farms assessed

Alonso et al. (90) PRRSV
PEDV

•	 Particle size evaluated
•	 Confirmation of source population 

infection
•	 Sampling types statistically compared

TABLe 1 | Continued
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Despite the increase in the number of studies that have been 
conducted using bioaerosol sampling for the detection of viruses, 
such approaches may have some limitations given the difficulty of 
determining the correct sampling parameters (i.e., flow rate, col-
lection media, volume, etc.). Optimization is essential to capture 
aerosolized viruses and to maintain their viability throughout the 
collection process. Identifying viable virus is important because it 
allows for a more informed risk assessment in the environments 
being sampled. A viable virus carries a greater transmission 
risk to exposed humans or animals. In contrast, if the virus is 
already inactivated (by UV light or drying or other means) when 
it is detected, it likely poses minimal risk in terms of airborne 
transmission. This emphasizes the need for additional field-based 
studies that focus on the optimization of collection parameters to 
improve the recovery of viable virus.

Another important factor that contributes to the viability of 
aerosolized viruses is particle size. In a study conducted by Zuo 
et al., the authors demonstrated a close relationship between par-
ticle size of three different animal viruses (gastroenteritis virus, 
swine IAV, and avian IAV) and the infectivity and survivability 

of those viruses after collection using a bioaerosol sampling 
device (93). Though there were some differences between the 
three viruses tested, in general it was shown that the larger 
particle sizes (300–450 nm) had a higher survivability compared 
to particles measuring closer to the actual size of the virions 
(100–200 nm). Similarly, Alonso et al. found in their 2015 study 
that the viability of IAV and PRRSV was particle size dependent, 
only being able to isolate viable virus from particles larger than 
2.1  µm (80). Given this preliminary association, which is still 
not fully defined, future viral bioaerosol sampling studies would 
benefit from the routine inclusion of methodology to evaluate 
particle size as it relates to viability. Only a few studies in this 
review incorporated such an approach, however, this is likely due 
to limitations in the detection technology.

A further challenge to using bioaerosol sampling as a method 
for virus surveillance and risk assessment is that commercially 
available air samplers are not optimally designed for the collec-
tion of submicron particles (<1  μm), for which the collection 
efficiencies tend to be low. Samplers are instead designed for the 
collection of micrometer-sized particles such as fungal spores 
and bacteria (94, 95). Using an experimental model, Hogan et al. 
evaluated collection efficiencies for three bioaerosol samplers 
(AGI-30, the SKC BioSampler and a frit bubbler), and found 
the collection efficiency for bacteriophages MS2 (d = 27.5 nm) 
and T3 (d = 45 nm) to be extremely low (5–10%) (96). Though 
conducted under a controlled setting, these findings indicate the 
collection efficiency for viruses to be markedly lower compared 
to that of larger bacteria and fungi in aerosols, which are often 
recovered at close to 100% efficiency. Despite these limitations, 
new optimization studies of different bioaerosol sampling 
devices have shown some promise in overcoming the challenge 
of low detection efficiency for some swine viruses (63, 64, 75, 
82). Noteworthy, is a recent study conducted by Pan et al. which 
demonstrated a 93% recovery of aerosolized bacteriophage MS2 
(2–5 µm in diameter) using a novel growth tube collector (GTC) 
(97). A subsequent study conducted by Lednicky et al. evaluated 
the same GTC sampling device with IAV, and demonstrated 
an 84% collection efficiency (98). These studies highlight how 
improvements in the sampling technology may continue to 
increase the sensitivity of viral bioaerosol sampling.

Overall, the bioaerosol sampling research studies evaluated in 
this review were predominately focused on the detection of bacteria 
and fungi and relied on broad-spectrum microbial detection as 
an indicator for overall bioaerosol burden. In addition, sampling 
strategies were found to utilize a wide variety of methodologies, 
with no apparent consistency between research groups, suggest-
ing a lack of standard methods for performing bioaerosol studies 
in swine production settings. Many of the researchers in the 
reviewed studies agreed that there are insufficient data regarding 
virus aerosol burdens in swine production facilities to assess their 
potential impact upon human and animal health. Furthermore, 
only a few studies have since been conducted using multi-faceted 
strategies to sample animals, humans, and the environment. This 
approach will be critical in future studies to better understand 
transmission pathways and virus ecology. Finally, only one study 
was conducted in Mainland China, a region with the largest and 
fastest growing swine industry in the world (85).
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FigURe 1 | Graphical depiction of influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) 
RNA detection downwind from farms with infected source populations: (A) PRRSV RNA detected up to 9.1 km away from infected source population; (B) PRRSV 
RNA detected 4.7 km away from infected source population; (C) PRRSV infects naïve pigs 120 m away from infected source population; (D) IAV RNA detected up to 
2.1 km away from infected source population; and (E) PEDV RNA detected up to 16.1 km away from infected source population.
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Recent breaches in animal production biosecurity in the 
United States, resulting in the incursion of H5N2 avian IAV  
(99, 100), as well as outbreaks of H3N2v IAV of swine origin 
in swine shows (101) and experimental challenge studies (75), 
suggest that virus aerosol transmission may play a much larger 
role in zoonotic disease transmission between pigs and from pigs 
to people. Infectious diseases, which affect the swine production 
industry, particularly PRRSV, may be further exacerbated by the 
dissemination of aerosolized viruses. As such, the further devel-
opment and optimization of bioaerosol sampling technology 
seems prudent, as this review suggests bioaerosol sampling is a 
promising way to conduct non-invasive viral surveillance among 
swine farms and perhaps other, similar ecological settings.
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