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The Use of Cone-Shaped Kernels for Generalized 
Time-Frequency Representations of 

Nonstationary Signals 

Abstract-Generalized time-frequency representations (GTFR's) 
which use cone-shaped kernels for nonstationary signal analysis are 
presented. The cone-shaped kernels are formulated for the GTFR's to 
produce simultaneously good resolution in time and frequency. Specif- 
ically, for a GFTR with a cone-shaped kernel, finite time support is 
maintained in the time dimension along with an enhanced spectrum in 
the frequency dimension, and the cross-terms are smoothed out. Ex- 
perimental results on simulated data and real speech showed the ad- 
vantages of the GTFR's with the cone-shaped kernels through com- 
parisons to the spectrogram and the pseudo-Wigner distribution. 

I. INTRODUCTION 
HE bilinear class of time-frequency distribution [ I ] ,  T or the generalized time-frequency representations 

(GTFR's) [ 2 ] ,  have offered the flexibility for nonstation- 
ary signal analysis. This class of representations is char- 
acterized by 2-D kernels, where the properties of a rep- 
resentation are determined by the constraints imposed on 
its kernel. 

The spectrogram and the pseudo-Wigner distribution 
(PWD) are both GTFR's with special kernels [2 ] .  The 
spectrogram preserves nonnegativity , smooths cross- 
terms, but requires separate analysis for either good time 
resolution or good frequency resolution. This behavior of 
the spectrogram has been shown to cause problems in, for 
example, the analysis of speech. It was shown in [ 3 ]  that 
the formant frequency changes are the most important di- 
mensions that affect the perception of phonetic quality. 
When the formants change rapidly or a closure occurs, 
however, consistent broadenings of formant spectrum are 
seen in the spectrogram [4]. The pseudo-Wigner distri- 
bution has the advantage over the spectrogram of instan- 
taneous temporal response, but it produces interfering 
cross-terms when used in multicomponent signal analy- 
sis. The PWD does not preserve nonnegativity. A tech- 
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nique which optimally smooths a Wigner distribution into 
a positive distribution was described in [ 5 ] .  

We formulate a special type of kernel for the GTFR's 
to simultaneously preserve the property of finite time sup- 
port, enhance spectral peaks, and smooth cross-terms. As 
in the case of the PWD, nonnegativity is not preserved. 
The representations thus primarily serve as tools for ana- 
lyzing the time-frequency structure of the signals, but are 
not energy distributions. On the 2-D time plane, the ker- 
nel takes a cone-shaped support region. On the 2-D fre- 
quency plane, the kernel takes the form of a lateral inhi- 
bition function [6] in the dimension where it convolves 
with the signal spectrum, and takes the form of a low- 
pass filter in the dimension where the cross-terms are lo- 
cated. We also formulate an algorithm for efficient com- 
putation of the GTFR's with the cone-shaped kernels, and 
present experimental results which demonstrate the poten- 
tial power of the technique for speech and other nonsta- 
tionary signal analysis. 

11. BACKGROUND A N D  DEFINITIONS 
A generalized time-frequency representation C,( e, f; $) 

of the signal x ( t )  with kernel $ ( r ,  7 )  is [2] 
+rn 

~ , ( t ,  f; 4)  = S S - r t ,  7)  x ( t '  + T/2) 
-rn 

x* ( r '  - 7 / 2 )  e-'*lrfr dt' d~ (1) 
where the * denotes complex conjugation. The relation 
expressed in terms of the Fourier transforms of the signal 
and the kernel is 

+ m  

C x ( t , f ;  'p) = j @ ( r , f  - f') X ( f '  + r / 2 )  
- m  

* x * ( f '  - 7 /2 )eJ2" "d f ' dv  ( 2 )  

where the Fourier transform relations are 
f r n  

X ( f )  = S x ( t ) e - j 2 " j d t  
- m  

and 
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Equation (1) shows that a GTFR is obtained through 
the convolution in time t of a kernel + ( t ,  7) with the sig- 
nalcorrelationx(t + ( 7 / 2 ) ) x * ( t  - ( 7 / 2 ) ) a n d a F o u -  
rier transform in time 7. Equation (2) shows that a GTFR 
is obtained through the convolution in frequency f of a 
kernel + ( q , f )  with the spectrum correlation X (  f + 7 / 2 )  
X *  ( f - 7 /2 ) ,  and followed by an inverse Fourier trans- 
form in frequency 7. For a discrete time GTFR, we follow 
the definition of the discrete PWD given in (71 and put it 
analogously to (1) 

n t L  L 

C,(n, m; 6) = 2 c c + ( n  - n ' ,  k ) x ( n '  + k )  

(ml I L 

n ' = t l - L  k = - L  

. x * ( n l  - k )  e - J ( 2 n / M ) r p l k  

( 3 )  
where M = 2L + 1. 

The kernels of the spectrogram and the PWD in terms 
of the GTFR's can be derived from (1) and (2). The two 
representations are commonly defined with respect to a 
sliding window h ( t )  and the signal x ( t )  121. Assuming 
h ( t )  is real and symmetric, i .e.,  h ( r )  = h (  - t ) ,  the ker- 
nels 4 ( t ,  7) and + ( q , f )  of the PWD are 

4(& 7) = 6 ( t )  h 2 ( 7 / 2 )  

+ ( 7 ? f )  = 4H(2f) * W 2 f )  

(4.a)  

(4.b) 

where H (  f )  is the Fourier transform of h (7) and the * 
denotes l-D convolution. For the spectrogram, the ker- 
nels become 

4 ( t .  7) = h ( t  4- 7/2) h ( t  - 7/2)  

+ ( 7 ? f )  = H ( f  + 17/21 H ( f  - 11/21, 

(5 .a )  

(5.b) 

Relating these kernels with the definitions of the 
GTFR's in (1)  and (2) reveals the properties of the pseudo- 
Wigner distribution and the spectrogram. Equation (4.a) 
indicates that the PWD kernel does not do smoothing in 
time t, therefore, the PWD has good temporal resolution. 
Equation (4.b) indicates that the kernel is constant in 7, 
it thus cannot suppress cross-terms which are distributed 
off the 7 = 0 axis [8]. Since H (  f )  is a low-pass function, 
smearing in frequency f is introduced through the convo- 
lution of the kernel with the signal spectrum. Equation 
(5 .a) indicates that the spectrogram kernel does temporal 
smoothing due to its dependency on f ;  (5.b) indicates that 
the kernel + ( q ,  f )  is low pass in bothfand 7, and the 
spectrogram thus suppresses cross-terms but also has 
spectral smearing. 

111. CONE-SHAPED KERNEL DESIGN 

A .  Basic Principle 
A desirable kernel of a GTFR produces good resolution 

in both time and frequency, and at the same time sup- 
presses cross-terms. Many efforts in improving frequency 
resolution have focused on the design of windows with 
energy contained within a small frequency band. On the 
other hand, it has been shown that lateral inhibition func- 

tions are used in human visual and auditory systems in 
enhancing perceptual signal features [9], [ 101. In lateral 
inhibition circuitry, the output of a neuron is a weighted 
sum of the outputs of neurons within a small neighbor- 
hood. The neurons within the center neighborhood (ex- 
citatory neighborhood) contribute positively, and those in 
the surrounding neighborhood (inhibitory neighborhood) 
contribute negatively. Lateral inhibition functions have 
long been used in vision for image feature enhancement. 
The cone-shaped kernels for the GTFR's are constrained 
to take the form of lateral inhibition functions in fre- 
quency f ,  thus they enhance spectral peaks when convolv- 
ing with the signal spectrum. In the dimension of fre- 
quency q ,  suppressing cross-terms requires the kernel be 
low pass, which is equivalent to the requirement of tem- 
poral smoothing on the signal correlation function in terms 
of ( I ) .  Although many forms of temporal smoothing have 
been introduced in the literature [8], the finite time sup- 
port property of the representations has been invariantly 
sacrificed. For the cone-shaped kernels, we take the spe- 
cial effort to constrain the temporal smoothing to the ex- 
tent that the finite time support property is maintained, 
and at the same time the cross-terms are smoothed to a 
negligible extent. 

B .  Kernel Derivation 

The notion of spectral enhancement requires that a ker- 
nel be a lateral inhibition function in frequency f .  Since a 
lateral inhibition function in one domain corresponds to a 
band support in its Fourier transform domain and vice 
versa, a constraint is imposed on the support (nonzero re- 
gion) of the kernel in 7. Letting S (  + ( f ,  7)) denote the 
support region of + ( t ,  T), the constraint becomes 

where 1 ?, ( t )  1 and 1 +*(t)  1 denote the lower and upper 
boundaries of the kernel support region as functions o f t .  
Since tapering of data in 7 is necessary to reduce spectral 
leakage, we simplify the constraint so that the kernel sup- 
port region is only limited from below by the boundary 
I i, ( t )  I .  Note that when multiplied by a taper overlapping 
with the lower boundary, the kernel support will auto- 
matically be limited from above. Redefine 1 + ( t )  1 to be 
the lower boundary function; we then have the constraint 
on the kernel sqpport region as 

On the other hand, the constraint on the kernel for 
maintaining the finite time support property was given in 
P I  as 
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where $ ( q ,  T )  is the Fourier transform of 4(f,  T )  in r .  
On the ( t ,  T )  plane, this constraint reads 

$(Z, 7) = 0 171 < 21fl. 
This support region of 4 ( t ,  T )  is shown as the shaded 
cone area on the ( t ,  T )  plane in Fig. 1 .  Combining a taper 
function g ( T )  with the boundary constant just derived, we 
arrive at the kernel 

where the parameter a adjusts the slopes of the cone with 
the constraint that 2 I a < 03. 

The kernel for the discrete case follows a straighfor- 
ward extension and is in the form 

where I k 1 5 L and In I I L. Since k is not scaled by a 
factor of 2 in (3) as is the case of T in ( l ) ,  the lower bound 
of a is now 1 instead of 2. 

Note that the boundary function 1 ?( t )  1 is not limited to 
the line family a 1 t 1 as long as it falls into the shaded cone 
region in Fig. 1. For utilizing all lags of signal correla- 
tions, however, the function should pass through the ori- 
gin; and for smoothing the cross-terms, the function 
should have a certain spread in t .  

The analysis of the kernel is done on the 2-D frequency 
and 2-D time planes. On the (7 ,  f ) plane, the function of 
the kernel in spectral enhancement and cross-term 
suppression can be visualized; on the ( 1 ,  7) plane, the 
function of the kernel in maintaining good resolution for 
fast-changing spectral peaks and preserving onset time of 
signals can be visualized. 

C. Frequency Analysis of the Kernel 

In the continuous frequency case, the kernel on the (11, 
f )  plane can be obtained through a 2-D Fourier transform 
on (7), and it takes the form 

where the window G (  f )  is assumed to be Gaussian and 
* denotes a I-D convolution. The kernel in the discrete 
case can be obtained by taking the 2-D discrete Fourier 
transform of (8) 

Fig. I .  The support region of the GTFR kernel $ ( I ,  r )  for maintaining 
the finite time support property. 

and the kernel for the case a = 1 is 

cos - 1 - ( - 1 )  [ / + f l f )  cos - m )  cos; I )  ( :  M 
* G ( m ) .  

(9)  

+ 
K K 

sin - ( I  - m )  sin - ( I  + m )  M M 

In Fig. 2 we compare the frequency responses in m of 
the cone-shaped kernels with angle parameters a = 1 ,  2,  
and the frequency responses of the spectrogram kernel and 
the PWD kernel, where the solid line is for the spectro- 
gram, the medium dashed line for the PWD, the long 
dashed line for a = I ,  and the short dashed line for a = 
2, and (a), (b), (c), (d) correspond to the frequency 1 = 
0, 1 ,  2, and 3 ,  respectively. The window is g ( k )  = 
e-2ak' , where L = 64, and a is chosen so that g (  k L )  = 
0.01. The displayed frequency range is from m = 50 to 
80, centered around m = 64. The frequency responses are 
normalized so that the same peak value is maintained by 
the 4 kernels at the origin on the 2-D frequency plane. 

We observe from Fig. 2 that when I = 0, the frequency 
responses of the spectrogram kernel and the PWD kernel 
are identical, and the responses of the two cone-shaped 
kernels are very close. The positive peaks of the spectro- 
gram and the PWD are wider than those of the cone- 
shaped kernels, and the cone-shaped kernels are charac- 
terized by the negative lobes on each side of the main 
positive peak-the shape of a lateral inhibition function. 
With the frequency 1 increasing, the response of the PWD 
kernel remains unchanged, but the peak values for other 
kernels are reducing. The peak value of the spectrogram 
drops the fastest, and the peak value of the cone-shaped 
kernels drops faster when a = 1 than when a = 2. In 
terms of the filtering property of the kernels in frequency 
I ,  the spectrogram kernel is low pass with a narrow band, 
the PWD kernel is all pass, and the cone-shaped kernels 



ZHAO et U / . :  CONE-SHAPED KERNELS FOR GTFR'S 1087 

(C) (4 
Fig. 2. The frequency responses of the cone-shaped kernels and the kernels of the spectrogram and the PWD in frequency m .  

The response points are jointed by lines, where the solid line is for the spectrogram. the medium dashed line for the PWD, 
the long dashed and the short dashed lines are for the cone-shaped kernels with a = I and a = 2,  respectively. (a) Frequency 
I = 0: (b) frequency I = 1 ;  (c) frequency I = 2; (d) frequency I = 3.  

[ t o  - ( t  + 7/21] + e - j 2 ~  ( fi - fi ) f are in between the two cases with the angle parameter a 
controlling the low-pass bandwidth. To approach the 

terms, a = 1 is chosen for the cone-shaped kernel in the 
power of the spectrogram kernel in suppressing cross- 

later experiment. 

. UHt - 4) - t o ] )  

[ (  + e j 2 ~ f 2 7 ~  + 7 / 2 )  - to] u[(t - 4) - t o ] .  

D. Time Analysis of the Kernel 

To analyze the effect of the cone-shaped kernel on fast- 
changing spectral peaks, we consider a signal which 
changes its tonal frequency from f, tof2 at the time in- 
stance f o ,  shown in Fig. 3(a). Let the signal be analytic 
for simplicity; we have 

x ( t )  = ej2Tf"U(to - r) + ejzThfirU(t  - to) 

where U (  t )  is the step function 

1 t 1 0  

0 r < O  
U ( t )  = 

The correlation function for x ( t )  is then 

The support region of this function on the ( t ,  7) plane is 
shown in Fig. 3(b), where the single hatched area to the 
left of to is for thefi term, the right one for the& term, 
and the double hatched area for the cross-terms. It is easy 
to visualize that when the cone-shaped kernel is moving 
along the time axis t ,  the f l  and the f2 terms are not 
smoothed together. Although the cross-terms are 
smoothed into the f l  component when r < to, and into the 
f2 component when t > to, these cross-terms are atten- 
uated by the smoothing of the kernel along time t on the 
components ei2T(fz-f')f and e - j2s ( f z  -fi)'. Equivalently, 
the low-pass filtering of the kernel in 11 can filter out the 
cross-terms since these terms are displaced off the 11 = 0 
axis by & ( f 2  - f i  ). On the other hand, when a spectro- 
gram kernel is moving along the time axis t ,  the fl and& 
components are smoothed together. The boundary of the 
frequency change is thus smeared. In Fig. 3(c) we show 
a comparison of the spectrogram and the GTFR with a 
cone-shaped kernel for the signal x ( t )  = sin 2 a f l t U ( f o  
- t )  + sin 2af2tU(t - to) ,  where fl is 2 kHz andf2 is 
4.5 kHz. Shown from top to bottom is the signal, the 
spectrogram, and the GTFR with the cone-shaped kernel. 
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3. ,..,,, m /Yl  ..I 

(C) 

Fig. 3 .  Tracking a signal frequency change: the GFTR with a cone-shaped 
kernel does not smooth the two frequencies disjoint in time, whereas the 
spectrogram does. (a) The signal x (  t )  with frequency f , ,  t < to and fi, 
t > to. (b) The support region o f x ( t  + r / 2 )  . r * ( t  - 7 / 2 ) .  where the 
horizontal strip illustrates the tapering in r.  The single hatched area to 
the left of to has thef, term, the right one has thef, term, and the double 
hatched area has the cross-terms. ( c )  The comparison of the spectrogram 
to the GTFR with a cone-shaped kernel. where the signal has f, = 2 
kHz, r < lo andfi = 4 .5  k H z ,  t > t , ) ,  From top to bottom are the signal, 
the spectrogram, and the GTFR with a cone-shaped kernel. The hori- 
zontal axis is time and the vertical axis is frequency. The sampling fre- 
quency is 20 kHz. the window is Gaussian with length of 64 samples. 
and the analysis interval is 2 samples. The DFT size of the GTFR with 
a cone-shaped kernel is 128 and that of the spectrogram is 256. 

For signals with imbedded zero intervals, it is some- 
times important that finite time support holds in its GTFR. 
Let a zero interval of a signal be of length 2, and the 
kernel window length be M ;  the sufficient condition to 
maintain the zero interval in the GTFR with a cone-shaped 
kernel is M - 1 I 2. An equivalent statement is that the 
GTFR at time n is zero as long as x ( n  + k )  x * ( n  - k ) ' s  
are zero for I k I I L ,  where L = ( M  - 1 ) / 2 .  

E. Computation Algorithm 

Spectrograms are commonly computed by short time 
FFT, and the number of frequency bins is usually a power 
of 2. Using the definition of the discrete GTFR in ( 3 ) ,  
however, the window length M needs to be odd to main- 
tain a real GTFR, thus, an FFT with radix 2 cannot be 
used directly to compute the GTFR's. Here we present an 
algorithm for the GTFR's with the cone-shaped kernels 
to maintain real transforms while utilizing an FFT of ra- 
dix 2 in the transform computation. 

Let p = n - n I ;  using a continuous frequency variable 
0 in (3) gives 

L L  

c r ( n ,  e;  4) = 2 C C # ( p ,  k )  
= - L  p = - L  

* x(n - p -t k )  x*(n - p - k )  e-'ke. 

Using (8) with a = 1 ,  we have 

c,(n, 8; 4 )  
L IX.1 

k =  - L  p = - ( k (  
= 2 C g ( k ) e - J k o  C x ( n  - p + k )  

* x * ( n  - p - k )  

= 4 C g ( k )  COS ( k e )  
L 

k = O  

L 

(10) = 4 C g ( k )  y ( n ,  k )  COS ( k 8 )  
L = O  

where 

0.5 g ( k )  k = 0 

g ( k )  otherwise 
k ( k )  = 

and 
Ik l  

p = - l h  
y ( n ,  k )  = c x ( n  - p + k )  X*(. - p - k ) .  

Note that (10) can now be formulated as the real part of 
a standard DFT which can be computed with an FFT of 
radix 2 without affecting the realness of the GTFR, i.e., 

For example, with M = 2y - 1, we can quantize 8 into 
intervals of length 27r/2Y. 

IV. EXPERIMENTAL RESULTS 

For comparing the GTFR with the cone-shaped kernels 
(abbreviated below as GTFR-CK) to the spectrogram and 
the PWD, experiments were performed on simulated data 
and real speech. The computing facility was a Symbolics 
3640 with Zetalisp running ISP [ 1 I ] .  Parameters used in 
the experiments were a sampling frequency of 20 kHz; an 
angle parameter a = 1 for the cone-shaped kernel; and 
the Gaussian windows h ( k )  = e-akz and g ( k )  = e-2ak2, 
where g (  fL) = 0.01. The window length and analysis 
interval for the GTFR-CK, the PWD, and the spectro- 
gram were the same within each experiment, and the FFT 
bin sizes of the GTFR-CK and PWD were half of that of 
the spectrogram since the folding frequencies of the for- 
mer two are at 7 r / 2 ,  and that of the spectrogram is at n. 
In the time-frequency displays, the horizontal axis repre- 
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(a) c, ( to ,  f) - L f  

-4- 
6) 

(C) 

Fig. 4.  Spectral profiles of a signal with two tones at 3.0 kHz and 3.08 
kHz for illustrating the spectral enhancement capability of the GTFR- 
CK. The window length was 128 samples and the FFT bin size was 128 
for the GTFR-CK. (a) Spectrogram. (b) PWD. (c) GTFR-CK. 

l l r l l r l s  L ‘ l l l l i S  U“- , s i  1 1 1  

Fig. 5. The time-frequency representation of a bingle-tone pulse series for 
illustrating the capability of the GTFR-CK o f  simultaneously enhancing 
the signal spectrum and preserving the signal onset times. The frequency 
was 2 .2  kHz,  the pulse width was 100 samples. and the zero interval was 
70 samples. The window length was 64 samples and the FFT bin size 
was 128 for the GTFR-CK. (a) Signal. (b) Spectrogram. (c) PWD. (d) 
GTFR-CK. 

sents time and the vertical axis represents frequency from 
0 to 5 kHz. For display purpose, negative values of the 
GTFR-CK and PWD were set to zero. 

Experiment 1:  This experiment illustrates the spectral 
enhancement capability of the GTFR-CK. The data were 
simulated two-tone signals of 3.0 and 3.08 kHz. The win- 
dow length was 128 samples, and the FFT bin size was 
128 for the GTFR-CK. In Fig. 4(a)-(c) are shown the 
spectral profiles of a time frame. We observe that the 
spectrogram does not resolve the two spectral peaks, the 
PWD is better but has a spike of interference at dc, and 
the GTFR-CK gives two distinct spectral peaks. The ef- 
fect of lateral inhibition is also seen in the GTFR-CK 
where the small negative sidelobes sharpened the promi- 
nent positive peaks. 

Experiment 2: This experiment illustrates the simulta- 
neous spectral enhancement and finite time support of the 
GTFR-CK. The signal was a simulated single tone pulse 
series shown in Fig. 5(a). The frequency was 2.2 kHz, 
the pulse width was 100 samples, and the zero interval 

was 70 samples. The window length was 64 samples and 
the FFT bin size was 128 for the GTFR-CK. The time- 
frequency representations are shown in Fig. 5(b)-(d) for 
the spectrogram, the PWD, and the GTFR-CK, respec- 
tively. The spectrogram gives a smoothed picture in both 
time and frequency, the PWD maintains the time support 
of the signal but produces complicated patterns, and the 
GTFR-CK maintains the time support of the signal and at 
the same time gives a clear-cut spectrum line. 

Experiment 3: This experiment demonstrates the power 
of the GTFR-CK in tracking fast-changing spectral peaks 
of a simulated signal x ( t )  = sin [ A  ( fit - v cos P t ) ]  + 
sin [ A (  Dt  + v cos @ ) I ,  i .e.,  a mixture of two FM com- 
ponents with the instantaneous frequencies U ,  ( t )  = A/3 ( 1 
+ v sin D r )  and w 2 ( r )  = A P (  1 - Y sin D r ) .  The param- 
eters were 6 = 100a, A = 50.0, and v = 0.6. The signal 
duration was 100 ms. The window length was 32 sam- 
ples, analysis interval 2 samples, and the FFT size was 
128 for the GTFR-CK. From top to bottom of Fig. 6(a)- 
(d) are shown the signal, the spectrogram, the PWD, and 
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Fig. 6. The time-frequency representations of a mixture of two FM com- 

ponents for illustrating the capability of the GTFR-CK in tracking fast 
changing spectral peaks. The signal was x (  f )  = sin [ A  ( or - P cos P t ) ]  
+ sin [ A (  or + Y cos o r ) ] .  The parameters were f i  = 100~.  A = 50.0. 
and v = 0.6. The signal duration was 100 ms. The data window length 
was 32 samples, analysis interval 2 samples, and the FFT size was 128 
for the GTFR-CK. (a) Signal. (b) Spectrogram. (c) PWD. (d) GTFR- 
CK . 

Fig. 7. The time-frequency representations of speech for illustrating the 
potential power of the GTFR-CK in application to speech analysis. The 
speech signal was "that you" spoken by a female speaker. The signal 
duration was 154 ms and was low-pass filtered at 5 kHz. The window 
length was 64 samples, analysis interval 8 samples, and FFT size was 
128 for the GTFR-CK. (a) Signal. (b) Spectrogram. (c) PWD. (d) GTFR- 
CK. 

the GTFR-CK. The GTFR-CK consistently maintains 
clear tracks of the spectral peaks whether or not the signal 
frequency is changing slowly or rapidly, the spectrogram 
smears the spectrum heavily, and the PWD suffers from 
a distorted display due to the interfering cross-terms. 

Experiment 4: This experiment demonstrates the po- 
tential power of the GTFR-CK applied to speech analysis. 
The speech signal was "that you" spoken by a female 
speaker, and its waveform is shown in Fig. 7(a). The sig- 

nal duration was 154 ms and was low-pass filtered at 5 
kHz. The window length was 64 samples, analysis inter- 
val 8 samples, and FFT size was 128 for the GTFR-CK. 
Fig. 7(b)-(d) displays the spectrogram, the PWD and the 
GTFR-CK from top to bottom. Again, the PWD is inter- 
fered by cross-terms, and the GTFR-CK shows located 
formant tracks much more precisely than the spectrogram. 
A very prominent demonstration is in the low energy 
coarticulation between "that" and "you", where the for- 
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mants linking “that” and “you” are clearly visible in the 
GTFR-CK, but are almost smeared out in the spectro- 
gram. 

V.  SUMMARY 
Experiments have shown the advantages of the GTFR 

with cone-shaped kernels in resolving close spectral 
peaks, maintaining zero intervals of signals, displaying 
clear tracks of fast-changing spectral peaks for the FM 
signals, and clear tracks of formants for speech signals. 
The technique therefore seems applicable to speech anal- 
ysis and other nonstationary signal analysis. 
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