
The Use of Context-Aware Policies and Ontologies
to Facilitate Business-Aware Network Management

John Strassner Æ Sven van der Meer Æ
Declan O’Sullivan Æ Simon Dobson

Published online: 19 May 2009
! Springer Science+Business Media, LLC 2009

Abstract The purpose of autonomic networking is to manage the business and
technical complexity of networked components and systems. However, existing
network management data has no link to business concepts. This makes it very
difficult to ensure that services offered by the network are meeting business
objectives. This paper describes a novel context-aware policy model that uses a
combination of modeled and ontological data to determine the current context,
which policies are applicable to that context, and what services and resources should
be offered to which users and applications.

Keywords Context ! Ontology-based management ! Policy management !
Semantic reasoning

1 Introduction

The business, technical, and even social aspects of systems have increased
dramatically in complexity, requiring new technologies, paradigms and

J. Strassner (&) ! S. van der Meer
TSSG, Waterford Institute of Technology, Carriganore Campus, Carriganore, County Waterford,
Ireland
e-mail: jstrassner@tssg.org

S. van der Meer
e-mail: vdmeer@tssg.org

D. O’Sullivan
Trinity College Dublin, Dublin, Ireland
e-mail: declan.osullivan@tcd.ie

S. Dobson
University College Dublin, Dublin, Ireland
e-mail: simon.dobson@ucd.ie

123

J Netw Syst Manage (2009) 17:255–284
DOI 10.1007/s10922-009-9126-4

functionality to be introduced to cope with these challenges [1]. This increase in
complexity has made it almost impossible for a human to manage the different
operational scenarios that are possible in today’s communication systems. While IP
network management problems have been extensively documented [1–4], wireless
systems present even more difficult problems [5]. For example, wireless failures are
usually not obtainable from a single set of attributes—they must be inferred.
Cognitive networks [6], in which the type of network access can be dynamically
defined, face additional constraints, such as regulatory compliance.

One of the underlying problems in network management is the lack of a lingua
franca to ensure that vendor devices having different functionality and data models
can be programmed to provide the same resource or service.1 Part of the allure of
Policy-Based Network Management (PBNM) [7] is its simplicity in providing
different services to different users while automating device, network and service
management in a standard way. However, most PBNM systems have been low-level
systems that manage changes in commands for routers, switches, and firewalls.
Hence, there is no link between business needs and the configuration of network
resources and services.

In addition, while context has been examined as a method to determine changes
in functionality [8, 9], it has not yet been related to business changes. There are two
reasons for this. First, the act of monitoring current context and operation is difficult
to perform in distributed systems [10]. Second, different sensors have different
reference models and management data; these data must be fused in order to
develop an accurate and informed model of context [11, 12].

However, even if the above are solved, an important problem remains: how does
the business benefit from this? Business objectives must be able to determine which
network services and resources should be made available to a given set of users and/
or applications at a particular time.

This paper describes a novel context-aware policy model that uses a combination
of modeled and ontological data to determine the current context, which in turn
determines the set of policies that are applicable to that context. These policies are
then used to determine the set of roles [13, 14] that are permissible to use, which in
turn defines the specific set of services and resources that should be offered.

The FOCALE autonomic architecture [15] was built in part to solve this problem,
and is based on four key concepts. First, the use of a shared information model is
required in order to harmonize the different data models that are used in Operational
and Business Support Systems (OSSs and BSSs). Second, information and data
models are augmented with ontological data, which enables the representation and
use of semantics to reason about behavior. This novel combination of modeled and
ontological data enables reasoning to be used to define the best set of policies
applicable for a given context change. Third, we define a context-aware policy
model, which enables context changes to trigger the use of new policies that can
adapt offered resources and services to sensed context changes. Finally, we outline

1 See, for example, the recent IETF NetMod working groups discussions on conformance. For example,
P. Shafer wrote on 4/10/08: ‘‘Or, viewed the other way, the assumption that vendors will faithfully
implement data models as specified has been harmful to the adoption of network management.’’

256 J Netw Syst Manage (2009) 17:255–284

123

how this novel context-aware policy architecture can be used, together with
machine learning and reasoning, to link business objectives to the use of network
services and resources.

The organization of this paper is as follows. Sections 2 and 3 summarize current
PBNM and context approaches. Section 4 describes the Policy and Knowledge
Continua, which are two abstractions that link business concepts to network services
and resources. Section 5 describes our context-aware policy model. Section 6
provides an example of mapping to business concerns, and Sect. 7 examines the
problems of stability and uncertainty. Section 8 summarizes the paper and future
work.

2 Current PBNM Approaches

Policy-based network management (PBNM) is a concept developed originally to
reduce the administrative complexity of reconfiguring a device and/or a network to
respond to the changing conditions of the business and the infrastructure. The
manual process of reconfiguring the network is very difficult; two important sources
of this difficulty are the challenge of enabling the business to determine the set of
network services and resources to be provided at any given time, and because of the
vast amount of heterogeneous devices a network comprises [5]. PBNM aims to
decrease this complexity and its associated cost by automating, to some degree, the
reconfiguration process. This concept corresponds to the vision of self-governance
innate in autonomic communications [16].

Damianou et al. [17] provides a comprehensive survey of policy management
approaches. One of the key points that are raised in [17] is that the capabilities and
content of a given policy language is almost always bound to a specific domain. For
example, the syntax, constructs used, and underlying model are very different
between existing security and management policy languages. Three languages that
claim to be independent of domain are briefly discussed below. Note the following
shortcomings of all of these related works:

None address the multiple stakeholders and views embodied in the Policy
Continuum concept
None provide a common lingua franca that enables different management data to
be harmonized
All are limited in their representation of knowledge compared to our method,
which combines information models and ontologies
None relate business objectives to network services or resources.

The policy technologies group at the IBM T.J. Watson Research Centre
developed the Policy Management for Autonomic Computing (PMAC) technology,
which gave rise to the Apache Imperius project.2 This approach only uses a
condition–action tuple, which creates efficiency and predictability problems. The

2 Imperius was accessed from the following URL on October 4, 2008: http://incubator.apache.org/
imperius/.

J Netw Syst Manage (2009) 17:255–284 257

123

http://incubator.apache.org/imperius/
http://incubator.apache.org/imperius/

most obvious is that if policy rules do not contain an event specification, then the
system cannot determine when conditions will be evaluated. This in turn means that
conflicts cannot be detected. In addition, continuously checking every condition
against every event is not going to be computationally efficient, nor will it produce
temporally predictable firing of policy actions without prescriptive real-time
requirements. Finally, the predictability problems that may be introduced can open
the door to a wide range of anomalous runtime behaviors.

Ponder [18], a policy language for distributed system management, has been
developed as part of ongoing work in Imperial College, London. The language,
which is declarative, strongly typed and object-oriented, codifies six policy types,
namely positive authorization, negative authorization, refrain, positive delegation,
negative delegation and obligation. While these policy types allow for a rich policy
set to manage the behavior of a domain, the language has some shortcomings. Both
positive and negative authorizations are target based, which means that a subject
cannot specify positive authorization policies to control its own behavior regarding
interaction with a target. Refrain policies are approximately equal to subject based
negative authorization policies, although the semantics of ‘must refrain from’ are
not as strong as ‘not authorized’. Moreover, refrain, positive authorization and
negative authorization policies do not have an event clause, which can cause
efficiency and predictability problems as discussed in relation to PMAC. Delegation
policies, both positive and negative, allow the subject of an authorization policy to
delegate temporarily access rights to a grantee. However, as authorization policies
are target based, it therefore seems imprudent to allow the subject of an
authorization policy to delegate permission/revocation access rights. Finally, the
semantics of the Ponder policy language itself have not been formally defined,
making automated reasoning over policies, as required for autonomic networking,
not possible through formal means.

The University of Maryland, Baltimore, has developed Rei [19] to facilitate the
definition of deontic logic based policies that are used to manage the behavior of
agents operating in open distributed environments. More specifically, Rei defines
constructs for right, prohibition, obligation and dispensation policies. However,
unlike Ponder, Rei does not specify explicitly if a policy is target based or subject
based, which can be limiting for policy conflict detection. OWL-Lite is used to
encode the grammar of Rei; therefore individual instances of policies are defined as
individuals/slots of the defined classes and properties. Rei also uses OWL-Lite to
reason over domain knowledge expressed in either RDF or OWL. To overcome the
issue of defining policies that contain variables, which is inherited by implementing
OWL to encode the grammar, Rei uses placeholders similar to those used in Prolog.
This non-standardized extension, however, means that (DL Implementation Group)
DIG reasoners and the REI engine are able to reason about the domain-specific
knowledge, but not about all policy specifications. Finally, the most important
critique of the Rei policy specification language is that the semantics of the
language have not been formally defined. A natural language description (English)
of the semantics has been provided but this is of little benefit for automated
knowledge acquisition and inferencing.

258 J Netw Syst Manage (2009) 17:255–284

123

3 Current Context Approaches

Context-aware applications are gaining increasing recognition as a means to realize
the needs of current and next generation applications. The state of the art in context
awareness is again limited, in that existing approaches do not take into account
relating business needs to network resources and services. In particular:

None address the multiple stakeholders and views embodied in the Policy
Continuum concept
None use the combination of ontological data and policy rules to jointly define
functionality that can be used for that particular context
None relate business objectives to network services or resources

The development of software architecture to support the building of context-
aware applications is described in [9]. While the framework simplifies the task of
acquiring and delivering context to applications, it does not provide an information
model to visualize or define how context is used, nor does it describe how policy is
used. It also does not relate business objectives to services or resources.

Román et al. [20] defines a context service to let applications query and register
for particular context information using a first-order logic to model context. This
limits applications to using only context data from the context providers defined in
the registry. Again, no use of policy or association with business objectives is
provided.

Most context-aware approaches focus on building frameworks and toolkits to
support ad hoc context representation [21]. Hence, [21] describes an ontology for
describing concepts for context-aware applications. However, it is designed to
support context negotiation, not general purpose analysis, and does not use policy or
map business concepts to network services.

There are several proposed extensions to the Composite Capabilities/Preferences
Profile (CC/PP)3 and User Agent Profile (UAProf)4 standards. Both of these
mention context, but are in reality focused on describing device capabilities and user
profiles. In addition, they do not define policy rules or how business concepts are
mapped to context.

One of the most popular definitions of context is [8]: ‘‘Context is any information
that can be used to characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction between a user and an
application, including the user and application themselves’’. For our purposes, this
definition has some significant shortcomings. First, context involves more than
‘‘just’’ data or information—it is about the use of knowledge. Data is simply a set of
values, with no underlying understanding of what those values ultimately mean.
Data is transformed into information when different meanings are associated with
information that is context-specific. When contextual information is interpreted and
understood using one or more interpretation rules, we then have knowledge. We

3 W3C, Composite Capabilities/Preferences Profile (CC/PP), http://www.w3.org/Mobile/CCPP.
4 WAPFORUM, User Agent Profile (UAProf), http://www.wapforum.org.

J Netw Syst Manage (2009) 17:255–284 259

123

http://www.w3.org/Mobile/CCPP
http://www.wapforum.org

explicitly model knowledge using a combination of models and ontologies, and
update this knowledge using machine learning and reasoning.

Second, the phrase ‘‘characterize the situation of an entity’’ is too limiting. For
example, if the context was based on the current heart rate of a patient, the situation
of the patient may or may not have anything to do with determining the value of the
context data. Hence, we have built an extensible model, based on a set of software
patterns,5 to represent an aggregate model of context, where the specific aspects of
knowledge to be aggregated are determined by context-aware policies.

The third problem is the lack of formal definitions of concepts that involve and
interact with context. For example, the phrase ‘‘An entity is a person, place or
object’’ includes only some concepts that are relevant, and does not include
concepts such as communication, walking, or being in a noisy environment. Hence,
we base our context model definition in an object-oriented information model
constructed from software patterns—we are thus able to leverage the work in the
information model to dynamically adjust the definition of context to meet
application-specific needs by modeling context as a set of reusable contexts.

The phrase ‘‘interaction between a user and an application’’ is problematic, since
context exists independent of the interaction between a user and an application (e.g.,
the fact that no one is walking, sitting, or standing on a pressure-sensitive floor is
context in and of itself).

Finally, when we look at the entire second sentence of this definition (‘‘An
entity…that is considered relevant to the interaction…’’), this means that only
people, places or objects that are relevant to the interaction between a user and an
application are considered context. This is clearly wrong for autonomics, as well as
ubiquitous computing and other similar approaches, since such approaches
emphasize the concept of invisible management. In other words, interaction should
not have to be explicit and noticed by the user.

Ye et al. [22] provides a detailed review and critique of ontologies that have been
developed for pervasive systems. The paper explains the two main applications of
ontologies in pervasive computing: modeling context and reasoning about it. The
defining characteristics of context—its dynamism, incompleteness, openness and
uncertainty—have proven to be extremely difficult to capture in orthogonal and
portable form. Intuitively one would like to perform a ‘‘separation of concerns’’,
isolating (for example) the model of uncertain reasoning from the sensors whose
readings were being reasoned over. Such separations are not typical in current
ontologies, since most ontologies are constructed to the ‘‘the complete answer’’ to a
given problem domain. We have taken a first step towards solving this problem in
the DEN-ng context model used in FOCALE, which is explained in Sect. 5.4.

We use the following definition of context in DEN-ng: ‘‘The Context of an Entity
is a collection of measured and inferred knowledge that describe the state and
environment in which an Entity exists or has existed’’. In particular, our definition
emphasizes two types of knowledge—facts (which can be measured) and inferred
data, which results from machine learning and reasoning processes applied to past
and current context. Both of these concepts are realized as intelligent containers of

5 See, for example: Fowler, analysis patterns—reusable object models, ISBN 0-201-89542-0.

260 J Netw Syst Manage (2009) 17:255–284

123

information, which can have additional semantics added to them, such as metadata,
accuracy, and measurement confidence. They also include context history, so that
current decisions based on context may benefit from past decisions, as well as
observation of how the environment has changed. Our approach uses models and
ontologies to overcome these and other problems by providing a richer expression
of semantics than UML is capable of.

4 The Policy and Knowledge Continua

Data is characterized as observable and possibly measurable raw values that signal
something of interest. In and of themselves, data have no meaning—they are simply
raw values. In contrast, data is transformed into information when meaning can be
attached to data. The process of transforming information into knowledge attaches
purpose, context, and provides the potential to generate action.

For example, a measured value of 17 is simply a scalar. If that value can be
associated with a set of enumerated values, and if the value 17 has a particular
meaning (e.g., ‘‘problem’’), the system has now succeeded in attaching a meaning to
the scalar value. If the system can add further details, such as what the problem
refers to and what a possible solution to this problem could be, the semantics are
now made more explicit, and important additional information and knowledge can
now be generated (i.e., a skill set could be inferred as required to solve the problem
whose value was denoted as 17). This systematic enrichment of semantics, from a
simple value to a value with meaning to a value with meaning, purpose and action,
is critical to defining knowledge that can be used to perform a task. The Entity,
Value, and MetaData subclasses of the DEN-ng information model shown in Fig. 1
provide these semantics.

1..n

RootEntity

Observable ObservableValueManagedEntity ManagedEntityMetaData

Entity
businessPurpose : String

MetaData
enabled : Integer = 1
usage : String

Value
isInferred : Boolean

1 1..n

HasAssociatedValue
1 1..n

0..n
1..n

ManagedEntityHasMetaData

0..n

0..n0..n

EntityHasAssociatedValue

0..n0..n 0..n0..n

ValueHasAssociatedMetaData

0..n0..n

Fig. 1 Difference between Entities, Values, and Metadata in DEN-ng

J Netw Syst Manage (2009) 17:255–284 261

123

The Entity hierarchy represents classes of objects that play a business function.
Entities can be either managed or unmanaged, and represent objects that have a
separate and distinct existence (as opposed to being merely a collection of attributes
or an abstraction of behavior). In contrast, the Value hierarchy consists of subclasses
that are used to reify the notion of something that exists that does not have a distinct
associated identity (like subclasses from Entity do). Note the separation between
Observable and ObservableValue—this decouples values from objects, such as
containers, in which the values exist. This enables either or both to have metadata.

DEN-ng differentiates between something that is observable (but not necessarily
measurable) and something that is both observable and measurable. Hence, the
Measurable and MeasurableValue classes are subclasses of the Observable and
ObservableValue subclasses (which are not shown in Fig. 1 for the sake of
simplicity). Thus, all MeasureableValues are ObservableValues, but not all
ObservableValues can be measured.

Metadata represents information that describes or explains the purpose,
operation, characteristics, interaction, and/or behavior of the entity that the
Metadata is applied to. The MetaData hierarchy exists as a third, and separate,
hierarchy because it can be applied to Entity as well as Value objects. This
extensible design is unique in the industry.

There is a profound difference between modeling a fact that is observed or
measured and modeling a fact that is inferred. Facts that are observed or measured
often do not need additional reasoning performed on them, as the value(s) that they
represent are sufficient to define the fact. In contrast, facts that are inferred can only
exist by having reasoning performed to create them. The general approach for
representing inferred knowledge in the DEN-ng information model is shown in
Fig. 2.

The figure shows the six attributes that make up the generic class container used
in DEN-ng to store inferred knowledge. The typeOfContainer attribute is an
enumerated integer, and defines which type of pre-built or application-specific
container is used. This enables the developer to attach application-specific metadata
to different container types. The actual data that is inferred is contained in the
inferredContent attribute. It is stored as an OctetString to enable different types of
results to be stored independent of any one particular data type, and works in

Application
Application

Application
Inferred

Knowledge
Generic Class

Container

type Of Container:
inferred Content:
inferred ContentInfo:
inferred References:
inferred Result:
app Source:

Integer

 Octet String
 String
Sequence Of String
Integer

 Sequence Of String

Fig. 2 The DEN-ng approach for representing inferred knowledge

262 J Netw Syst Manage (2009) 17:255–284

123

conjunction with the inferredContentInfo attribute; this attribute is a string, and
describes how to interpret the data stored in the inferredContent OctetString. The
inferredReferences attribute is an array of strings, one for each reference to an
external concept that is required to use this knowledge (e.g., a particular lexicon
might be required to interpret the result of the inference operation). The
inferredResult is an enumerated integer, and defines one of a set of standard result
codes that can be used so that other applications that cannot understand the inferred
data can substitute that data with an equivalent result. Finally, the appSource
attribute is an array of strings, where each string defines a unique identifier that in
turn identifies an application that produced the inferred data. This is useful for
tracing the results of the inference operation in case it does not agree with other
data.

Strassner [7] defined the concept of a Policy Continuum and [23] reported on its
implementation; [24] then formalized this model. The Knowledge Continuum was
defined by extending this work and applying it to knowledge [25]. This provides a
mechanism to establish continuity between otherwise disparate viewpoints of
knowledge.

Similar to the Policy Continuum, the Knowledge Continuum asserts that in order
to ensure the correct understanding of knowledge at one abstraction, and to be able
to relate that abstraction to other views, knowledge itself must be represented in a
series of views, where each view has meaning in a specific frame of reference, and
where each successive view is generated from a transformation being applied to the
preceding view. As in the Policy Continuum, the Knowledge Continuum removes
the differentiation of transformation from refinement, resulting in a pure transfor-
mation pipeline. This is a formalization of the adaptive pipeline pattern described in
[26], which is a forward engineering approach in which any given source model is
first restructured in the transformation pipeline according to a formal language and
formal transformation theory; this is required in order to prove that the
transformation(s) performed preserve the semantics of the models. Transformations
are then applied to the resulting formal language. A conceptual view of the
Knowledge Continuum is shown in Fig. 3.

Business View: Business Knowledge, device- and technology-independent

System View: Business Knowledge translated into technical terminology,
still device-and technology-independent

Administrator View: Technical Knowledge, device-independent, technology-specific

Device View: Technical Knowledge, device- and technology-specific

InstanceView: Instances of Technical Knowledge

Fig. 3 The Knowledge Continuum

J Netw Syst Manage (2009) 17:255–284 263

123

Knowledge is assigned to a particular level in the Knowledge Continuum based
on whether it is business or technical in nature, and whether it is device- and
technology-specific or not.

5 DEN-ng Context-Aware Policy Model

The DEN-ng model is built on two important concepts: patterns and roles. This
formalism, along with best current practices such as using roles to abstract concepts,
is the source of much of the inherent extensibility of the model. For example, the
use of roles makes a design inherently scalable by abstracting individual users,
devices, and services into roles that can be played by various managed entities.
DEN-ng is unique, in that roles are not limited to just people; rather, they may
include roles representing resources, services, products, locations, and other
managed entities of interest.

5.1 Integrating Models and Ontologies

Networks are made up of heterogeneous devices, each with its own vendor-specific
concepts and implementation dependencies. Hence, incompatibilities between
different means of representing and processing information, along with defining the
meaning of said information, arise. These issues result in a phenomenon called
cognitive dissonance. Cognitive dissonance [27] results in a situation where two
supportable, held beliefs are in opposition to each other. In terms of UML models,
this most often results when considering instances of models due to the lack of
precision in the specification of relationships in the presence of inheritance
hierarchies. Furthermore, UML does not contain the constructs necessary to support
the definition of knowledge or reasoning about knowledge, which requires formal
semantic definitions that enable unambiguous representations and organization of
the representations that facilitate the calculation of semantic similarity construction
[25, 28]. As another example, UML does not have the mechanisms required to
establish semantic relationships between information (e.g., synonyms and ant-
onyms). For example, there is no ability in UML to represent explicit semantics
(i.e., the definitions used in UML are implicit). In addition, relationships, such as ‘‘is
similar to’’, that are needed to relate different vocabularies (such as commands from
different vendors) to each other, along with tense, modals, and episodic sequences,
cannot be defined.

Thus, when different terms need to be equated, existing standards-based models
and vendor programming commands, such as SNMP and vendor-specific
command-line interfaces, express knowledge differently. This is shown concep-
tually in Fig. 4.

These limitations also make it impossible to do basic functions, such as define the
set of simple network management protocol (SNMP) monitoring commands that
can determine if a command line interface (CLI) configuration command was
successful or not.

264 J Netw Syst Manage (2009) 17:255–284

123

5.2 Harmonizing Management Data

Given the diversity in vendor-specific management data and technologies, we
propose an iterative approach to identifying and organizing management data
received by sensors and inferred by learning and reasoning algorithms. This process
is based on first, using the DEN-ng information model as a template to match
received sensor data and infer relationships; second, construct semantic relation-
ships to augment the meaning of identified modeled data with ontological data;
third, use the semantic relationships to identify existing and/or construct new model
elements (e.g., attributes and relationships) in the information model; fourth, repeat
until an acceptable confidence level is achieved.

The above process provides a methodology to not just use data from an existing
knowledge base, but more importantly, to continually check and update the
knowledge base.

5.3 Our Dynamic Knowledge Base

Figure 5 shows the first step in constructing our knowledge base: building the
foundation using modeled data.

Step 1 constructs an information model. Note that the majority of current network
management approaches do not use an information model per se; most use a set of
data models that may be, but usually are not, related to each other. Our approach
uses a common information model to define common concepts from which data
models can be derived. We map existing data models to DEN-ng using reverse
engineering [29]. Accordingly, step 2 derives one or more data models from this
information model (in order to accommodate the needs of different management
applications that use different protocols and data structures, as well as to model
vendor-specific data). Step 3 constructs a system object inventory, whose overall

Device M
…
Command 82
Command 83
…
Command 93
Command 94
Command 95
…
Command j

1.0

Device A
…
Command 64
Command 65
Command 66
Command 67
…
Command i

BGP Peering

0.9

Ontology
Differences Effects from Device A

Effects from Device B

To Policy Server

Fig. 4 Mapping a high-level function to different command sets

J Netw Syst Manage (2009) 17:255–284 265

123

structure is defined by the DEN-ng information model, and hence is independent of
the platform, language, and protocol specifics of each data model. This simple but
novel step uses the information model as a design guide as well as an aid in
organizing runtime objects that are indirectly instantiated from it. This enables the
different ManagedEntities (such as services and resources) and their associations to
be used as nodes and edges in the state machines of DEN-ng, which is how services
and resources are managed. From a knowledge engineering point of view, these
objects also represent key concepts that, when used with state automata, reflect
current and/or desired system behavior. This is a model-driven approach that
emphasizes the use of models not just for analysis and design, but for all facets of
network and system management. A management system using this approach can
update its knowledge base dynamically by looking for changes observed in the
structure and content of its knowledge during runtime and update the models
accordingly. Step 4 examines the instantiated objects and extracts keywords and
phrases from this object inventory in order to determine, at runtime, if (1) extracted
data agrees with the model of that data, and (2) there is additional ‘‘hidden’’ or new
knowledge that was not modeled. Step 5 analyses these keywords and phrases using
a variety of techniques, ranging from simple pattern matching to using ontologies to
determine the cognitive similarity between concepts. Step 6 constructs graphs that
represent the knowledge extracted from the models.

Figure 6 shows the second step in constructing our knowledge base: augmenting
the foundation of our knowledge base with additional concepts and meaning that are
extracted from applicable ontologies.

Step 1. Extend DEN-ng
as necessary

Step 2. Instantiate data
models to manage system

Step 4. Ext ract
keywords

Step 6. Skeleton
model elements added

Universal Lexicon

…

Step 3. Instantiate system
object inventory

Step 5. Semantic
Analysis

Fig. 5 Building the foundation using modeled data

Universal Lexicon
Information Model

Fragment
Ontology Model

Fragment

Fig. 6 Augmenting modeled data with ontological meaning

266 J Netw Syst Manage (2009) 17:255–284

123

Figure 6 shows the general case of mapping an information model fragment to a
set of ontologies using a set of terms in our lexicon. Each of the arrows emanating
from the terms in the lexicon represents one or more different linguistic
relationships (e.g., synonyms, antonyms, homonyms, and custom relationships,
such as ‘is similar to’). Note that in general, this method will identify a part of a
taxonomy without identifying all concepts in the taxonomy; this is represented by
the two dashed lines in the ontology model fragment (one being the superclass of the
two concepts found, and the other being a subclass that was not found).

Each model element could potentially have more than one meaning. In a well-
designed model, such as one based on DEN-ng, this can be minimized by
abstracting functionality using roles, which codify specific functions. For example,
instead of using the generic term ‘‘router’’, a system can use roles to identify the
type of router function that is being performed (e.g., interfaces that interact with
core routers vs. those that interact with edge routers, or roles that define the overall
function of a router, such as ‘‘border router’’ vs. ‘‘transit router’’ vs. ‘‘edge router’’).
Metadata can also be used to help disambiguate the function of a model element.
For those cases where it is impossible to distinguish the exact function of a model
element, a semantic analysis must be done to establish the particular meaning that
should be used in this context. This means that a set of (possibly different) semantic
mappings must be performed for each meaning for each model element. If a term
has multiple valid meanings, one semantic relationship is defined for each distinct
meaning.

However, before this potentially expensive set of operations is performed, an
alternative exists: examine the information model to find a set of model elements
that are related to the model element whose meaning is ambiguous, and treat this
group of model elements as a complete concept to search on. To use an analogy, an
individual model element can be viewed as a noun, whilst a group of model
elements can be viewed as a phrase. Just as in English sentences, where a phrase
gives additional context to each of its components, analyzing a group of model
elements gives additional context to each of the contained model elements.
Optionally, our approach allows the use of a programmable threshold that rejects
mappings that do not have a high enough value of semantic equivalence.

Essentially, the above semantic resolution process compares the meaning (i.e.,
not just the definition, but also the structural relationships, attributes, etc.) of each
element in the first sub-graph with all elements in the second sub-graph, trying to
find the closest language element or elements that match the semantics of the
element(s) in the first sub-graph. Often, an exact match is not possible; hence, the
semantic resolution process provides a ratioed result, enabling each match to be
ranked in order of best approximating the collective meaning of the first sub-graph.
As a consequence, the number of elements in the second sub-graph, and the overall
structure of the second sub-graph, do not have to be the same (or even similar) to the
number of elements and structure of the first sub-graph. Wong et al. [28] provides an
example of such a semantic similarity algorithm.

The next step is illustrated in Fig. 7. In this step, each ontology concept that was
identified in the semantic matching process is now examined to see if it is related to
other concepts in the same or other ontologies. As each new concept is found, it is

J Netw Syst Manage (2009) 17:255–284 267

123

marked for possible addition to the existing concepts that were already matched
from the lexicon. The newly added concept is then checked to see if it is related to
any of the terms identified in the lexicon. If it is, the new concept is added; this is
shown in the dashed polygon in Fig. 7. If it is not directly related to a term in the
lexicon (as shown in the dotted ellipse in Fig. 7), then additional checks are formed
to see if (1) it is indirectly related, or (2) it should be added as a new relation (i.e.,
this represents new knowledge).

The underlying idea for these additional checks is to verify that each new concept
reinforces or adds additional support for the concept that was already selected.
Hence, this process can be thought of as strengthening the semantics of the match.

These new semantic associations, along with the new concepts discovered in the
ontology, can now be used to find new model elements. Each new ontology concept
is first mapped to one or more terms in the lexicon, and then each of those terms are
mapped to model elements. As before, the algorithm attempts to match groups of
related concepts to groups of related model elements. This has the effect of
increasing the semantic similarity between two concepts; as larger groups of
concepts are matched to larger groups of model elements, a stronger correlation
between the meaning of the grouped concept and the group of facts is established.
This is, in effect, a self-check of the correctness of the mapping, and is used to
eliminate concepts and model elements that match each other, but are not related to
the managed entity that is being modeled. This is shown in Fig. 8.

During this process, any new or changed knowledge is dynamically uploaded to
the system’s knowledge base. Hence, new concepts that have semantic meaning that
are discovered from managing the system can be dynamically added to the
information model, meaning that the knowledge base of the system dynamically
changes to reflect new knowledge learned through experience. These steps are
described in more detail in [25].

5.4 The DEN-ng Context Model

In order to accommodate as flexible a set of definitions as possible, the core of our
context design consists of two classes, Context and ContextData, as shown in Fig. 9.

Information Model Ontology

First Semantic
Resolution Process

Universal Lexicon

Special-case handling!

Discovered concepts

New concept associations

Fig. 7 Adding new ontological concepts

268 J Netw Syst Manage (2009) 17:255–284

123

The DEN-ng model enables context to consist of multiple distinct sets of related
data and knowledge. Therefore, we use two different classes to represent context.
The Context class is used to represent a completely assembled representation of
context, while the ContextData class is used when context contains multiple distinct
types of different data that need to be combined in order to determine the overall
context of an entity. For example, when modeling a phone call which can involve
handover between two different technologies, we instantiate two different sets of
‘‘sub-contexts’’—each consists of a collection of ContextData classes that is bound
to a particular technology. This enables us to better manage the phone call, since the
underlying technologies are themselves fundamentally different. More importantly,
this design approach discourages the construction of a single context model, which
is usually bound to a single set of applications, and instead encourages building a
context model from a set of reusable component models; each of the component
models represents a particular set of aspects of context, which enables it to be more
easily re-purposed.

Information Model Ontology

First Semantic
Resolution

Process

Universal Lexicon

Second Semantic
Resolution Process

Rejected

Fig. 8 Semantic resolution process

ContextDataDetails
isValidContextData : Boolean
contextDataValidityStartTime : String
contextDataValidityEndTime : String
isContextDataMandatory : Boolean

ContextData
Atomic

ContextAtomicContextComposite

Context
canUpdateContext : Boolean = TRUE
typeOfContext : Integer

ContextData
Composite

ManagedEntity

ContextData
canUpdateContextData : Boolean = TRUE
typeOfContextData : Integer

1..n

0..n

AggregatesContext

1..n

0..n

{ordered}

0..n

0..n

RelatedContexts

0..n

0..n

0..n

0..n

ManagedEntityHasContext

0..n

0..n

1..n0..n

HasContextData

1..n0..n

0..n

1..n

AggregatesContextData

0..n

{ordered}

1..n

0..n

0..n

ManagedEntityHasContextData

0..n

0..n

0..n

0..n

RelatedContextDataAspects

0..n

0..n

Fig. 9 Core of the DEN-ng context model

J Netw Syst Manage (2009) 17:255–284 269

123

In FOCALE, we implement the above notion in a reusable manner by providing a
generic mechanism for associating detailed models and ontologies with content.
Consider the concept of location. Instead of defining a ‘‘locatedAt’’ attribute in the
Context class (which would necessarily have a fixed meaning associated with it), we
can have the Context class reference a set of location classes that provide more
detailed information and semantics for what location ‘‘means’’ to the Context of this
particular ManagedEntity. This also allows the semantics of location to change as a
function of context. This flexibility is unique in existing context models. Figure 10
shows how this approach works in practice.

First, we define a ContextData to represent the concept of location. We link the
ContextData class to a standard set of location classes as defined in the DEN-ng
model, which describe location in a reusable way. Thus, we reuse the basic location
model, and then attach semantics of the location through the ContextData classes.
Note that location is more than just latitude and longitude, but also includes height,
proximity, co-location with other entities, and orientation. This genericity is why a
set of classes (and appropriate units of measurement in 2-D or 3-D space) are
required for defining location, as opposed to a simple attribute. In particular, this
enables other applications that use the concept of location to reuse not just the set of
classes describing the location, but the ContextData classes that are linked to it. In
this way, we create reusable context models that are application-independent.

The three classes ContextDataFact, ContextDataInference, and ContextDataSe-
mantics are each containers that external applications can use to populate computed
and/or inferred values. The containers which reasoning applications use are defined
as was previously shown in Fig. 2. The association ContextDataHasLocationSe-
mantics is used to pull location information in to be analyzed; ContextDataFacts and
ContextDataInferences are then produced describing the location. For example, the
GPS coordinates of two people in the same city can be compared to compute the
proximity of one to the other. As another example, inference can be used to
determine which people trapped in a building that has a fire are in greater danger.

LocationAtomic

Address Geographic
Region

Position Structure

ContextDataAtomic

ContextDataFact ContextDataInference

ManagedEntity

LocationComposite

ContextData
Semantics

Location

0..n

0..n

0..n

0..n

ManagedEntityHasPhysicalLocation

0..n

1..n

0..n

1..n

HasLocationElements

ContextData

1..n0..n 1..n0..n

HasContextDataSemantics

0..n 0..n0..n 0..n

ContextDataHasLocationSemantics

ContextDataLocationDetailsPolicyRuleStructure

0..n

0..n

0..n

0..n

HelpsSelectPoliciesToActivate

0..n0..n 0..n0..n

PoliciesGoverningContextDataLocation

Fig. 10 Example of ContextData for location

270 J Netw Syst Manage (2009) 17:255–284

123

The DEN-ng ContextData taxonomy is divided into a domain-independent
portion (its ‘‘Upper Ontology’’) and a set of domain-specific portions, as shown in
Fig. 11. The upper ontology captures generic context knowledge, while each
domain-specific ontology delineates the details of concepts defined in the upper
ontology in a manner specific to each sub-domain. This enables reusable context
models to be created by attaching application-specific ContextData Domain Specific
Ontology data to ContextData Upper Ontology information. This separation of
common vs. domain-specific semantics reduces the burden of context processing for
each individual application, and ensures simple re-purposing through its ability to
dynamically connect or disconnect different ontologies to or from the upper
ontology in order to meet the needs of resource-constrained devices, such as a cell
phone. This latter is an important design consideration. For example, when a user
leaves his home to drive to work, our system can swap out the ‘‘home context’’
ontology with a ‘‘car context’’ ontology that reflects the different devices and their
capabilities that the user now has access to. Similarly, when the user arrives at work,
the ‘‘car context’’ ontology is swapped out with the ‘‘work context’’ ontology. Each
context model is reusable, and from a processing point-of-view, each model only
needs to be loaded when the context changes to make it relevant. This streamlined
processing is critical for applications such as those embedded in cell phones, since
they do not have a lot of freely available processing power.

Our Upper Ontology consists of five top-level types of information: Managed-
Entity, Location, Time, Activity, and PersonOrGroup. Each of these information
types is detailed in the DEN-ng information model.

Both the Context and ContextData classes use the composite pattern for
flexibility and extensibility. The ContextAtomic and ContextDataAtomic classes

ContextData ContextData
Upper Ontology

Time
Activity

Location
PersonOrGroup

Ad Hoc

Scheduled

…

ContextData Domain Specific Ontologies

Position

Address

…

Structure

Geographic
Region

ManagedEntity

Product

Service

Resource

Policy

…

Ad Hoc

Scheduled

…
…

Person

Group

Fig. 11 DEN-ng ContextData taxonomy

J Netw Syst Manage (2009) 17:255–284 271

123

represent context that can be modeled as a single, stand-alone object. In contrast, the
ContextComposite and ContextDataComposite classes represent context objects that
are composite in nature (e.g., made up of multiple distinct Context or ContextData
objects that can each be separately managed). This enables hierarchies of context
information to be related to other hierarchies of context information. Each context
node (a Context object) can have a set of ContextData objects that provide further
detail describing the characteristics and behavior of that node. For example, the
Context object ‘‘Communication’’ could have the following ContextData objects
associated with it: PSTN (to model the characteristics of fixed telephone lines),
CellularDevice (to model the characteristics of mobile phones and PDAs),
ComputerDevice (to model the characteristics of laptops and desktops) and
VisualAudioDevice (to model the characteristics of a television with Internet
capability). Each of these four classes of device uses different types of media and
provides different types of communication experiences. This model is especially
useful to model a user that has access to one or more of these devices at any
particular time; in this case, the model defines how the user can communicate.

The purpose of the ContextDataDetails association class is to define the particular
semantics of how ContextData relates to Context. This enables different types of
ContextData, each modeling a specific aspect of an overall Context, to be
aggregated together with their own semantics.

The ContextDataFact and ContextDataInference classes are used to represent
additional data that is either known a priori or can be inferred from other knowledge
about a given ContextData. For example, a given access point’s signal strength can
vary over time—this can be observed by a sensor and a decision made as to whether
the access point is stable enough to support mission-critical data communication
over an encrypted link or not. Similar capabilities exist for the Context class—it has
ContextFact and ContextInference subclasses.

The ContextSemantics and ContextDataSemantics classes represent data and/or
knowledge that describe the behavioral aspects of the Context and ContextData
objects, respectively, that this ManagedEntity are associated with, and represent a
convenient point for fusing information from ontologies with data from information
and data models. This done by using these points to associate code generated from
the model with code generated from the ontologies through the use of the intelligent
containers shown in Fig. 2. This in turn enables modeled data, which represent
facts, to be augmented with additional semantics from ontological data; this
combination forms an efficient and self-describing set of knowledge that can be fed
into machine-based learning and reasoning systems [25]. They also present
convenient points for either augmenting context information (e.g., tagging it with
metadata to enhance information retrieval) and/or using context data to perform (for
example) a set of services (which is the subject of Sect. 5.5). In addition, they enable
new knowledge to be dynamically incorporated into the definition of context using
the methodology of Sect. 5.3. Finally, these two semantics classes enable the
application to declare what it needs to complete its view of context, as opposed to
merely obtaining context information. However, these latter examples are each
complex processes and beyond the scope of this paper.

272 J Netw Syst Manage (2009) 17:255–284

123

5.5 DEN-ng Context-Aware Policy Model

Strassner [7] defines policy as ‘‘Policy is a set of rules that are used to manage and
control the changing and/or maintaining of the state of one or more managed
objects.’’ In FOCALE, context is related to the state of an entity. This is shown in
Fig. 12.

State can vary from object type to object type. For example, for a person, it can
refer to the activity that the person is currently doing, physiological factors such as
whether the person is sick or tired, whether the person is busy or not, different
physical conditions, and other factors. In contrast, the state of a network device
includes its operational status, its power state, and other attributes that can be
queried. In particular, changes in context trigger state transitions that adjust the
behavior the entity in accordance with the changes in the environment that it exists
in. For example, imagine a user is switching between a business profile and an
entertainment profile. The former uses a special service provider that offers
encrypted, highly secure communication for business use, while the latter uses a
completely different set of service providers (one for local and a different one for
long distance calling) as well as links to social networks. In this situation, the
policies defined as being usable for that context state will in general be different:
some policies may be the same (e.g., rules about which devices can be used), some
policies may be completely different (e.g., rules about which services can be used),
and some policies may be modified (e.g., rules that govern communication).

The DEN-ng model [30] represents three different types of policy rules in order
to provide context-aware systems with sufficient flexibility to define rules. The
PolicyRuleStructure class is the superclass of different types of policy rules; this
paper concentrates on one type, known as an ECA (event-condition-action) policy,
and represents the structure of a policy rule. Similarly, the PolicyRuleComponent-
Structure class is the superclass for PolicyEvents, PolicyConditions, and PolicyAc-
tions. This enables different types of Policy Rules to have different structural
components. This is shown in Fig. 13.

Metadata is modeled as a separate hierarchy, and is shown in Fig. 14.

PolicyConcept

UtilityFunctionPolicyRuleGoalPolicyRule ECAPolicyRule

StateMachine PolicyRuleStructure0..n 1..n0..n 1..n

StateMachineForPolicyRule

PolicyRule
MetaData

0..n 1..n0..n 1..n

PolicyRuleHasMetaData

PolicyRuleStateMachine
Details

Fig. 12 Policy affects state

J Netw Syst Manage (2009) 17:255–284 273

123

The PolicyMetaData class defines metadata that applies to different types of
Policies, such as (but not limited to) ECAPolicies. This decouples common
metadata that different Policy representation systems need from the actual
realization of the Policy, enabling both ECA- and non-ECA Policies to use the
metadata contained in this class. It also decouples the representation and structure of
a particular type of policy (e.g., an ECAPolicy) from the metadata. This is critical
for properly constructing ontologies from policy models.

Figure 15 shows conceptually how context is used to affect policy [31]. The
SelectsPoliciesToActivate aggregation defines a set of Policies that should be
loaded and activated based on the current context. Hence, as context changes, policy
can change accordingly, enabling our system to adapt to changing demands. Note
that this selection is an ‘‘intelligent decision’’, in that the selection process depends
on other components that are part of a particular context. The PolicyResultAffects-
Context association enables policy results to influence Context via the ContextCon-
trollerComponent, the application that manages Context. For example, if a policy

PolicyEventPolicyConditionPolicyAction

PolicyRuleComponentStructure PolicyRuleStructure

PolicyEventStructurePolicyConditionStructure ECAPolicyRule

0..n1..n 0..n1..n

ECAPolicyRuleUsesPolicyEvent

0..n1..n 0..n1..n

ECAPolicyRuleUsesPolicyCondition

PolicyActionStructure

0..n1..n 0..n1..n

ECAPolicyRuleUsesPolicyAction

Fig. 13 The ECAPolicyRule class

 PolicyMetaData

MetaData

PolicyRuleComponentStructure

PolicyRuleComponentMetaData

0..1

1..n

0..1

1..n

PolicyRuleComponentHasMetaData

PolicyRuleStructure

PolicyRuleMetaData

0..n

1..n

0..n

1..n

PolicyRuleHasMetaData

Fig. 14 Policy metadata hierarchy

274 J Netw Syst Manage (2009) 17:255–284

123

execution fails, not only did the desired state change not occur, but the context may
have changed as well.

The selected working set of Policies uses the ContextAwarePolicyEnablesMa-
nagedEntityRoles association to define and enable the appropriate ManagedEntity
roles that are influenced by this Context; each ManagedEntityRole defines
functionality that the ManagedEntity can use. In this way, policy indirectly
(through the use of roles) controls the functionality of the system, again as a
function of context. Similarly, ContextAwarePolicyEnablesMgmtInfo defines the
set of management data that is useful for this Context; ManagementInfoAffects-
Context represents feedback from these management data regarding the execution
of the policy rule. Once the management information is defined, then the two
associations MgmtInfoAffectsContext and ManagedEntityRoleAffectsContext cod-
ify these dependencies (e.g., context defines the management information to
monitor, and the values of these management data affect context, respectively).

Finally, the ContextControllerComponent defines its own set of ManagedEnti-
tyRoles and ManagementInfo to use to monitor the environment; feedback from the
ManagedEntities identified by their roles and specific measurements (in the form of
ManagementInfo) are used by the ContextControllerComponent to operate its own
finite state machine (FSM). This FSM is used to orchestrate the actions of the
ContextControllerComponent, including which ManagedEntities it should deter-
mine the context for, how a particular element of context should be analyzed, and
what procedures for determining its context should be used.

ManagedEntity

Context

ContextData

1..n

0..n

1..n

0..n

HasContextData

ManagedEntityRole

0..n0..n 0..n0..n

TakesOnManagedEntityRolesManagementInfo

10..n 10..n

DescribedByMgmtInfo

PolicyRuleStructure

1..n

1..n

1..n

1..n

ContextAwarePolicyEnablesMgmtInfo

0..n

0..n

0..n

0..n

ContextAwarePolicyEnablesManagedEntityRole

0..n

0..n

0..n

0..n

SelectsPoliciesToActivate

ContextControllerComponent

0..n

0..n

0..n

0..nMgmtInfoSuppliedToContextGovernance

0..n

0..n

0..n

0..nMgmtInfoToUseForThisContext

0..n

0..n

0..n

0..n ManagedEntityRolesForThisContext

0..n

0..n

0..n

0..n ManagedEntityRolesSuppliedToContextGovernance

1..n

1..n

1..n

1..n

ContextGovernedByContextControllerComponent

0..n

0..n

0..n

0..n

ManagedEntityRoleAffectsContext

0..n

0..n

0..n

0..n

ManagementInfoAffectsContext

0..n

0..n

0..n

PolicyResultAffectsContext

0..n

Fig. 15 Conceptual DEN-ng context-aware policy model

J Netw Syst Manage (2009) 17:255–284 275

123

5.6 Realizing Context Awareness

The challenge of modeling context is how to capture, process, and exploit it to
provide the correct behavior in the correct form to the correct user at the correct
time in the correct place [22]. Context models are often associated with pre-defined
rules [32], as is the case with FOCALE [15]. In the case of FOCALE, policy rules
are used to specify the set of actions to take based upon one or more changes in
context. For example, if a dependency exists between the location of a person and
the type of communications used, then a change in location can be used to determine
a different access mode, or modulation, or use of frequency, or other changes to the
communication used. This is shown in Fig. 10, where the HelpsSelectPolicies-
ToActivate association determines the set of policy rules to be used given a change
in context via the ContextDataLocationDetails association class, which helps
determine the specific semantics of the aggregation relating Location to Context
(ContextDataHasLocationSemantics).

5.7 Strengthening Semantics

The discussion in Sect. 5.3 above showed how our combination of modeled and
ontological data can be used to strengthen the semantics being inferred. This in
effect provides a self-check of the consistency and integrity of the context
information that has been collected. This is especially important when multiple
contextual data from different sources needs to be integrated. Since data from
different sources can have different qualities (e.g., accuracy, certainty, and
freshness) as well as different formats, we have two important problems to solve:
(1) the harmonization of different qualities of data, and (2) the alignment of
different ontologies to facilitate extraction of diverse data. We propose a
programmable threshold for the former, which enables us to weight the contribution
of different data sources (but see the future work section for desired embellish-
ments), and the use of standard plus custom semantic equivalence relationships for
the latter.

Coutaz et al. [33] points out that context is not simply a state but part of a
process. In other words, the system must behave correctly during the entire process.
The DEN-ng model in Fig. 12 is used as shown in Fig. 16 to relate state to an
activity, which is in monitored by the autonomic manager. Changes in the state
trigger analysis using the combination of modeled and ontological data, which is
then related to the appropriate set of state machines. These use context to identify
the set of policies that should be executed, which reconfigure the system
appropriately. The monitoring processes then check the result to ensure that it
was as expected.

There are three approaches to consider. Ontology merging constructs a single
ontology from two or more different ontologies related to the same subject. This is
called merging because the constructed ontology includes data from all source
ontologies. Ontology integration builds a single ontology in one domain from two or
more ontologies in different domains. Ontology alignment, also called ontology
mapping, constructs links between the different source ontologies, but keeps the

276 J Netw Syst Manage (2009) 17:255–284

123

source ontologies unchanged. We use this approach, since our ultimate aim is to be
able to reuse ontologies. This has been discussed in detail in (see, for example, [34,
35]). It is conceptually shown in Fig. 17.

The two lines from the node on the left schema represent two mappings to two
different nodes in the right schema. This is exemplary, but is indicative of a number
of problems that need to be solved, including: (1) how to detect and eliminate
duplicate entries due to taxonomical, data structure, and other differences;
(2) consolidation of different entries, where each entry contains data that the other
entry doesn’t contain; (3) lack of sufficient expressivity in a node or set of nodes in a
source schema to map it with a high enough probability to a node or set of nodes in a
target schema; (4) determining that knowledge is missing.

Several candidate matching algorithms can be applied to support the determi-
nation of semantic mappings. For example, [25] uses semantic matching to solve
these problems. The simplest version of this approach involves the following steps:

Business Process Model

DEN-ng Model

Finite State
Machines

DENON-ng
Ontologies

Semantic Resolution
Process (Part5.3)

Autonomic
Manager

MonitorsProcess
Execution

Dynamic
Code

Generation

Fig. 16 Relationship between state and process

Fig. 17 Ontology alignment

J Netw Syst Manage (2009) 17:255–284 277

123

1. Transform the ontologies to be matched into equivalent XML schemata
2. Parse each node into a set of tokens
3. For each node, find the strongest match using either (1) pattern matching of

modeled and/or ontological data and/or (2) linguistic matching by comparing
the tokens according to the order {equality, superset, subset, overlap, disjoint}
([28] provides an example of such an algorithm)

4. For matching nodes, repeat the above for each node attribute
5. Repeat this approach for groups of nodes, as described in Figs. 5, 6, 7, and 8;

this strengthens the results of the matching process.

In FOCALE, another alternative for matching includes the use of custom
relationships, such as ‘‘has same effect as’’. In addition, a hybrid reinforcement
learning loop is used to observe the above processes to help fine-tune the matching
process. An example of a hybrid approach is the OISIN system [36], shown in
Fig. 18, which uses multiple semantic models in the domain of research to perform
the mapping.

According to the Shvaiko and Euzenat classification [35], this incorporates a
language-based matcher, a linguistic resource matcher, a type-based matcher, and a
reuse-based matcher, in combination to support a user or an application in their
determination of semantic mappings. For example, this system has been success-
fully demonstrated in mapping between the Common Information Model (CIM) and
some Simple Network Management Protocol (SNMP) models [37]. Two SMI
information models (MIBs), the ENTITY-MIB and HOST-RESOURCES-MIB,

Fig. 18 OISIN semantic mapping tool

278 J Netw Syst Manage (2009) 17:255–284

123

were chosen to be semantically mapped to parts of the CIM object model. These
models have the advantage of containing many common concepts expressed in
different ways. Furthermore, the CIM model contains a number of mappingStrings
attributes containing semantic information about some parts of the CIM model in
terms of roughly equivalent SMI concepts. In order for ontological mapping to be
performed on the models, they each were first translated in an ontological format.
The mappings were then used to allow network managers to express interest in
certain events that were being distributed on an event based network. As a concrete
example, a manager expressed interest in receiving information about devices, in the
form of a CIM query (e.g., CIM_Printer). By exploiting the ontological mappings,
this query was automatically satisfied by SNMP events related to devices described
as hrPrinterEntry, described in the SMI HOST-RESOURCES-MIB. Although
successful in its demonstration of the use of general purpose semantic mapping tools
within the network management domain, some key issues were raised that still need
to be noted and addressed into the future: (1) A combination of matching algorithms
are advocated as pure lexical matching approaches alone are problematic due to the
wide variety of modeling practice of standards bodies in naming entities through
concatenation of strings; (2) the complexity of scale in presenting users with
numerous possible matches from which they need to determine mappings.

6 Mapping to Business Concerns

The concept of the Policy Continuum [7] was originally defined to serve as a bridge
between different constituencies that used policies to manage and configure network
devices, but used different concepts and terminologies that were specific to different
constituencies (e.g., business analysts and product managers vs. programmers vs.
network administrators). Each level in the Policy Continuum addresses a specific set
of users that has a very specific understanding of the managed entities operating at
that particular level of abstraction. Davy et al. [24] showed how to map different
concepts within the same continuum level to each other. For example, the business
user wants Service Level Agreement (SLA) information, such as revenue and
money for violating the SLA, and is not interested in the type of queuing that will be
used to condition traffic corresponding to that particular SLA. Conversely, the
network administrator may want to develop CLI commands to program the device,
and may need to have a completely different representation of the policy in order to
develop the queuing CLI commands. The objective of the Policy Continuum is to
define a set of transformations that relate different abstractions of the same concept
to each other. In this example, the business notions of ‘‘revenue’’ and ‘‘cost’’ need to
be related to traffic classification and conditioning (e.g., dropping, queuing,
scheduling, etc.). Information models do not provide such a mapping. Our approach
uses the combination of modeled and ontological data to infer such relationships.
For example, Fig. 19 shows an extract of a simplified DEN-ng mapping of contract
entities, such as an SLA, to two different types of services.

A customer-facing service is one that is directly visible to a customer, while a
resource-facing service is one that is required by the customer-facing service to

J Netw Syst Manage (2009) 17:255–284 279

123

operate properly, but is not directly visible to the user. For example, a VPN is
visible to the user, but the particular types of forwarding services performed within
the VPN are not. A ServicePackage defines the invariant attributes, methods,
relationships, and constraints for a collection of CustomerFacingServiceComposite
entities. Conceptually, this is a set of related entities that exhibit variations on a set
of Services. For example, a ServicePackage could define Platinum, Gold, Silver,
Bronze, and BestEffort Services, the difference being the set of applications, their
associated QoS and cost, and other factors that are used to differentiate them. A
ServiceBundle is a collection of traffic classification and conditioning services that
are associated with a particular ServicePackage. Each CustomerFacingService is
defined in the Policy Continuum, along with its mapping to the appropriate set of
ResourceFacingServices. The Knowledge Continuum is then used to identify the
required semantic elements for this mapping.

7 Stability and Uncertainty

If we are to build systems that respond predictably to contextual triggers, we cannot
avoid issues of uncertainty and stability. How do these issues manifest themselves
within the policy framework?

ContractualAgreement
ViolatedDetails

ContractualAgreement
IncentiveDetails

AgreementIncentive
AgreementViolation

ServiceLevelAgreement ServiceLevelSpecification
1..n1..n 1..n1..n

SLARealizedAsSLS

Agreement

ServicePackage

ContractualAgreement

0..n
1..n

0..n
1..n

IncentivesForContractualAgreement

0..n1..n 0..n1..n

ContractualAgreementViolated

0..n

0..n

0..n

0..n

ContractuallyAgreedServicePackages

ServiceBundle

0..n 1..n0..n 1..n

ServicePackageUsesServiceBundles 0..n

0..n

0..n

ContractuallyAgreedServiceBundles

0..n

CustomerFacingService
Composite

ResourceFacingService
Composite

Fig. 19 Simplified DEN-ng contract-service model fragment

280 J Netw Syst Manage (2009) 17:255–284

123

One way to view a context aware system is that it converts a single correct
system behavior into a family of acceptable behaviors, from which the adaptive
system selects one behavior to manifest according to the context. In this view there
are two complementary notions of correctness [33]:

1. The system behaves correctly in a given context (‘‘point’’ correctness);
2. The system’s behavior evolves in a way that is consistent with the user’s on-

going goals and experience (‘‘process’’ correctness).

The goal of the adaptive system, then, is to select sequences of point-correct
behaviors from the collection of acceptable behaviors, in such a way as to match the
adaptations in a process-correct way.

As a concrete example, a policy system managing delivery of a video stream in
a wireless network can select from a number of possible bit-rates at any time,
depending on the changing capacity of the wireless channel. Point-correctness
here means that the video is delivered at some acceptable bit-rate. Another policy
goal might be to minimize the rate of change of bit-rate over time, so (for
example) the picture degrades progressively rather than jumping from high-fidelity
to low-fidelity suddenly. This process goal constrains the selection of bit-rates
further, with a view to providing a better on-going experience. The challenge for
adaptive systems is to ensure that a given set of policies meet these combined
goals.

In general we will typically see process goals that seek to minimize sudden
changes, essentially seeking to make adaptation a smooth process: small changes in
context give rise to small changes in behavior. This not always possible, or desirable
– entering a region of radically lower wireless connectivity will necessitate a sudden
change in video quality, for example—but one may at least say that such cases
highlight situations in which change will be exceptional.

Discontinuous adaptations of this kind may seem unimportant. But they
interact badly with the uncertainty of sensing and inference. If a system is near
such an adaptation point, uncertainty may ‘‘push it over the edge’’ even though
the context does not, in reality, require it. Worse, a system may oscillate
between two very different behaviors, purely because the decision point lies
within the bounds of uncertainty of the sensing system. In such cases an
adaptive system may perform more poorly than the simpler systems they were
intended to replace.

It is still unclear how such properties can be enforced in policy-based
systems. Early work on the semantics of adaptive systems (for example, [38])
has focused on identifying structures in the context that can be used to structure
adaptive behavior. Techniques from dynamical systems have also been effective
in simple cases [39], allowing closed-form models of adaptive spaces to be
derived and analyzed to guarantee the stability and continuity properties of the
adaptations. It remains to be seen whether this approach is applicable to policy-
based systems, although there seems no reason a priori why this should not be
the case.

J Netw Syst Manage (2009) 17:255–284 281

123

8 Summary and Future Work

This paper has described a fundamental problem in network management—the
inability to relate business concerns to network services and resources provided. Our
solution is based on a novel context-aware policy model that, in combination with
semantic reasoning facilitated by the use of ontologies, enables us to map business
concerns into network services and resources. The use of context ensures that our
approach can change the services and resources offered to meet changing business
objectives, user needs, and environmental conditions as indicated by changing
context.

Initial experience indicates that our approach holds significant promise.
However, important challenges remain to be overcome in the areas of semantic
mapping; coping with uncertainty; and testing of scalability.

Firstly, policy- and ontology-based management systems will offer significant
advantages over more hard-coded approaches, only if issues of stability and
robustness to uncertainty can be addressed. These issues require significant
additional exploration.

Secondly, current semantic mapping approaches can be characterized as follows:
knowledge engineers engage in ‘‘one shot’’ processes resulting in static ‘‘one size
fits all’’ mappings published for indiscriminate use. What is needed, however, are
semantic mapping approaches that are undertaken across the Policy and Knowledge
Continua by a wide range of actors over a period of time, resulting in context-
appropriate mappings that need to be tracked, managed, evaluated and evolved.

Finally, in the absence of well-founded approaches, there remains a need to
stress-test policy-based systems. We have observed from experience that data sets of
sufficient size, quality and annotation to perform adequate testing remain rare, and it
would be highly desirable if anonymized data could be made available from
production facilities. We plan to address these issues through further collaborative
research and through collaboration with others within the Autonomic Communi-
cation Forum (www.autonomic-communication-forum.org/).

References

1. Strassner, J.: Autonomic Networks and Systems: Theory and Practice. NOMS Tutorial, April 2008,
Brasil (2008)

2. Choi, M., Won-Ki Hong, J.: Towards management of next generation networks. IEICE. Trans.
Commun. E90-B(11), 3004–3014 (2007)

3. Mo Li, Sandrasegaran, K.: Network management challenges for next generation networks. IEEE
Conference on Local Computer Networks 30th Anniversary (LCN’05), pp. 593–598

4. Clark, D., Sollins, K., Wroclawski, J., Katabi, D., Kulik, J., Yang, X., Braden, R., Faber, T., Falk, A.,
Pingali, V., Handley, M., Chiappa, N.: Newarch: future generation internet architecture. Final
technical report (2003)

5. Strassner, J., Menich, B., Johnson, W.: Providing seamless mobility in wireless networks using
autonomic mechanisms. ACM Conference on Autonomic Infrastructure, Management, and Security
(AIMS), Oslo, Norway, 21–22 June 2007

6. Mitola, J.: Cognitive radio. Ph.D. thesis, KTH, Stockholm, Sweden (2000)
7. Strassner, J.: Policy Based Network Management. Morgan Kaufman, ISBN 1-55860-859-1

282 J Netw Syst Manage (2009) 17:255–284

123

http://www.autonomic-communication-forum.org/

8. Dey, A.: Providing architectural support for building context-aware applications. Ph.D. Thesis (2000)
9. Gu, T., Wang, X., Pung, H., Zhang, D.: An ontology-based context model in intelligent environ-

ments. Proceedings of Communication Networks and Distributed Systems Modeling and Simulation
Conference, vol. 2004 (2004)

10. Keeney, J., Lewis, D., O’Sullivan, D.: Ontological semantics for distributing contextual knowledge in
highly distributed autonomic systems. J. Netw. Syst. Manag. 15, 75–86 (2007)

11. Coyle, L., Neely, S., Stevenson, G., Sullivan, M., Dobson, S., Nixon, P.: Sensor fusion-based mid-
dleware for smart homes. Int. J. Assist. Robotics Mechatron. 8, 53–60 (2007)

12. Strassner, J., Menich, B.: Fusion of sensory information, internal models, and policy in autonomic
computing systems. In: Modeling decisions for artificial intelligence (MDAI), Terragona, Spain, 3–5
April 2006

13. Fowler, M.: Dealing with roles. http://www.martinfowler.com/apsupp/roles.pdf (1997). Accessed 28
Sept 2008

14. Bäumer, D., Riehle, D., Siberski, W., Wulf, M.: The role object pattern. http://st-www.cs.
uiuc.edu/users/hanmer/PLoP-97/Proceedings/riehle.pdf. Accessed 28 Sept 2008

15. Strassner, J., Agoulmine, N., Lehtihet, E.: FOCALE—a novel autonomic networking architecture.
Int. Trans. Syst. Sci. Appl. (ITSSA) J. 3, 64–79 (2007). ISSN 1751-1461

16. Dobson, S., Denazis, S., Fernández, A., Gaı̈ti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F.,
Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton. Adapt.
Syst. 1(2), 223–259 (2006)

17. Damianou, N., Bandara, A., Sloman, M., Lupu, E.C.: A Survey of Policy Specification Approaches.
Department of Computing, Imperial College of Science Technology and Medicine, London (2002)

18. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The ponder policy specification language. LNCS
Proceedings, IEEE 2nd International Workshop on Policies for Distributed Systems and Networks,
pp. 18–38 (2001)

19. Kagal, L., Finin, T., Joshi, A.: A policy language for pervasive systems. Fourth IEEE International
Workshop on Policies for Distributed Systems and Networks, Lake Como, 4–6 June 2003

20. Román, M., et al.: A middleware infrastructure for active spaces. IEEE Pervasive Comput. 1(4), 74–
83 (2002)

21. Khedr, M., Karmouch, A.: Negotiating context information in context-aware systems. IEEE Special
Issue Context Aware Appl. 19(6), 21–29 (2004)

22. Ye, J., Coyle, L., Dobson, S., Nixon, P.: Ontology-based models in pervasive computing systems.
Knowl. Eng. Rev. 22(4), 315–347 (2007)

23. van der Meer, S., Davy, S., Davy, A., Carroll, R., Jennings, B., Strassner, J.: Autonomic networking:
prototype implementation of the Policy Continuum. In: Proceedings of 1st IEEE International
Workshop on Broadband Convergence Networks (BcN 2006), pp. 1–10. IEEE, New York

24. Davy, S., Jennings, B., Strassner, J.: The Policy Continuum—a formal model. In: Jennings B., Serrat
J., Strassner J. (eds.) Proceedings of the 2nd International IEEE Workshop on Modelling Autonomic
Communications Environments (MACE), Multlicon Lecture Notes No. 6, pp. 65–78. Multicon,
Berlin (2007)

25. Strassner, J.: Enabling autonomic network management decisions using a novel semantic represen-
tation and reasoning approach. Ph.D. thesis (2008)

26. Posnak, E., Lavender, R.G., Vin, H.: Adaptive pipeline: an object structural pattern for adaptive
applications. 3rd Pattern Languages of Programming conference (1996). Accessed 8 March 2008

27. Festinger, L.: A Theory of Cognitive Dissonance. Stanford University, Stanford University Press,
Stanford (1957)

28. Wong, A., Ray, P., Parameswaran, N., Strassner, J.: Ontology mapping for the interoperability
problem in network management. J. Sel. Areas Commun. 23(10), 2058–2068 (2005)

29. Liu, Y., Zhang, J., Jiang, M., Raymer, D., Strassner, J.: A case study: a model-based approach to
retrofit a network fault management system with self-healing functionality. 15th IEEE International
Conference on Engineering of Computer-Based Systems, Belfast, Northern Ireland, 31 March 2008

30. Strassner, J.: DEN-ng model overview. Joint ACF, EMANICS, and AutoI Workshop on Autonomic
Management in the Future Internet, 14 May 2008

31. Strassner, J., de Souza, J.N., Raymer, D., Samudrala, S., Davy, S., Barrett, K.: The design of a novel
context-aware policy model to support machine-based learning and reasoning. J. Clust. Comput.
12(1), 17–43 (2009)

32. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive com-
puting systems. In: Proceedings of the First International Conference on Pervasive Computing

J Netw Syst Manage (2009) 17:255–284 283

123

http://www.martinfowler.com/apsupp/roles.pdf
http://st-www.cs.uiuc.edu/users/hanmer/PLoP-97/Proceedings/riehle.pdf
http://st-www.cs.uiuc.edu/users/hanmer/PLoP-97/Proceedings/riehle.pdf

(Pervasive ‘02), London, UK, vol. 2414, pp. 167–180. ISBN 978-3-540-44060-4 Springer, Berlin/
Heidelberg (2002)

33. Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: Context is key. Commun. ACM 48(3), 49–53 (2005).
ISSN 0001-0782

34. Noy, N.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33(4), 65–70
(2004)

35. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2007). ISBN: 9783540469113
36. O’Sullivan, D., Wade, V., Lewis, D.: Understanding as we roam. IEEE Internet Comput. 11(2), 26–

33 (2007)
37. Keeney, J., Lewis, D., O’Sullivan, D., Roelens, A., Boran, A.: Runtime semantic interoperability for

gathering ontology-based network context. 10th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2006), pp. 56–65. Vancouver, Canada, April 2006

38. Ye, J., Coyle, L., Dobson, S., Nixon, P.: A unified semantics space model. In: Location- and context-
awareness, vol. 4718, pp. 103–120. LNCS 2007

39. Dobson, S., Bailey, E., Knox, S., Shannon, R., Quigley, A.: A first approach to the closed-form
specification and analysis of an autonomic control system. In: Proceedings of the 12th IEEE Inter-
national Conference on Engineering Complex Computer Systems. Auckland, NZ 2007

Author Biographies

John Strassner is the director of autonomic research in the Telecommunications Systems & Software
Group in Waterford Institute of Technology, and a Visiting Professor at POSTECH. His research interests
are in autonomic systems, policy based management, machine learning, and semantic reasoning. He is the
Chairman of the Autonomic Communications Forum, and the past chair of the TMF’s NGOSS SID,
metamodel and policy working groups. He has authored two books, written chapters for five other books,
and co-edited five journals on network and service management and autonomics. John is the recipient of
the Daniel A. Stokesbury memorial award for excellence in network management, and has authored 211
refereed journal papers and publications.

Sven van der Meer received his M.Sc in computer science and his Dr.-Ing. from Technical University
Berlin (TUB), Germany, in 1996 and 2002. Since November 2002, Sven has been a research fellow at the
Telecommunications Software & Systems Group at the Waterford Institute of Technology. Since October
2004 he is Senior Investigator of the Competence Centre for Communication Infrastructure Management
at TSSG, involved in the Architecture and Information Modelling teams in the TMF, and has served as
editor for Technological Neutral Architecture and Contracts specifications within the TM Forum.

Declan O’Sullivan is the director of the Knowledge and Data Engineering (KDEG) research group in
Trinity College Dublin (TCD). His research interests are in the use of semantic-driven approaches for
network and service management, in particular to enable semantic interoperability. He is currently a
Principal Investigator in the SFI funded research project investigating Federated Autonomic Management
Environments (FAME). O’Sullivan has a Ph.D. and a M.Sc in computer science from TCD.

Simon Dobson is a co-founder of the Systems Research Group at UCD Dublin. His research centers
around adaptive pervasive computing and novel programming techniques. He is on the editorial boards of
the Journal of Network and Systems Management and the International Journal of Autonomous and
Adaptive Communications Systems, and participates in a number of EU strategic workshops and working
groups. He is National Director and vice-president of the European Research Consortium for Informatics
and Mathematics, a board member of the Autonomic Communication Forum, and a member of the IBEC/
ICT Ireland standing committee on academic/industrial research and development. He holds a BSc and
DPhil in computer science, is a Chartered Fellow of the British Computer Society, a Chartered Engineer,
and member of the IEEE and ACM.

284 J Netw Syst Manage (2009) 17:255–284

123

	The Use of Context-Aware Policies and Ontologies to Facilitate Business-Aware Network Management
	Abstract
	Introduction
	Current PBNM Approaches
	Current Context Approaches
	The Policy and Knowledge Continua
	DEN-ng Context-Aware Policy Model
	Integrating Models and Ontologies
	Harmonizing Management Data
	Our Dynamic Knowledge Base
	The DEN-ng Context Model
	DEN-ng Context-Aware Policy Model
	Realizing Context Awareness
	Strengthening Semantics

	Mapping to Business Concerns
	Stability and Uncertainty
	Summary and Future Work
	References

