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Abstract

DNA barcoding of plants poses particular challenges, especially in differentiating, recently

diverged taxa. The genusGentiana (Gentianaceae) is a species-rich plant group which rapidly

radiated in the Himalaya-HengduanMountains in China. In this study, we tested the core plant

barcode (rbcL +matK) and three promising complementary barcodes (trnH-psbA, ITS and

ITS2) in 30Gentiana species across 6 sections using three methods (the genetic distance-

basedmethod, Best CloseMatch and tree-basedmethod). rbcL had the highest PCR effi-

ciency and sequencing success (100%), while the lowest sequence recoverability was from

ITS (68.35%). The presence of indels and inversions in trnH-psbA inGentiana led to difficul-

ties in sequence alignment. When using a single region for analysis, ITS exhibited the highest

discriminatory power (60%-74.42%). Of the combinations,matK + ITS provided the highest

discrimination success (71.43%-88.24%) and is recommended as the DNA barcode for the

genusGentiana. DNA barcoding proved effective in assigning most species to sections,

though it performed poorly in some closely related species in sect.Cruciata because of hybrid-

ization events. Our analysis suggests that the status ofG. pseudosquarrosa needs to be stud-

ied further. The utility of DNA barcoding was also verified in authenticating ‘Qin-Jiao’Gentiana

medicinal plants (G.macrophylla,G. crassicaulis,G. straminea, andG. dahurica), which can

help ensure safe and correct usage of these well-known Chinese traditional medicinal herbs.

Introduction

DNA barcoding, a term first proposed by Hebert in 2003 [1], has developed as a rapid and reli-

able technology to identify species based on variation in the sequence of short standard DNA

region(s). This tool is now successfully used in a variety of biological applications, including

discovering cryptic species [2], detecting invasive species [3], reconstructing food webs [4] and

identifying medicinal plants in mixtures [5, 6]. In 2009, the Plant Working Group of the Con-

sortium for the Barcode of Life (CBOL) proposed the combination of rbcL andmatK as a ‘core

barcode’ for identification across land plants [7]. However, the application of DNA barcoding

has been hindered by the difficulty of distinguishing closely related species, especially in
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recently diverged taxa [8]. Limited performance of rbcL +matK has been reported in many

complex taxa [9–13]. Since the plastid intergenic spacer trnH-psbA and the nuclear ribosomal

internal transcribed spacer ITS/ITS2 have been proposed as supplementary barcodes for land

plants [14–16], the evaluation of plant barcoding regions has focused on the performance of

these five loci (rbcL,matK, trnH-psbA, ITS and ITS2) individually and in various combina-

tions. For example,matK + ITS was recommended as the barcode to be used in the genus Prim-

ula [17], while ITS + trnH-psbA +matK was demonstrated as the best barcode for

discriminating Rhododendron species [18]. More studies are still needed to assess the efficacy

of plant barcodes in closely related species, especially for groups that diverged recently.

Floristic DNA barcoding has been demonstrated to be effective for identifying species in spe-

cies-rich regions that would otherwise require detailed ecological study for characterization [19].

However, correctly identifying the species of complex genera in local flora can still pose a signifi-

cant challenge in biodiversity hotspots. For example, poor species resolution was found for sister

species in the genera Crocus andQuercus in African forests [20], and low sequence variation was

demonstrated for most polytypic genera in the Dinghushan subtropical forests of China [21]. This

is largely due to the frequent occurrence of close relatives in the distribution centers of large genera.

Gentiana L. (Gentianaceae) consists of 361 species with a subcosmopolitan distribution;

more than half of all the species are found in southwestern China and the adjacent northeast-

ern Himalaya-Hengduan Mountain region [22]. This region is considered the center of diversi-

fication of many plant genera, such as Rhododendron, Primula, Pedicularis and Gentiana [18].

The genus Gentiana is divided into 15 sections, of which 5 are further divided into 22 series

[23]. Although the monophyly of several sections has been verified, the taxonomic treatment

of species in each section is still controversial, since the radiation occurred only recently and so

has resulted in little variation in morphological features [23, 24]. Molecular studies suggest that

rapid evolutionary processes have occurred in at least two sections: Chondrophyllae and Cru-

ciata [24–26].

Most of the species in these sections are distributed in the mountainous regions of south-

western China and the nearby Qinghai-Tibet Plateau. Sect. Chondrophyllae is the largest and

the most widely distributed section in this genus; it consists of about 163 species and is divided

into 10 series [23]. The identification of individual species in this section is by no means an

easy task due to the high morphological variability of the small annual or biennial plants [25].

Sect. Cruciata contains 21 perennial species. Some species in this section may have diverged

four million years ago, though most result from more recent speciation events [26]. Twelve

species in sect. Cruciata are well known in traditional Chinese medicine and are also widely uti-

lized for medicinal purposes in Asia (e.g. Gentiana davidii as drugs of cholesteric and hepatic

diseases) [27, 28]. Their dried roots are used as medicinal materials, and adulterants are fre-

quently detected in traditional medicinal markets [29]. Authenticating medicinal plants can be

very difficult because of similarities in morphological appearance [28–31]. Finding an appro-

priate DNA barcode to discriminate Gentiana species would therefore be invaluable.

In this study, five DNA barcoding candidate regions (rbcL,matK, trnH-psbA, ITS and ITS2)

were chosen for evaluation. We aimed to: i) evaluate the discriminative ability of the five bar-

coding regions, rbcL,matK, trnH-psbA, ITS and ITS2 and their combinations; and ii) explore

the efficacy of DNA barcoding in Gentiana.

Materials and Methods

Taxon Sampling
We collected 79 accessions comprising 1–8 individuals of 30 species from China. In addition to

sect. Chondrophyllae (12 species) and sect. Cruciata (8 species), the following 4 sections were
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also selected for analysis: sect. Frigidae (2 species), sect.Microsperma (2 species), sect. Kudoa (4

species) and sect.Monopodiae (2 species). All specimens were collected from the wild and no

specific permissions were required for the corresponding locations/activities. The field studies

did not involve endangered or protected species. Vouchers specimens of the collected taxa

were deposited in the South China Botanical Garden Herbarium (IBSC) (S1 Table).

PCR and Sequencing
Genomic DNA was extracted from dried leaves in silica gel using the CTAB method [32]. Four

regions (rbcL,matK, trnH-psbA and ITS), were amplified and sequenced to test the effective-

ness of their primers in Gentiana.matK required the use of two primer pairs (matK-3F-Kim/-

xf [9] andmatK-xf/-5r [33]). The other three regions each used one universal pair of primers

for sequence amplification (rbcL-Rev/-For, trnH05/psbA3 and ITS4/ITS5). A 25 μl PCR reac-

tion mixture was prepared and amplified according to the procedure described by Zhang et al.

[9]. PCR products were purified using a DNA gel cleaning kit (Takara) and sequenced in both

directions on an ABI3730X sequencer (Applied Biosystems, USA) using the amplification

primers. All sequences were deposited in GenBank (S1 Table).

Data analysis
The original trace files were checked and verified by searches with NCBI’s web-based BLASTn.

Sequences were assembled and inspected with Sequencher 4.1 [34], aligned with the MUSCLE

aligner implemented in Mega 5.0 [35], and modified manually using Se-al version 2.0a11 [36].

Due to the presence of indels, trnH-psbA was aligned by section, and intraspecific inversions

were found in this region. To reduce costs, we retrieved ITS2 from ITS data and re-amplified

failed ITS samples.

Genetic divergence was calculated for the five markers according to the Kimura 2-Parameter

(K2P) model using MEGA 5.0. Six distance parameters were estimated, including three inter-

specific distance parameters (average inter-specific distance, average theta prime and smallest

inter-specific distance) and three intra-specific parameters (average intra-specific distance,

theta and largest intra-specific distance) [15]. We calculated the mean K2P distances for each

of the six sections and explored the difference in evolutionary divergence among sections in

Gentiana.

Three methods, namely a genetic distance-based method, the analysis of Best Close Match

and a tree-based method, were employed to evaluate the five single markers and their combina-

tions. The first two methods were conducted using the R package SPIDER [37]. For the tree-

based method, two phylogenetic trees were inferred to calculate the rate of monophyletic clus-

ters. Neighbor-Joining (NJ) trees were built using the software PAUP� version 4b10 with the

K2P model. Node supports were assessed by 1000 bootstrap replicates. A Bayesian inference

(BI) analysis was implemented using MrBayes on XSEDE (v3.2.6) [38], and the optimal models

for each marker were determined under the Akaike Information Criterion (AIC) using jMo-

delTest2 on XSEDE (v2.1.6) [39]. Both were conducted on the CIPRES supercomputer cluster

[40] with parameter sets according to Yan et al. [41]. Species were considered successfully iden-

tified if the monophyletic cluster of sequences representing a species was grouped with a boot-

strap value above 70% or a posterior probability above 0.95. Singleton species (species with one

specimen) were included and considered as the source of resolution failure.

Sequence acquisition from GenBank
In order to minimize the bias from incomplete sampling, we expanded our dataset using data

from public databases. Since limited DNA barcode data is available for the genus Gentiana, we
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retrieved all Gentianaceae sequences involving rbcL ormatK and all Gentiana sequences with

the internal transcribed spacer (ITS and ITS2) from GenBank. Sequences available on NCBI

may not necessarily link with taxonomically validated voucher specimens, so we examined all

the sequences downloaded from Genbank in an effort to ensure correct species identification.

We found that almost all of the Gentiana sequences available in Genbank are associated with

published phylogenetic or barcoding papers, and the sources of the sequences were identified

by specialists working on this genus. Collection information for the voucher specimens was

present in the relevant papers.

Due to difficulties in sequence alignment, trnH-psbA was not used for further analysis. We

also removed sequences less than 300 bp in size and those lacking clear Gentiana species identi-

fication. We followed an established pipeline [42] to remove fungal sequence contamination.

In some cases multiple individuals were available from a single population but we analyzed

only two sequences due to time constraints. The whole dataset comprised of 280 sequences for

rbcL, 274 sequences formatK, 243 sequences for ITS, and 304 sequences for ITS2. The data

were analyzed with tree-based analysis, as above.

Results

Sequence recoverability and divergence
rbcL had the highest PCR efficiency and sequencing success (100%), followed bymatK (96.2%)

and trnH-psbA (96.2%) (Table 1). Sequence recoverability was lowest for ITS (68.35%) because

of the incongruence of multiple copies which resulted in some ‘messy’ sequences. ITS2 had 16

more sequences, and its sequence recoverability was 88.61%. Due to the presence of indels, the

length of trnH-psbA varied from 199 to 486 bp in different species, leading difficulties in

sequence alignment (total length of 698 bp). In total, 355 sequences were obtained and submit-

ted to the GenBank database (S1 Table).

Comparative analysis of inter- versus intra-specific distances for the five regions was con-

ducted using six parameters [15] (Table 2). trnH-psbA exhibited the highest interspecific

genetic distance, followed by ITS2,matK, ITS and rbcL. For the divergence among conspecifics,

the rank order of theta was trnH-psbA, ITS2, ITS,matK and rbcL. An ideal barcode should pos-

sess higher interspecific variation than intraspecific variation in order to distinguish different

species. ITS had one of the smallest interspecific distances and a relatively low coalescence

depth.

Species discrimination
A genetic distance-based method, the Best Close Match and a tree-based method were used to

evaluate the discriminatory power of barcodes in Gentiana. In the single region analysis, rbcL

performed poorly, as expected (Table 3). The highest discriminatory power was obtained using

ITS (60.0%-74.42%), followed by trnH-psbA (45%-71.21%),matK (52.63%-69.23%) and ITS2

Table 1. Sequence recoverability of the five barcodes.

Recovered Species Recovered Samples Recoverability Sequencing length Aligned length Variable characters

rbcL 30 79 100% 534–564 554 55

matK 30 76 96.2% 809–855 743 220

ITS 26 54 68.35% 634–712 636 190

ITS2 29 70 88.61% 197–229 227 89

trnH-psbA 30 76 96.2% 199–486 698 240

doi:10.1371/journal.pone.0153008.t001
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(50%-67.80%). When combining two barcodes,matK + ITS gave the highest discrimination

success (71.43%-88.24%). The three-region combination of rbcL +matK + ITS achieved

slightly higher species identification success thanmatK + ITS when using the Best Close Match

method (87.18%).

Analysis of the GenBank data showed that rbcL andmatK can very reliably assign sequences

to the genus Gentiana (100% success rate). Moreover, the DNA barcoding markers performed

well at the section level. rbcL grouped 5/9 sections correctly,matK identified 8/10 sections, ITS

identified 7/11 sections and ITS2 identified 5/11 sections (S1 Fig).

Comparative analysis of DNA barcoding identification among different
sections
When the comparative analysis was restricted to each section, the mean K2P distances of all

the barcodes showed significant heterogeneity (Fig 1). Divergences in sect. Chondrophyllae

were significantly higher than in the other five sections, particularly sect. Cruciata, where the

divergences were four times lower. There were significant ‘barcoding gaps’ for all barcodes in

sect. Chondrophyllae, but no gap existed in sect. Cruciata (S2 and S3 Figs). The species identifi-

cation rate in sect. Chondrophyllae was 72.72%, regardless of whether chloroplast or nuclear

Table 2. Six genetic distance parameters measured with the five barcodes.

Interspecific distance Intraspecific distance

Mean (SD) Theta Prime (SD) Smallest (SD) Mean (SD) Theta (SD) Coalescent Depth (SD)

rbcL 0.05602 (0.02531) 0.05715 (0.01045) 0.00963 (0.01466) 0.00264 (0.00563) 0.00191 (0.00389) 0.00357 (0.00357)

matK 0.06901 (0.03357) 0.06707 (0.01235) 0.01141 (0.01489) 0.00337 (0.0060) 0.00172 (0.0034) 0.00373 (0.00722)

ITS 0.05829 (0.02650) 0.05981 (0.01695) 0.01886 (0.02367) 0.00332 (0.00698) 0.00461 (0.11374) 0.00585 (0.01148)

ITS2 0.07429 (0.0320) 0.07644 (0.02089) 0.01873 (0.02465) 0.00814 (0.01629) 0.00540 (0.01286) 0.00976 (0.02153)

trnH-psbA 0.10987 (0.05400) 0.11218 (0.01700) 0.01411 (0.01502) 0.01021 (0.02124) 0.00583 (0.01141) 0.01090 (0.02201)

doi:10.1371/journal.pone.0153008.t002

Table 3. Species resolution using a genetic distance-basedmethod, the Best Close Matchmethod and the tree-basedmethod with five barcodes
and their combinations.

Genetic distance (%) Best Close Match NJ trees (%) BI analysis (%)

Correct (%) Ambiguous (%) Incorrect (%) No ID (%)

rbcL 45.57 59.42 37.68 2.90 0 50.0 40.0

matK 65.79 69.23 18.46 6.15 6.15 57.89 52.63

ITS 70.37 74.42 18.60 2.32 4.65 73.33 60.0

ITS2 58.57 67.80 22.03 3.39 6.78 50.0 50.0

trnH-psbA 50 71.21 19.70 3.03 6.06 45.0 60.0

rbcL+matK 63.17 72.31 18.46 6.15 3.08 63.16 52.63

rbcL+ITS 82.35 84.16 7.69 2.56 5.12 66.67 66.67

rbcL+ITS2 77.61 83.64 9.09 3.64 3.64 55.56 55.56

rbcL+trnH-psbA 58.90 74.19 22.48 1.61 1.61 60.0 50.0

matK+ITS 88.24 84.61 0 7.69 7.69 71.43 71.43

matK+ITS2 79.10 80.0 0 12.73 7.27 70.58 64.71

matK+trnH-psbA 63.10 69.35 14.52 9.68 6.45 47.36 68.42

rbcL+matK+ITS 88.24 87.18 0 7.69 5.13 71.43 71.43

rbcL+matK+ITS2 82.89 89.09 0 9.09 1.82 64.71 64.71

rbcL+matK+trnH-psbA 63.01 72.58 14.52 9.68 3.23 60.0 60.0

doi:10.1371/journal.pone.0153008.t003
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regions were used (Fig 2). In sect. Cruciata, the nuclear regions (ITS, ITS2) performed much

better (62.50%-12.50%) than chloroplast markers (37.50%-12.50%).

Discussion

The performance of DNA barcodes inGentiana

While rbcL andmatK have been proposed as core DNA barcodes for plants [43], their disad-

vantages (the low genetic divergence of rbcL and poor primer universality ofmatK) have since

been reported in many studies [9, 11, 13, 44, 45]. In the present study, we did not encounter

primer problems withmatK, since we employed two universal pairs of primers recommended

by CBOL. However, the combination of rbcL andmatK had the lowest genetic divergence and

could only poorly discriminate species in this genus. In sect. Cruciata, rbcL + matK was even

less effective for differentiating closely related species (0–32.5%). The poor performance of

rbcL + matK has been reported in many species-rich plant groups, such as Lysimachia (47.1%-

60.82% discriminatory power) [9], Berberis (15.4%-23.1%) [46], Viburnum (53%) [12], Prim-

ula L. sect. Proliferae (50%) [13]. Therefore, as in other species-rich genera, the core barcodes

rbcL + matKmust be supplemented with more effective barcodes for the genus Gentiana.

Fig 1. Genetic distance within sections for the five barcodes.

doi:10.1371/journal.pone.0153008.g001

Fig 2. Species resolution comparison using NJ-tree analysis between sect.Chondrophyllae and sect.
Cruciata.

doi:10.1371/journal.pone.0153008.g002
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The high variation of the trnH-psbA spacer and the availability of a universal primer have

led to its successful application in many DNA barcoding studies. In this study, trnH-psbA gave

the highest inter- and intra-specific divergence of all the single regions. Nevertheless, several

problems limit its use in Gentiana. First, extensive variation in the size of trnH-psbA resulted

in alignment ambiguities. The length of the trnH-psbA sequence varied across five of the six

sections; the sequence was 199–327 bp in sect. Chondrophyllae, 410–486 bp in sect. Cruciata,

413 bp in sect.Monopodiae, 348–442 bp in sect.Microsperm, 397–470 bp in sect. Kudoa, and

360–391 bp in sect. Frigidae. We therefore had to manually adjust the algorithmically-gener-

ated alignment, which required significant effort. Second, a short 30 bp inversion was detected

in trnH-psbA in Gentiana. Frequent inversions of trnH-psbA in the family Gentianaceae were

reported by Whitlock et al. [47]. Furthermore, we found a 21 bp inverted repeat region which

may form a stem loop and facilitate the process of inversion [48]. Re-inversions were found in

G. panthaica (9 bp) and G. pseudosquarrosa (12 bp). These inversions lead to overestimation of

the variation between closely related species and unite distantly related taxa, resulting in erro-

neous phylogenetic inferences [47]. Third, mononucleotide repeats (poly A/T) in bi-directional

reads from trnH-psbA have proved a hindrance to obtaining full length sequences in many

other studies [9, 43], although this was not the case in our study. An ideal universal DNA bar-

code should be standardized and easily accepted by non-experts [49]. While trnH-psbAmay

serve as a valuable DNA barcode in plant groups where these challenges are not encountered,

too much effort must be spent resolving these problems in Gentiana; trnH-psbA is therefore

not recommended as a DNA barcode for Gentiana.

ITS has been proposed as a DNA barcode because it evolves 3–4 times faster than the plastid

regions, and it has been successfully used in many phylogenetic studies [49]. A previous study

of Gentiana at the sectional level demonstrated the phylogenetic utility of ITS sequences [22].

Many taxonomy-based barcoding studies have demonstrated its effectiveness as a barcode for

identifying species, even in complex taxa, such as Ficus [10], Lysimachia [9] and Viburnum

[12]. In this study, ITS exhibited the best performance of all five barcodes for discriminating

species of Gentiana. This region was also capable of differentiating the closely related species

Gentiana dahurica, G. decumbens and G.macrophylla. However, the sequencing success of ITS

in Gentiana was low (63.7%), which may imply incomplete concerted evolution of a nuclear

multiple-copy locus in this genus.

A short nuclear region (300 bp) of ITS2 was proposed as a novel DNA barcoding region for

medicinal plants by Chen et al. [15] and has been strongly recommended for many groups [42,

50–52]. ITS2 is favored as a barcode because it can be amplified with a universal primer and is

easy to sequence. Compared with the full length ITS, ITS2 may be less powerful for differentiat-

ing closely related species [53]. However, in our study, ITS2 sequences were obtained from

more 16 individuals than ITS sequences. Moreover, the short length of this region makes it

potentially more attractive for actual DNA barcoding applications, such as barcoding degraded

DNA from the powder of herbal products [6] and ‘DNAmeta-barcoding’ using Next Genera-

tion Sequencing [54].

No single barcode was perfect for species identification in Gentiana. The use of multiple

regions with more and less variation, such as combinations of plastid regions and nuclear

regions, has been recommended and has been shown to improve discriminatory power in

many barcoding studies [12, 16]. In the present study, the combination of the two regions

matK + ITS gave the highest species resolution (88.24%), roughly equivalent to the resolution

of the three-marker combination rbcL +matK + ITS. We support the recommendation of the

matK + ITS combination as a core DNA barcode for large genera of flowering plants [16].

matK + ITS seems to be the best choice as a DNA barcode for Gentiana, with ITS2 serving as a

back-up region for ITS to improve sequence recoverability.

DNA Barcoding inGentiana
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However, other highly variable regions are required to successfully identify all species. In a

recent Gentiana barcoding study, 5S rRNA and trnL-F were successfully used as barcodes to

differentiate five medicinal Gentiana species and their adulterants [55]. However, using 5S

rRNA requires cloning the amplified PCR product rather than direct sequencing, which limits

its value as a barcode. trnL-F, with universal primers and high discriminatory power, also

seems to be a good choice as a barcode for Gentiana species and has been suggested for other

groups that have undergone a recent radiation [50], but more samples should be tested to vali-

date this conclusion in Gentiana.

Species resolution comparison between sect. Chondrophyllae and sect.
Cruciata

Although sect. Chondrophyllae and sect. Cruciata have both recently diverged in the Hima-

laya-Hengduan Mountains [22, 25], greater discrimination success was achieved for sect.

Chondrophyllae (72.72%-83.33%) than for sect. Cruciata (0–62.5%) (Fig 2). This may be partly

attributed to life history traits which are correlated with the molecular evolution rate [56]. Tall

perennial plants, such as species from sect. Cruciata, evolve more slowly than shorter annuals,

such as species from sect. Chondrophyllae [41, 57]. In addition, the effectiveness of DNA bar-

coding is related to the phylogenetic relation between species; DNA barcoding is more power-

ful in distantly related taxa and less effective in recently radiated groups [58]. Limited sampling

in sect. Chondrophyllae in this study (10/163 species belonging to 5 series) may have caused

over-estimation of the discriminatory power of DNA barcoding. In contrast, 8/12 species in

sect. Cruciata were sampled and several closely related species were included, such as G. daur-

ica, G. officinalis, G.macrophylla and G. decumbens [26].

Natural hybrids and polyploidization pose a great challenge to attempts to barcode species.

Hybridization events have been reported in sect. Cruciata. Hybridization may have occurred

between G. officinalis and G. daurica [59, 60], which were used in the present study. All vouch-

ers of these two species shared identical sequences among the chloroplast regions exceptmatK,

which had two differences (S2 Table); furthermore, two hybrids (G. officinalis_018 and G.offici-

nalis_048_1) were found in the ITS region. Additional studies sampling from more popula-

tions are needed to confirm this hypothesis.

The potential application of DNA barcoding inGentiana

Although limited species resolution was achieved in Gentiana, DNA barcoding enabled us to

confidently assign most individuals at the genus and section level, even using only the rbcL/

matK region or when the data set was expanded using GenBank sequences. If the section and

geographical information of specimens is known, DNA barcoding will make the identification

of most Gentiana species much easier for non-experts, which will greatly reduce the time and

labor compared with morphological identification, especially in species-rich areas [42, 61].

Although many have argued that DNA barcoding can be used for species determination [8],

studies generally support its use to clarify questions regarding the taxonomy of some groups

instead, such as resolving taxonomic uncertainties in Lysimachia [9] and Primula [17], and

revising the taxonomic status of a variety in Roscoea [62]. In this study, most species in sect.

Chondrophyllae were monophyletic, except G. squarrosa and G. pseudosquarrosa. All acces-

sions of both species always clustered together with high confidence in the NJ tree and Bayesian

analysis (Fig 3). This result may have been caused by many factors, such as imperfect taxon-

omy, misidentification, introgression or the low discrimination ability of DNA barcoding.

According to the description in “A worldwide monograph of Gentiana” [23], the morphologi-

cal characters distinguishing these species are the relative length of the corolla vs. calyx and the
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Fig 3. Phylogenetic tree based on Bayesian analysis of rbcL +matK + ITS + trnH-psbA. Bootstrap value� 50% in the NJ analysis and posterior
probabilities� 0.95 in the BI analysis are shown on the left and right of the slash, respectively.

doi:10.1371/journal.pone.0153008.g003
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color of the seeds. We checked the holotypes of the two species and found that the length of the

corolla was largely related to the extent of flowering. Both holotypes have a short corolla in

their early blooming stage and a much longer corolla on blooming flowers. Therefore, the mor-

phological data support the conclusion from barcoding that G. pseudosquarrosa should be

treated as a synonym of G. squarrosa. However, only one specimen of G. pseudosquarrosa was

included in this study, and it is possible that G. pseudosquarrosa was misidentified due to the

small size of calyx and corolla. Additional studies with more samples and more molecular evi-

dence are necessary to validate the taxonomic status of G. squarrosa and G. pseudosquarrosa.

DNA barcoding has been widely accepted as a technique to authenticate herbal medicinal

materials (e.g. powder, processed roots, barks and leaves) and detect product substitution and

contamination [5, 6, 30, 63]. Although authentication of closely related species using DNA bar-

coding has been challenging [5], DNA barcoding can readily separate species which are mor-

phologically similar but phylogenetically distant. It is very common for morphologically

similar products to be used as substitutions in the medicinal plant trade [5]. For example, ‘Qin-

Jiao’, the dried roots of four species of Gentiana (G.macrophylla, G. crassicaulis, G. straminea,

and G. dahurica) [64, 65], has been a well-known traditional medicinal plant in China for over

a thousand years [65]. Adulterants or counterfeits with similar-looking processed roots from

other families or genera, such as Aconitum sinomontanum (Ranunculaceae, which has the

common name “Qin-Jiao” in the Xinjiang Province of China), Salvia brzewalskiiMaxim

(Lamiaceae, called “Hong Qin-Jiao”), and Veratrilla baillonii Franch. (Gentianaceae, called

“Huang Qin-Jiao”), have entered the commercial market [28, 29]. In order to assess the ability

of DNA barcoding to authenticate medicinal herbs, we downloadedmatK and ITS sequences

of these counterfeit species from GenBank and compared them to the correct ‘Qin-Jiao’

sequences from this study using a NJ tree-based method (S4 Fig). The results show that DNA

barcoding can successfully differentiate Qin-Jiao from the substitutes. In a previous study [29],

ITS2 has been found to be capable of identifying Qin-Jiao adulterants or counterfeits. Our

study further verified that DNA barcoding can provide reliable identification and ensure the

safety and efficacy of the herbal products from sect. Cruciata.

Conclusions

The suggested core plant barcode (rbcL + matK) is not very effective for identifying species in

the genus Gentiana. Because of poor alignment and frequent inversions, the non-coding region

of trnH-psbA also may not be desirable as a DNA barcode for Gentiana, even though it had the

highest genetic variation and relatively high discriminatory performance. ITS was much more

effective for species resolution and was capable of discriminating the closely related species in

sect. Cruciata. A two-region combination ofmatK + ITS is recommended for use as a plant

barcode in Gentiana. The ITS2 region, with its high sequence recoverability, can serve as a

back-up region for ITS. Although DNA barcoding may not always be the perfect identification

tool, we emphasize the practical applications of this method in biodiversity surveys, clarifying

taxonomic questions and authenticating medicinal plant materials.
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