

University of Groningen

The use of economic analysis for water quality improvement investments

Rodriguez, Diego Juan

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): Rodriguez, D. J. (2009). The use of economic analysis for water quality improvement investments. s.n.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

The Use of Economic Analysis for Water Quality Improvement Investments

ISBN 978 90 3610 149 3

© Diego J. Rodriguez, 2009

All rights reserved. Save exceptions stated by the law, no part of this publication may be reproduced, stored in a retrieval system of any nature, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, included a complete or partial transcription, without the prior written permission of the authors, application for which should be addressed to author.

RIJKSUNIVERSITEIT GRONINGEN

The Use of Economic Analysis for Water Quality Improvement Investments

Proefschrift

ter verkrijging van het doctoraat in de Ruimtelijke Wetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op maandag 19 oktober 2009 om 16.15 uur

door

Diego Juan Rodriguez geboren op 22 februari 1967 te Montevideo, Uruguay Promotor:

Prof.dr. H. Folmer

Beoordelingscomissie:

Prof.dr. J. van Dijk Prof.dr. E. Figueroa Prof.dr. J. Oosterhaven In memory of my father

TABLE OF CONTENTS

Preface

Part I: Introduction

Chapter 1: Introduction	
1.1 The Global Water Challenges	1
1.2. Neglecting the Water Quality Challenge	3
1.3 Study Background, Problem Statement, and Research Questions	5
1.3.1. Problem Statement, and Research Questions	7
1.4. Plan of the Book	10
Chapter 2: The Case Study Context: A Water Quality Improvement Program in Brazil	
2.1. Introduction	13
2.2. A Glance at Brazil	13
2.3. Water Quality Issues in Brazil	15
2.4. The Tietê River Pollution Problem	16
2.4.1. Domestic Contamination	20
2.4.2. Surface Runoff	20
2.4.3. Industrial Contamination	21
2.5 Description of the Project	21
Stage I (1993-1998)	21
Stages II & III (1999-2008)	23
Cost Effectiveness Analysis	23
2.6. Modeling the Impact of Contamination and Its Reduction on Water Quality	23
2.7. Concluding Remarks	26
Part II: Methodological Framework	

Chapter 3: Cost-Benefit Analysis of Water Quality Investments	
3.1. Introduction	29
3.2. A Cautionary Tale	33
3.3. Regional or Basinwide Optimization	33
3.3.1. Discharges	41

3.3.2. Cost of Discharge Reduction	41
3.3.3. Ambient Quality Modeling	41
3.3.4. Benefits	42
3.4. Basinwide, Vector-Constrained Cost Minimization	44
3.5. Multi-Objective Analysis: A Slightly Different Use of Optimization	47
3.6. Ad Hoc, or Project-By-Project Cost-Benefit Analysis	48
3.6.1. Whose Surpluses Count?	49
3.7. Technical Concerns in Project Analysis	51
3.7.1. The Regional Context	51
3.7.2. Functional Form	55
3.7.3. Phasing of Project Investment	58
3.7.4. Dealing with Time in the Analysis of Water Quality Investments	63
3.8. Concluding Remarks	64
Annex A. Summary Comparison of Cost-Benefit Analysis Applications	66
Chapter 4: Valuation Methods	
4.1. Introduction	67
4.2. Principal Categories of Benefits	68
4.3. Overview of Valuation Techniques	70
4.4. Indirect Observed or Revealed-Preference Methods	72
4.4.1. Hedonic Market	72
4.4.2. Travel Cost Methodology	76
4.4.3. Averting Behavior	83
4.5. Hypothetical or Stated-Preference Methods	85
4.5.1. Contingent Valuation	85
4.5.1.1. A Brief History	85
4.5.1.2. The Concept of CVM	86
4.5.1.3. Considerations in CVM	88
4.5.1.4. The NOAA Blue Ribbon Panel Report	92
4.5.1.5. Advantages, Disadvantages, and Applications of Contingent Valuation	93
4.5.2. Conjoint Analysis	95
4.6. Measurement of Health Effects and Benefits	100
4.7. Special Techniques for Determining Benefits	103

4.7.1. Combining Observed (Revealed Preferences - RP) and	103
Hypothetical Methodologies (Stated Preferences - SP)	
4.7.2. Benefit Transfer	105
4.8. Concluding Remarks	109
Annex 4.A. The Water Quality Ladder	111
Chapter 5: Parametric and Non Parametric Approaches to Contingent Valuation Methods	
5.1. Introduction	115
5.2. Mechanics with Referendum Data and Random Utility Models	117
(Parametric Approaches)	
5.2.1. Advantages and Limitations of Parametric Approaches	126
5.3. Non-Parametric Approaches to CVM	127
5.3.1. Theoretical Underpinnings	128
5.3.2. Logic of Nonparametrics	128
5.3.3. Three Non-parametric Approaches	130
5.3.3.1. A Lower Bound: Haab and McConnell's Turnbull Estimate	130
5.3.3.2. An Intermediate Measure: Kriström's Nonparametric Mean	132
5.3.3.3. An Upper Bound: The Paasche Mean of Boman et al.	133
5.4. Summary of the Nonparametric Means and their Variances	134
5.5. Advantages and Limitations of Nonparametric Approaches	133
5.6. Conclusions and Recommendations	135

Part III: Case Study Application

Chapter 6: Results of the Cost Benefit Analysis	
6.1. Introduction	139
6.2. Overview of the Project	139
6.3. Overview of the Economic Analysis	143
6.3.1. Project Costs and Shadow Pricing Adjustments	144
6.3.2. Project Benefits	147
6.3.2.1. Benefit One: Improvement in River Water Quality	147
The Valuation Survey	147
Parametric Choice Model Analysis	149
The Bounded Probit or Logit of Haab and McConnell Results	153
Analysis Options: Nonparametric Approaches	157

The Turnbull Results	158
Kriström's Nonparametric Mean Results	159
The Paasche Mean of Boman et al. Results	160
Summary of the Nonparametric Means and their Variances	162
Central Tendency Measures Results	162
6.3.2.2. Benefit Two: Additional Hydroelectric Generation	163
6.3.3. Effects on the Project's Net Present Value of Different Central Tendency Measures	166
6.3.4. Standard Results and Sensitivity Analysis	170
6.4. Concluding Remarks	175
Annex 6A: The Valuation Question	178
Chapter 7: Dealing with Uncertainty: The Use of Risk Analysis	
7.1. Introduction	181
7.2. Quantitative Risk Analysis (QRA): An Introduction	182
7.2.1. Subjective Estimation of Probability	182
7.2.2. Sensitivity Analysis	183
7.2.3. Probability Analysis (Monte Carlo Simulation - MCS)	183
7.2.4. The Rationale for Probabilistic (or Quantitative) Risk Analysis (Monte Carlo Analysis)	186
7.3. The Specific Issue of Uncertain Benefits	188
7.4 Treatment of Uncertainty in the Economic Analysis	190
7.4.1. Project Costs and Shadow Pricing Adjustments	191
7.4.2. Project Benefits	193
7.4.2.1. Improvements in Water Quality	193
7.4.2.2. Characterizing Uncertainty about CV Benefits	195
7.4.2.3. Reflecting Uncertainty in Benefits from Additional Hydroelectric Generation	200
7.4.4. Project Timing: Delays in Stage II Execution and Phasing	202
7.4.5. The Results of the Monte Carlo Risk Analysis	203
7.4.5.1. Results of the Incremental Project (Stages II and III)	205
NPV under the Subjective WTP Distribution	205
Distribution of NPV for the Weighted Average of the Upper and Lower Bound WTP Distributions	207
7.4.5.2. Summing Up	208

7.4.5.3. Results of the Risk Analysis of the Entire Project (Stages I, II, and III)	210
7.5. Concluding Remarks	212
Chapter 8: Summary, Conclusions, and Recommendations	
8.1. Summary	215
8.2. Recommendations	217
8.3. Further Research	221
	227
References	227
Samenvatting	281