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Abstract—Biosignal measurement and processing is increas-
ingly being deployed in ambulatory situations particularly in
connected health applications. Such an environment dramatically
increases the likelihood of artifacts which can occlude features
of interest and reduce the quality of information available in the
signal. If multichannel recordings are available for a given signal
source then there are currently a considerable range of methods
which can suppress or in some cases remove the distorting
effect of such artifacts. There are however considerably fewer
techniques available if only a single channel measurement is
available and yet single channel measurements are important
where minimal instrumentation complexity is required. This
paper describes a novel artifact removal technique for use in
such a context. The technique known as ensemble empirical mode
decomposition with canonical correlation analysis (EEMD-CCA)
is capable of operating on single channel measurements. The
EEMD technique is first used to decompose the single channel
signal into a multi-dimensional signal. The CCA technique is then
employed to isolate the artifact components from the underlying
signal using second order statistics. The new technique is tested
against the currently available Wavelet denoising and EEMD-
ICA techniques using both electroencephalography (EEG) and
functional near-infrared spectroscopy (fNIRS) data and is shown
to produce significantly improved results.

Index Terms—Ensemble Empirical Mode Decomposition
(EEMD), Canonical Correlation Analysis (CCA), Independent
Component Analysis (ICA), Wavelet denoising, EEMD-CCA,
EEMD-ICA.

I. INTRODUCTION

MEASUREMENT of physiological signals of the human

body has long been a crucial step in determining the

health of a patient. The current transition from a hospital-

centric healthcare system towards ambient healthcare assess-

ment continuously calls for new systems capable of accurately

recording physiological signals with minimal instrumentation

and low computational complexity. Common reasons for the

desired reduction in instrumentation and computational com-

plexity include the aspiration for the systems to be ambulatory

and capable of operating for long periods of time without

recharging. As the systems are often patient-operated, the
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smaller the instrumentation complexity (e.g. the number of

sensors) the less chance that the subject will fail to operate the

device properly. Further, this reduction in complexity typically

results in less expensive devices/technologies.

Unfortunately taking the measurement systems out of the

clinical environment increases the likelihood that the recorded

signal will be contaminated by artifact. Artifacts can be defined

as any unwanted signal variations due to any source other

than the desired signal source. In terms of physiological

signals, these artifacts can come in many forms including

instrumentation noise, subject motion or noise from other

physiological signals of the body. Artifact removal/reduction is

therefore a fundamental area of signal analysis in the ambula-

tory physiological signal monitoring domain and has been well

documented [1]. In this paper we deal with artifacts arising

from motion. There currently exist a number of algorithms to

remove motion artifacts from physiological signals including

Wavelets, independent component analysis (ICA) and adaptive

filters [2].

To aid in the reduction of instrumentation complexity many

ambulatory systems operate using single channel recordings

only (e.g. [3]). Given this single source, it is critically impor-

tant to extract as much useful information as possible through

the suppression or removal of the corrupting artifact. There are

a number of artifact removal techniques available to operate on

single channel measurements [1] and these techniques differ

in properties such as the efficacy and computational cost.

Adaptive filtering, for example, has a low computational load

in comparison with the other techniques presented in this paper

but requires additional channels for reference purposes. Other

techniques such as ensemble empirical mode decomposition

(EEMD)-ICA [4], used previously to remove ocular and mus-

cle artifacts from EEG data, have higher computational cost

but in doing so are more effective in suppressing undesired

artifacts.

This paper proposes a new single channel artifact removal

technique, namely ensemble empirical mode decomposition

with canonical correlation analysis (EEMD-CCA) and com-

pares it to a competing motion artifact removal technique

(Wavelet denoising [2]) and to a similar technique, namely

EEMD-ICA. Section II gives a brief explanation of the algo-

rithms used in the paper (Wavelets, ICA, CCA and EEMD)

as well as the recording methodology for acquisition of the

EEG and fNIRS data. Section III provides the results from

the artifact removal techniques and finally Section V gives a
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brief discussion and conclusion to the paper.

II. METHODS

In this section we describe the various techniques employed

in the paper. First we outline the techniques required to

implement the existing Wavelet and EEMD-ICA techniques

(used for comparison) and then we will describe the proposed

new method, EEMD-CCA.

A. Wavelet denoising

The Wavelet transform operates by decomposing a signal

into a number of time shifted and scaled versions of a selected

mother wavelet. The wavelet expansion of a signal (x(t)) can

be written as [5]:

x(t) =
∑

k

cMkϕMk +
M
∑

j=1

∑

k

djkψjk(t), (1)

where

cjk =

∫

x(t)ϕ∗

jk(t)dt (2)

are called the scaling coefficients. The scaling functions ϕ are

defined as:

ϕjk(t) =
1

√
2j
ϕ

(

t− k2j

2j

)

. (3)

The wavelet coefficients (d) are given by:

djk =

∫

x(t)ψ∗

jk(t)dt (4)

with the wavelet functions ψ defined as:

ψjk(t) =
1

√
2j
ψ

(

t− k2j

2j

)

. (5)

The details (Dj(t)) and approximations (Aj(t)) of the wavelet

transform at each level (j) can thus be defined as:

Aj(t) =

+∞
∑

k=−∞

cjkϕjk(t)

Dj(t) =

+∞
∑

k=−∞

djkψjk(t). (6)

The original signal can be reconstructed by adding up all the

details calculated and also the approximation for the final level

(M ), i.e.

x(t) = AM (t) +

M
∑

n=1

Dn(t). (7)

Once the artifact components (i.e. details or approximation)

have been identified and removed (Section II-H) the remaining

components can be added to reconstruct the cleaned signal x̂.

In this paper the Daubechies 5 mother wavelet was imple-

mented [6]. Wavelets are widely used and have previously been

employed by a number of researchers for artifact removal in-

cluding for motion artifact removal from fNIRS by Robertson

et al . [2] and for ocular artifact removal from EEG by Kumar

et al . [7].

B. Independent Component Analysis (ICA)

Independent component analysis (ICA) is a blind source

separation (BSS) technique in which recorded signals are

separated into their independent constituent components or

sources [8]. BSS is based on a wide class of unsupervised

learning algorithms with the goal of estimating sources and

parameters of a mixing system [9]. An important property

required to run the ICA technique is that the number of

recorded signals is greater or equal to the number of unknown

underlying sources. The ICA technique operates under a

number of assumptions including linear mixing, square mixing

and stationary mixing [10]. Incorporating these assumptions

the ICA technique endeavors to determine an un-mixing matrix

W which is used to determine the unknown independent

components, Ŝ:

Ŝ = WX, (8)

where X is a matrix of the recorded multi-channel signals.

There are a number of different algorithms currently available

to determine this un-mixing matrix including the fast ICA al-

gorithm [11], the Bell-Sejnowski algorithm [12], extended ICA

[13] and JADE [14]. All of the ICA algorithms employed to

determine the un-mixing matrix W use higher order statistics

(HOS).

The fast ICA algorithm was implemented for this paper due

to its shorter computational time compared to the other ICA

techniques. Using this algorithm the un-mixing matrix is deter-

mined and the underlying source signals Ŝ can be estimated.

The sources deemed to be artifacts (see Section II-H) can be

removed by setting the corresponding columns of the Ŝ matrix

to zero. When the artifact-suppressed source signals are passed

through the inverse of the mixing matrix W−1, the resultant

outputs are the original recorded signals minus the artifact

components.

C. Ensemble Empirical Mode Decomposition (EEMD)

Empirical mode decomposition (EMD) is a method, first

defined in 1998 [15], for nonlinear signal processing and is

well suited to non-stationary data. The method decomposes

a time series signal into multiple “intrinsic mode functions”

(IMFs). The EMD technique differs from other techniques,

such as Wavelet analysis, in that the decomposition of the

signal is data driven whereas Wavelet analysis relies on the

selection of the appropriate wavelet. As the technique is data

driven, it is therefore adaptive in nature, making it very

flexible.

The IMFs are functions that satisfy two separate conditions:

(1) over the full length of the data set the number of maxima

and the number of zero crossings must be the same or differ

at most by one and (2) at any point over the data set, the mean

value of the envelope defined by the maxima and the envelope

defined by the minima must be zero [15].



SWEENEY et al.: THE USE OF ENSEMBLE EMPIRICAL MODE DECOMPOSITION WITH CANONICAL CORRELATION ANALYSIS AS A NOVEL ARTIFACT REMOVAL TECHNIQUE3

There are a number of steps taken to calculate the IMF of a

given time series, x ∈ R
N, where N is the number of samples.

EMD is implemented using a sifting process that uses only

local extrema. Step 1 involves finding all the local maxima

and minima over the full length of the time series. Next, the

the maxima are connected using a cubic spline creating an

upper envelope, with the same process repeated for the local

minima. Step 2 then involves calculating the average of the

two envelopes m and subtracting this average from the data

signal, resulting in a new signal h = r0 −m, where r0 = x.

This signal h now becomes the new data signal and steps one

and two are repeated until h complies with the properties of

IMFs, detailed above. When this occurs the current data set h

becomes the first IMF (c1). The above steps are then repeated

on the residual signal r1 = r0 − c1. The sifting process stops

when the residual signal rn becomes a monotonic function.

Once calculated, the IMFs cj have the property that if they are

added together then the original data x (or r0) is reconstructed,

i.e.

x =

n
∑

j=1

cj + rn, (9)

where rn is the residual of data after n IMFs components are

extracted [16].

The EMD algorithm is however very sensitive to noise in

the recorded signal. This can lead to complications due to

mode mixing. Mode mixing is defined as an IMF that includes

oscillations of dramatically disparate scales or a component of

similar scale residing in different IMFs [17], and can also be

due to the presence of a transient spectral component in the

signal. An extension to the EMD algorithm was proposed in

[16] which eliminates this mode mixing dilemma. The updated

algorithm called Ensemble-EMD (EEMD) uses an average of

a number of ensembles of the EMD algorithm as the optimum

choice of IMFs. Each run of the EMD algorithm has an

independent, identically distributed white noise of the same

standard deviation added thus providing a noise-assisted data

analysis method.

With the IMFs determined, the artifact components can then

be selected, as described in Section II-H, and removed. The

remaining IMFs can then either be used to reconstruct the

cleaner signal or can be passed as inputs to additional artifact

removal techniques to further enhance the signal quality.

D. EEMD-ICA

The use of EEMD in combination with ICA for source

separation of single channel measurements was first detailed

by Mijović et al . in 2010 [4] and was employed for the

removal of EMG and ocular artifact from EEG and also ECG

from EMG. The EEMD technique can be used to create a

multi-channel signal X, comprised of IMFs, from a single

channel recording x. This matrix X can then be employed

as the input to the fast ICA algorithm with the aim of

estimating the underlying true sources Ŝ (see Equation 8).

The individual sources determined to be artifacts are selected

and the corresponding columns of the matrix Ŝ are set to zero.

The source matrix is then passed through the inverse of the

un-mixing matrix W−1 to return the multi-channel signals X̂

which are now, ideally, free of artifacts. The original single

channel signal x̂, now free of artifacts, can be determined by

simply adding the IMFs in the matrix X̂.

Mijović et al . [4] compared the EEMD-ICA algorithm

against two other techniques capable of operating on single

channel recordings, namely Single-Channel ICA (SCICA)

and Wavelet-ICA (WICA). The algorithms were tested and

compared on simulated data and the EEMD-ICA algorithm

was then employed on real EEG and EMG data. The results

show that the SCICA algorithm has the worst performance

when comparing the relative root mean square error (RRMSE).

The WICA algorithm, although comparable to the EEMD-

ICA technique, showed a slightly weaker performance in the

simulations.

E. Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) [18] is another tech-

nique which employs the BSS method for separating a number

of mixed or contaminated signals. The CCA technique, similar

to the ICA method described above, requires that there be

a greater or equal number of recorded signals as underlying

sources. CCA differs from the ICA in its method of separat-

ing the sources. CCA uses second order statistics (SOS) to

generate components derived from their uncorrelated nature

rather than their independence. Although the decomposition

using CCA uses a weaker condition than ICA, it is also less

computationally complex due its use of SOS. Further, it is

known that if a random vector has a multivariate normal

distribution then any two or more of its components that are

uncorrelated are also independent [19] and thus CCA can often

return the same result as ICA. If this is not the case, then

CCA will return components which are uncorrelated but not

independent. Additionally, the ICA algorithm does not take

temporal correlations into account and thus the data samples

can be arranged arbitrarily in time and the ICA method will

return the same solution. CCA addresses this point and is

capable of finding uncorrelated components that, in addition,

have maximum spatial or temporal correlation within each

component.

CCA solves the BSS problem by forcing the sources to

be maximally autocorrelated and mutually uncorrelated [20].

Given an input signal x, let y be a linear combination of

neighbouring samples (i.e. y(t) = x(t − 1) + x(t + 1) [21]).

Consider the linear combinations of the components in x and

y, called the canonical variates,

x = wx
T (x− x̂) (10)

y = wy
T (y − ŷ). (11)

CCA finds the weight matrices wx and wy that will maximise

the correlation ρ between x and y [21]:

ρ =
wx

TCxywy
T

√

wx
TCxxwxwy

TCyywy

, (12)

where Cxy is the between-sets covariance matrix and Cxx and

Cyy are the nonsingular within-set covariance matrices. The
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calculation of the maximum of ρ can be found by setting the

derivatives of Equation 12 to zero with respect to wx and wy.

C−1
xxCxyC

−1
yy C

T
yxŵx = ρ2ŵx (13)

C−1
yy CyxC

−1
xxC

T
xyŵy = ρ2ŵy.

wx and wy can be determined as the eigenvectors of the matri-

ces C−1
xxCxyC

−1
yy C

T
yx and C−1

yy CyxC
−1
xxC

T
xy respectively and

the corresponding eigenvalues ρ2 are the squared canonical

correlations. The first pair of variates are the eigenvectors

of wx and wy that correspond to the largest square corre-

lation coefficient (or eigenvalue) ρ2max. The following pairs

of variates (wx,wy)2...m (with m recording sites) are then

the remaining eigenvectors in decreasing order of correlation

[22] which are themselves uncorrelated with the previous

eigenvectors. The canonical correlation analysis technique

therefore creates a weight Matrix Wx = [wx1,wx2...wxm]
that can be used to separate the recorded sources into the self

correlated and mutually uncorrelated sources.

Removal of the artifact is then accomplished in a similar

manner to the ICA algorithm. in that the columns of Ŝ, which

represent the artifacts in the recording (Section II-H), are set

to zero before performing the reconstruction.

CCA has been previously tested against a number of

ICA algorithms using multi-channel recordings. Borga and

Knutsson [21] compared CCA with Fast ICA for the problem

of separating a 5 channel EEG recording. Results illustrated

that both methods had qualitatively the same results, but as

the CCA algorithm employs SOS, where ICA employs HOS,

the CCA method was determined to be more computationally

efficient. In 2006 Clercq et al. [20] used CCA to successfully

remove muscle artifacts from EEG data. This method was

also shown on simulated data to outperform an ICA-based

technique (JADE). This result was again documented by Gao

et al. [23] in 2010. One possible reason for CCA’s improved

performance over the ICA method is due to the form of

the muscle activity. Muscle artifacts, involve the movement

of a group of muscles, which do not have a stereotyped

topography [23] and thus the ICA does not function correctly.

Similar results have also been demonstrated with other signal

modalities. In 2002, fMRI data was extracted using both CCA

and ICA [24] and the CCA algorithm was again shown to

perform better in terms of computational complexity by at

least an order of magnitude while having similar qualitative

results. It is also noted that the CCA method always returns

the same result when employed with a given data set, this

however is not true when using the ICA algorithm.

F. EEMD-CCA

The EEMD-CCA technique operates in a similar manner

to the EEMD-ICA technique. The single channel signal x is

again converted into a multi-channel signal X using the EEMD

algorithm. The IMF determined to be artifacts are removed (as

described in Section II-C) and then the remaining channels

are used in conjunction with the un-mixing matrix W, deter-

mined using the CCA algorithm, to identify the underlying

source signals Ŝ. Similar to the EEMD-ICA algorithm, the

sources corresponding to artifacts are set to zero and then

the original multi-channel signal is reconstructed, minus the

artifact components, using the inverse of the un-mixing matrix

W−1 creating the matrix X̂. The original single channel signal

without the artifacts x̂ can be determined by adding the new

IMFs components in the X̂ matrix.

As stated previously it should be again noted that CCA

uses SOS and is therefore computationally more efficient than

ICA. It follows that the EEMD-CCA technique will also have

a lower computational cost than EEMD-ICA. In Section III

a quantitative comparison of the artifact removal capability

of all the techniques is provided using SNR and correlation

measurements for both EEG and fNIRS data.

G. Data Acquisition

In order to test the validity and efficacy of the proposed

EEMD-CCA algorithm, compared to the current EEMD-ICA

and Wavelet algorithms, the authors tested both techniques

on electroencephalograph (EEG) and functional near-infrared

spectroscopy (fNIRS) data. The data for both modalities was

recorded independently using the novel recording methodol-

ogy proposed in [25]. This particular recording methodol-

ogy is capable of producing two highly correlated signals

for each modality. When recording the two channel signal,

motion artifact can be induced onto one channel by disturbing

the appropriate recording electrode or optode. Therefore, by

implementing this methodology, two signals become available:

the first signal is free of motion artifact contamination (labeled

“ground truth”) and the second is intermittently corrupted by

artifacts. An example of a recording for both EEG and fNIRS

can be seen in Figure 1 and Figure 2 respectively.

Fig. 1. An example recording of EEG data. Two channels are recorded which
are highly correlated during epochs of no motion artifact. Shaded areas show
epochs of motion artifact induced by the authors during testing.

During epochs of no movement (as shown by the non-

highlighted areas in the figures) the two signals can be

observed to have a high correlation coefficient. The average

correlation over the clean epochs for all trials was found to be

0.84 for the EEG data and 0.77 for the fNIRS data. However,

over the full signal this correlation level drops significantly to

0.40 for the EEG data and 0.58 for the fNIRS data due to

the intermittent presence of artifacts. Artifact components are

present in 15.7% of the EEG data and 19.8% of the fNIRS

data.
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Fig. 2. An example recording of fNIRS data. Two channels are recorded
which are highly correlated during epochs of no motion artifact. Shaded areas
show epochs of motion artifact induced by the authors during testing.

A total of 24 sessions of EEG data were collected from

a cohort of 6 healthy subjects, 3 females and 3 males, with

a mean age of 27 years (standard deviation: 4.3 years). The

fNIRS database consisted of 16 sessions from 10 healthy

subjects. The cohort comprised of 4 males and 6 females with

a mean age of 29 years (standard deviation: 5.6 years). These

databases for EEG and fNIRS were then used to determine

the efficacy of the Wavelet, EEMD-ICA and EEMD-CCA

techniques.

H. Removal of Artifact Components

When employing any of the described artifact removal

techniques a common issue is determining which components

of the decomposed signal are artifacts and thus should be

removed. For the methodologies implemented in this paper

we utilized the available “ground truth” signal. Any com-

ponent that, when removed, increased the correlation of the

reconstructed cleaned signal with the “ground truth” signal

was determined to be artifact and was removed. This ensured

that each technique performed optimally during evaluation. Al-

though it not possible to employ this technique for determining

artifact components in practical applications, as the required

“ground truth” signal will not be available, it effectively

decouples the artifact separation process from the component

selection process and thus provides the fairest method for

comparing the algorithms considered in this paper.

For completeness, a second method was also employed

which used the autocorrelation function based automatic ar-

tifact component selection technique proposed by Hassan et

al . [26]. This method assumes that the autocorrelation at

lag one of the artifact components differs from that of the

true desired signal. Figure 3 and Figure 4 show examples

of the autocorrelation coefficients for EEG and fNIRS for an

example decomposed trial. For both signal types, a threshold

value is required to separate the artifact from the signals

of interest. For fNIRS, all components below a threshold of

0.9991 are specified as artifacts whereas for the EEG thresh-

old, all components above a threshold of 0.97 are deemed

to be artifacts. These threshold values were determined by

employing the “ground truth” reference signal as provided by

our methodology for calibration purposes. Using this method,

all detected artifact components can be automatically removed

from the decomposed signals.

Fig. 3. An example output of the CCA algorithm for contaminated EEG
data.

Fig. 4. An example output of the EEMD algorithm for contaminated fNIRS
data.

III. RESULTS

Using the two available signals for each modality, as de-

scribed in Section II-G, it is possible to test the efficacy

of individual artifact removal techniques. The goal of each

artifact removal technique is to return the artifact contaminated

signal to its true state. Thus using calculations, such as

SNR and correlation, it is possible to quantify the particular

technique’s ability to remove the artifact. In this study the

difference in SNR before and after artifact removal, denoted

by ∆ SNR, is employed as a performance metric. The ∆ SNR

was calculated using the following formula:

∆SNR = 10 log10

(

σ2
x

σ2
eafter

)

− 10 log10

(

σ2
x

σ2
ebefore

)

(14)

where σ2
x is the variance of the “ground truth” signal and

σ2
ebefore

and σ2
eafter

are the variances of the error signal before

and after employing the artifact removal technique. The error

signal is determined as the difference between the noisy signal

and the “ground truth” recording , assuming that the motion

artifact is additive.

The difference in correlation between signals was used

to define a new performance metric, namely the percentage
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reduction in artifact λ:

λ = 100

(

1−
Rclean −Rafter

Rclean −Rbefore

)

. (15)

Here Rbefore is the correlation between the “ground truth”

and artifact contaminated signal and Rafter is the correlation

with the signal following processing by an artifact removal

algorithm. Rclean is the correlation over the epochs of known

clean data (the non-shaded areas of Figure 1 and 2) and is an

estimate of the maximum achievable correlation between the

two signals for the experimental setup considered. As such, the

denominator of the equation is the improvement in correlation

possible if complete artifact removal is achieved while the

numerator is the actual correlation improvement obtained for

a given artifact removal technique. A high λ therefore equates

to good efficacy in artifact removal.

The results obtained using the various artifact removal tech-

niques are presented below. The results presented employ the

“ground truth” methodology for artifact component selection

as these are deemed the best case results. These results,

as well as those obtained when using the autocorrelation

based artifact component selection procedure to determine

the artifact components, are presented in Table I with their

variability presented using the standard deviation metric.

A. EEG

All the algorithms described in Section II were run on the 24

trials of EEG data and the artifact components were removed

using both the “ground truth” method and the autocorrelation

method as described in Section II-H. Figure 5 displays an

example trial of EEG after the removal of the artifact using

wavelet analysis, EEMD-ICA and EEMD-CCA with the arti-

fact components selected using the “ground truth” method.

1) Wavelets: When employing wavelet analysis it was

calculated that the technique produced an average ∆ SNR of

8.08 dB over all trials and there was a 55.3 % reduction in

artifact producing a correlation of 0.64 with the “ground truth”

signal.

2) EEMD-ICA: Prior to running the technique the ensemble

number had to be chosen. The optimum number of ensembles

to use was determined by re-running the algorithm while

systematically increasing the number of ensembles employed.

When the results were observed to plateau the ensemble

number was set. When using the EEG data it was found

that the performance of the technique became fairly consistent

when using 5 or more ensembles. The noise standard deviation

was empirically set to 0.1 times [16] the standard deviation of

the signal.

The technique produced an average ∆ SNR of 8.2 dB and

the artifact was reduced by 52.3 % yielding a correlation of

0.63 after employing the EEMD-ICA algorithm.

3) EEMD-CCA: Using the same ensemble number the

EEMD-CCA algorithm was determined to generate an average

∆ SNR of 8.2 dB over all trials. The correlation also rose to

0.63, representing a 52.2 % reduction in artifact when using

this particular technique.

B. fNIRS

The validity of the new technique was also tested us-

ing fNIRS data. Again Wavelet denoising, EEMD-ICA and

EEMD-CCA were tested on the same sessions and the im-

provement in signal correlation and SNR with respect to the

“ground truth” signal was calculated. Figure 5 shows an ex-

ample fNIRS trial after use of the three denoising techniques.

1) Wavelets: Over all trials the average ∆ SNR was deter-

mined to increase by 3.1 dB using wavelet analysis and 43.6 %

of the artifact was removed resulting in a correlation of 0.66.

2) EEMD-ICA: For the fNIRS data an ensemble number

of 3 for the EEMD algorithm was found to be sufficient to

provide accurate results, as increasing the ensemble number

did not substantially improve performance. Again, the noise

standard deviation was empirically set to 0.1 times the standard

deviation of the signal.

EMD-ICA was able to remove some of the contaminating

artifacts from the noisy signal as demonstrated by a ∆ SNR

of 3.4 dB. The algorithm also reduced the artifact by 43.4 %

producing a correlation of 0.66 with the “ground truth” signal.

3) EEMD-CCA: Finally the new proposed technique

EEMD-CCA was employed to remove the motion artifact from

the available fNIRS data. Using this algorithm the percentage

artifact reduction was calculated as 49.4 % generating a

correlation of 0.68 and the technique also produced an average

∆ SNR of 3.5 dB.

IV. DISCUSSION

Table I summarizes the results obtained using the artifact

removal techniques described in the paper. Results are also

provided for EMD, EMD-ICA and EMD-CCA to demonstrate

the requirement for the use of ensembles. For both the EEG

and fNIRS modalities the EMD algorithms can be seen to

perform substantially inferior to their EEMD counterparts thus

validating the use of EEMD over EMD.

When operating on the EEG data the table gives incon-

clusive results as to the optimum technique. The wavelet

algorithm marginally outperforms the EEMD based techniques

in terms of correlation improvement (≈ 3 %). The wavelet

technique gives the best results for correlation improvement

in 18 out of the 24 analyzed trials. However when evaluating

the algorithms using the ∆ SNR the wavelet function has

a lower average level (≈ 0.13 dB) where the EEMD based

techniques are seen to have to best results in 19 of the 24

analyzed trials. The EEMD based techniques (EEMD, EEMD-

ICA and EEMD-CCA) are seen to have similar results for

both λ and ∆ SNR demonstrating that the decomposition of

the signals into their respective IMF is sufficient to select

the artifact components. One possible reason for this is that

there is lower spectral overlap between the artifact and the

EEG signal (compared to the fNIRS signal) and thus the

two decomposition techniques are capable of removing the

majority of the artifact.

However, when analyzing the fNIRS data the developed

EEMD-CCA technique can be observed to outperform all

other tested techniques. As stated previously this may be due to

the sources having a multivariate normal distribution. In terms
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Fig. 5. Example results of the artifact removal from both EEG and fNIRS using Wavelet denoising, EEMD-ICA and EEMD-CCA.

of correlation improvement (λ) the EEMD-CCA technique

was discovered to be ≈ 3 % better than the EEMD technique

and ≈ 6 % better than the EEMD-ICA and wavelet techniques

and demonstrated the best results in 12 of the 16 trials.

This improvement over the wavelet technique can also be

observed in terms of the ∆ SNR where EEMD-CCA showed

the best results in 11 trials and had on average a 0.56 dB

improvement over the wavelet technique. The failure of the

wavelet technique to separate the artifact when employed on

fNIRS may be due to the higher spectral overlap between the

artifacts and the signal of interest. In this case the second

artifact removal stage (CCA) succeeds in separating the artifact

components which are spread over a number of the wavelet

or EEMD components. The reason for the EEMD algorithms

improved correlation over EEMD-ICA is the ICA algorithm

can often fail to converge [27] and therefore when the signal is

reconstructed some data may be lost, reducing the correlation

with the “ground truth” signal.

The computational cost of the EEMD-CCA algorithm was

also assessed in order to determine what, if any, additional

computational costs were incurred in return for the improved

artefact suppression performance of the CCA extension to

EEMD. It can be seen from Figure 6 (showing fNIRS data

as an example) that the computational time of CCA is con-

siderably less than that of EEMD (using three ensembles) and

thus does not add any significant computational complexity to

the system. The computational cost of the ICA and Wavelet

algorithm is also plotted for comparison. The computation time

for the ICA algorithm is significantly greater as it uses higher

order statistics whereas the CCA algorithm uses second order

statistics to determine the underlying sources. Similar results

can be seen for the EEG data. For a number of ambulatory

systems, direct feedback is often employed and thus ensuring

a low computational load can often be of importance to ensure
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TABLE I
FOR BOTH FNIRS AND EEG THE PERCENTAGE REDUCTION IN ARTIFACT (λ) (EQUATION 15) AND THE ∆ SNR ARE PRESENTED WITH CORRESPONDING

STANDARD DEVIATIONS SHOWN IN BRACKETS. RESULTS ARE SHOWN FOR BOTH ARTIFACT COMPONENT SELECTION USING THE “GROUND TRUTH”
SIGNAL (GT) AND USING THE AUTOCORRELATION FUNCTION (RXX) AS DESCRIBED IN SECTION II-H.

Wavelets EMD EEMD EMD-ICA EMD-CCA EEMD-ICA EEMD-CCA

fNIRS

λ

GT
43.6 % 18.9 % 46.2 % 17.9 % 23.3 % 43.4 % 49.4 %

(41.3) (18.6) (45.9) (17.8) (23.1) (43.2) (49.1)

Rxx
38.2 % 13.2 % 42.2 % 14.9 % 17.3 % 39.7 % 46.4 %

(35.3) (12.8) (41.9) (14.8) (17.1) (39.6) (46.3)

∆SNR

GT
3.05 dB 2.01 dB 3.41 dB 2.37 dB 2.27 dB 3.60 dB 3.61 dB

(2.15) (1.41) (2.07) (1.45) (1.58) (1.91) (2.02)

Rxx
2.88 dB 1.84 dB 3.21 dB 2.12 dB 1.98 dB 3.42 dB 3.44 dB

(2.01) (1.42) (1.85) (1.55) (1.59) (1.78) (1.88)

EEG

λ

GT
55.3 % 43.2 % 52.2 % 44.1 % 43.4 % 52.3 % 52.2 %

(35.4) (31.2) (36.3) (30.8) (31.3) (36.2) (36.4)

Rxx
51.2 % 38.7 % 48.5 % 40.0 % 39.6 % 48.3 % 48.5 %

(36.7) (31.8) (34.2) (27.6) (30.8) (37.2) (35.2)

∆SNR

GT
8.08 dB 7.28 dB 8.21 dB 7.47 dB 7.32 dB 8.22 dB 8.21 dB

(4.01) (3.67) (3.82) (3.53) (3.67) (3.81) (3.82)

Rxx
7.81 dB 7.01 dB 7.88 dB 7.22 dB 6.98 dB 8.02 dB 8.04 dB

(4.28) (3.35) (3.46) (3.70) (3.42) (3.75) (3.72)

fast clean information is available.

Fig. 6. Average computational time, over 100 runs, of the different algorithms
on the fNIRS data

It is also possible to see that the automatic artifact selection

using the autocorrelation function as described in Section II-H

performed quite well in comparison to the “ground truth”

results with the EEMD-CCA algorithm again outperforming

all of the other techniques for fNIRS and EEG apart from

wavelets when analyzing the EEG data using correlation. The

results are however consistently lower, as expected due to

the “ground truth” referencing allowing for the best possible

results. Future work into the optimal artifact selection criterion

may increase the accuracy of these results which will further

aid in the transition of health monitoring systems from the

hospital centric domain to the ambulatory environment.

V. CONCLUSIONS

A novel artifact removal technique has been proposed in this

paper, namely ensemble empirical mode decomposition with

canonical correlation analysis (EEMD-CCA). The new tech-

nique is capable of operating on single channel measurements

due to the inclusion of the EEMD algorithm. The efficacy

of the algorithm was compared using both EEG and fNIRS

data to Wavelet denoising [2] EMD [15], EEMD [16] and the

similar EEMD-ICA algorithm [4].

The novel EEMD-CCA technique was shown to provide

the leading performance in artifact removal when analyzing

the fNIRS data. This was true when using either the “ground

truth” signal or the autocorrelation metric for automatic ar-

tifact component selection (Section II-H). This performance

improvement was shown numerically (Table I) using metrics

such as the percentage improvement in correlation (λ) and the

change in signal-to-noise ratio (∆ SNR). When analyzing the

EEG data the basic EEMD and Wavelet denoising techniques

performed best, with the addition of the ICA or CCA algorithm

adding little improvement. However, it should also be noted

that the EEMD-CCA technique consistently performs as well,

if not better than the EEMD technique alone over both the

EEG and the fNIRS data. As the computational time of the

CCA algorithm is also very low in comparison to both the

EEMD and the ICA algorithm, its addition to the EEMD

technique has no disadvantage. Therefore by employing the 2

stage artifact removal process of EEMD and CCA, the results

will consistently be as good (within 0.01 %) if not better than

those achievable using EEMD alone or in conjunction with

ICA for both EEG and fNIRS.
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