THE USE OF EVOLUTIONARY ALGORITHMS
TO OPTIMIZE INTELLIGENT BUILDINGS
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Abstract: This paper formulates a unit commitment optimization problem for
renewable energy sources distributed in a micro-grid formed by a complex of in-
telligent buildings of both office and residential characters, including a wide range
of amenities. We present a general description of the solution of this task using
the simulated annealing heuristic optimization technique. The experiment was
processed in the specialized computer program. For comparison, Appendix A of
the article describes the Lagrange multipliers optimization method as the conven-
tional alternative to the used heuristic technique. A description of the concept of
intelligent buildings is provided in Appendix B.
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1. Introduction

In the context of sustainable development of human society, which depends on
the planet’s energy sources, covering the needs of the society requires a focus on
renewable energy sources such as geothermal energy, atmospheric currents, hydro-
geological cycles, solar radiation or biomass, due to their relative inexhaustibility
and the minimization of the impacts of human activities on the environment related
to their conversion to energy.

Biomass is a renewable energy source meeting the requirements to stabilize the
amount of carbon dioxide in the atmosphere, i.e. the amount of carbon dioxide
absorbed during the growth of the organic matter is equal to the amount of carbon
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dioxide emitted into the atmosphere during the combustion process. In connection
to the decrease of fossil fuels and the deterioration of the global climate, the use
of biomass energy accumulated from the sun appears to be desirable. Photovoltaic
power plants are based on the direct conversion of sunlight into electrical energy in
photovoltaic panels generating direct current, and so they must be equipped with
a solid-state voltage invertor for their connection to the grid.

Atmospheric circulations as well as the hydrological cycle are powered by ther-
mal energy from sunlight. Uneven heating of the planet’s surface and adjacent air
layers leads to differences in air pressure in the atmosphere and the result of the
balancing of these pressure differences is the atmospheric flow, the kinetic energy
of which is converted into electrical energy in wind power stations.

The kinetic energy of the water flow, caused by an altitude difference between
two positions of the flow (the slope), is converted into electrical energy in water
or pump storage units. Pump storage power plants, unlike standard power plants,
operate as follows: when there is a shortage of energy, it operates as a generator,
and during periods with excess energy, it operates as a motor which pumps water
from a lower to a higher altitude, thereby storing electrical energy generated by
other sources in the network in the form of potential energy of the transferred
water.

Geothermal energy is available everywhere, is stable and can be easily regulated.
Current technologies for using geothermal energy are relatively expensive from an
investment standpoint, but have a quick economic return and have no negative
impacts on the environment. The issue of geothermal energy is complicated and its
proper utilization requires the connection of different results from many disciplines,
and so now geothermal energy is becoming a new scientific field of its own.

Cogeneration units are another convenient addition to the range of renewable
energy sources. These typically operate by burning fossil fuels to produce electricity
while at the same time delivering the residual heat of the Carnot cycle for further
use instead of letting it escape into the atmosphere through cooling towers, as
is the case in conventional power plants. By the construction of cogeneration
units, we could gain the advantage of self-sufficient energy units, such as in the
case of complex intelligent buildings or even individual intelligent buildings. This
saves energy costs and also protects the environment by eliminating the need for a
separate heat source.

When connecting the above mentioned energy sources to the grid via trans-
formers, the surplus can be sold off to the respective distribution companies. The
implementation rate of the above proposition depends on the cost of the chain
of production, transmission and consumption of energy. In relation to electricity,
we are therefore minimizing production costs through the optimal operation of
the electrical transmission network, i.e. a suitable choice for the connection and
size of the injection active or reactive power in the network nodes, and finally by
minimizing the consumption side.

Minimizing the above costs, due to the complexity of the problem as a whole,
is usually realized more or less separately on three separate planes (generation,
transmission and consumption), i.e. instead of one optimum we only obtain three
sub-optima. In connection with the second or third plane, we speak of smart net-
works [2] or intelligent buildings [3], however the subject of this paper is the solution
of this problem on the first level, i.e. unit commitment optimization problem.
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2. Unit Commitment

The task of unit commitment is an optimization problem with a goal of minimizing
the total costs of producing the volume of energy given by the prediction of its
consumption for the considered period, sampled e.g. by hours. In other words, this
constitutes a plan for the sorting of sources and their generated outputs covering
the predicted consumption in each hour of the given period.

The optimization problem may in general formally be expressed as follows:

JRUSR (@) = min f(7) QCR" (1)
e
where %y is the optimum, whereas () specifies the area of admissible solutions
containing the optimum as given by operating-technical parameters of sources, and
whereas f represents the cost function given by a sum of operating and start-up
costs (Fig. 1) for sources integrated in the given period:

_AT;(t)
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where ¢ € {1,—,N},t € {1,—,T} and P;(¢t) resp. z;(t) are the output resp. state
of the i-th source in time ¢, and where A;, B;,C;, D; resp. AT;(t) and 7; are
the appropriate cost coefficients resp. downtime and the time constant of the
exponential growth of start-up costs for the i-th source in time ¢, and furthermore
N resp. T is the number of sources in the network resp. the number of time snaps
of the considered period.

Admissible solutions are in general specified by the following inequalities resp.
equality:

Pimin S -Pz S ‘Pimax (3)
> Pit)zi(t) = C(t) (4)

where C(t) represents a prediction of the consumption in the appropriate hour of
the considered period.

3. Simulated Annealing

Evolutionary algorithms are used to find a solution with sufficient quality for large-
scale general optimization tasks in a sufficiently short time. Evolutionary algo-
rithms inspired by nature include a whole spectrum of optimization heuristic tech-
niques, e.g. Particle swarm resp. Ant Colony optimization, genetic algorithms or
simulated annealing. Heuristics may be described as a procedure for searching the
solution space via shortcuts, which are not guaranteed to find the correct solution
but do not suffer from a range of problems of conventional optimization methods
such as e.g. the requirement of connectivity or differentiability of the criterion or
link function, the problem of respecting constraints, being stuck in a shallow local
minimum or divergence. However, their application requires the configuration of
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Fig. 1 Dependence of operating costs on power and start-up costs on downtime.

certain free parameters, which need to be setup based on the specific optimization
task — these may e.g. include the starting or final temperature and the number of
iterations of the simulated annealing algorithm described below and based on the
evolution of thermodynamic systems. In physics, annealing is a process where an
object, heated up to a certain high temperature, is being gradually cooled down to
remove internal defects in the object. The high temperature causes the particles
in the object to rearrange randomly, which destroys defects in the crystal lattice,
and the gradual cooling then allows the particles to stabilize in equilibrium points
with a lower probability of the creation of new defects.

Consider the case that the cost function argument (2) unambiguously specifies
the macroscopic state of a certain thermodynamic system with energy equal to the
function value. Then we can express its thermodynamic probability:

P(E) = {7 e R"|f(Z) = Ei}| (5)

as the number of micro-states corresponding to it.

If we immerse this system with various macro-states with energies F; in a
thermal reservoir, then the Boltzmann equation for the unit size of the Boltzmann
constant together with the Taylor expansion of a differentiable function, allows
us to express the entropy of the reservoir after the temperatures equilibration for
FE = Ey+ E; = const and E > E; as follows:

dS(E)
dFE;

and then, by using the definition of temperature dS(E)/dE=1/T (T > 0), we can

express the thermodynamic probability of a macro-state of the thermal reservoir

as a function of the energy of the macro-state of the inserted system, i.e. by the
following Boltzmann factor:

S(E;) =S(E) - E;,=InP(E - E;) (6)

P(E—E;)=ce T (7)
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The simulated annealing algorithm is based on the perturbation of an optimum
candidate and a following decision on its replacement by a perturbation in each
iteration of the algorithm based on the Metropolis criterion [1]:

oy PE;)  _ae
p(& — &) = PE) e AE >0 (8)
p(i"i — fj) =1 AFE <0 (9)

which expresses the probability of the system transferring from one macro-state
to another, where AE = E; — E; and AE/T expresses the increase of entropy,
i.e. in accordance with the second law of thermodynamics an impossible event is
artificially redefined as a certain event in the specified criterion.

The sequence of accepted perturbations, i.e. acceptable solutions to the opti-
mization task, forms a Markov chain with memory of order one, i.e. the occurrence
of the given solution is only conditioned by the occurrence of the previous solu-
tion. The perturbations which lie outside of the area of admissible solutions are
automatically rejected.

P

T=const

]
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Fig. 2 Dependence of probability on increase of energy.

Af=const

Fig. 3 Dependence of probability on temperature.

From p(Af) (Fig. 2), it is clear that a significantly “worse” solution is accepted
with respect to the previous solution at a much lower probability than a slightly
“worse” solution. p(7T) (Fig. 3) may be used to control the probability of the
acceptance of the solution during the iteration cycle. We initiate the iteration cycle
with a sufficiently high temperature to ensure that almost every proposed solution
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is accepted for a certain period of time, which will allow an initial approximation
of the solution to “escape” areas with shallow local minima. Later on, we reduce
the temperature so that almost no “worse” solution is accepted, i.e. during the
iteration cycle we cool down the system representing the optimization task from a
sufficiently high temperature to a sufficiently low temperature until a solution is
“frozen” in a sufficiently deep local minimum (Fig. 4). The temperature drop may
be modeled e.g. as an exponentially decreasing function:

iter N iter
T =Toe '~ = Ty~ lim Tpe %
0¢ T IH(TOO /To) iteirgoo o€

=0

where Tj resp. T, are the initial resp. final temperatures and N is the number of
iterations of the algorithm (Fig. 5).

High temperature

Local minimum

Global minimum

Fig. 4 Freezing of solution (adapted from [5]).

4. Experiment

The scenario of the following computational experiment is as follows: Let us assume
a fictitious town formed by a complex of intelligent residential and office buildings
and with a wide spectrum of associated amenities. The town, located near the
foothills of a mountain range, is near a small river flowing from a lake, with a
sufficient slant to build two hydro-electric plants. The vicinity of the mountains
provides stable winds which are of sufficient power to build a park with wind power
plants. Next to the town, there is a cogeneration plant which supplies the town
with heat and power. Due to the highly developed agricultural production in the
inland areas nearby, a biomass power plant has been built near the town. Due
to the dominant cloudy weather in the considered period, the photovoltaic power
cells located in the town do not provide sufficient output, and so these will not be
included in the experiment. To retain the reliability of the delivery of power, the
town is connected to two high-voltage power lines from different power suppliers.

The objective of the experiment is a proposal for an ordering of sources for a
typical Saturday resp. Wednesday in November, for which predictions of the hourly
consumptions are available [4], see (Fig. 6) resp. (Fig. 7).

The cost function (2) is a function with mixed independent variables, i.e. with
continuous independent variables (outputs produced by individual sources) resp.
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generation x;

iter=0

iter = iter+1

generation x;j

Fig. 5 Simulated Annealing Algorithm.

with discrete independent variables (states of individual sources). The specified
continuous variables are transferred to discrete independent variables via suffi-
ciently fine graining (by MW units) of the interval between the minimal and max-
imal output of each source.

The final set of admissible solutions of the task specified by the technical limits
of the output of each source at the given hour of the considered period then has a
cardinality given by the following combinatorial product: 50'° x 709 x 80° x 100% x
200" x 380% 22 107,

The costs of a trivial solution, where all the sources operated during the whole
considered period at medium capacity (see 2.), were set as the reference costs for
the production of energy for the prediction consumption during the given period:

Pi(t) = C(t) P PP = E(P,max — prin) (10)
l N

The parameters of the optimization algorithm T resp. T, resp. N were set
to the values 10° resp. 107% resp. 10® for the experiment. The mechanism for
setting the initial temperature was based on its default estimate and subsequent
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increase up to a value where during the first circa ten percent of iterations almost
all perturbations are accepted, which is an analogue to the heating up of the object
during annealing. Similarly, the mechanism for setting the final temperature was
based on its default estimate and subsequent decrease up to a value where during
the circa last ten percent of iterations almost no perturbations which increase the
value of the cost function are accepted. The mechanism for setting the number of
iterations was based on their default estimate and subsequent gradual increase up
to a value such that its further increase did not result in a significant reduction of
the final production costs for the required volume of energy.

In the specified experiment, the town is supplied by electrical power from thirty
two rotary (synchronous generator) and eight non-rotary (transformer) machines,
i.e. a total of forty sources and its cost characteristics and technical limitations are
specified in Tab. I, where HC = HC1+ HC2 x P is the consumption of the source
itself based on the produced output.

UNIT NR: Pmin Pmax HC1 HC2 A B i D TAU
[kW] [kw] [kw] 2| [CZK]  [ezkmaw] [CZK/MW]  [CZK] 5]
Waterl 1 GO0 580 5 0,065 12046 1420 0,025 48429 6,257
Watarl 2 &00 830 5 0,065 12046 1420 0,025 48425 6,257
Water2 1 350 440 5 0,065 14667 161,2 0,030 53826 5,943
Water? 2 390 440 5 0,065 14667 1&80,7 0,030 53826 5,548
Water2 3 350 440 5 0,067 14667 1614 0,030 53326 5,948
Water2 4 390 447 5 0,068 14667 162,84 0,030, 53326 5,548
Windl 1 120 200 kL) 0,078 15104 170,7 0,383 220797 E,E33
Windl 2 120 200 10 0,078 15104 170,7 0,380, 220797 £,633
Wind1 2 120 200 10 0,078 15104 170,7 0,387, 220797 6,633
Windl 4 120 2030 10 0,078 15104 170,77 0,350 220797 6,633
Windl 5 120 200 10 0,078 15104 170,7 0,393 220797 E,633
Wind2 1 140 213 i) 0,114 16480 138,32 0448 352258 7,164
Wind2 2 140 210 10 0,114 16659 1883 0,459 352253 7,164
‘Wind2 2 140 210 10 0,114 16480 132,32 0,451 352258 7,164
Wind2 4 140 210 10 0,114 16659 1883 0,462 352258 7,164
Wind2 5 140 210 10 0,114 16480 128,23 0,455, 352258 7,164
Cogenerl 1 300 500 15 0,054 15502 198,38 0,152 273466 5,738
Cogenerz 1 130 200 15 0,088 15815 176,8 0,437 230474 7,548
Cogener2 2 130 200 15 0,088 15815 176,28 0,431 230474 7,948
Cogener2 3 130 200 15 0,088 15815 176,8 D434 230474 7,948
Cogenerl 4 130 200 15 0,088 152815 176,28 0,427 230474 7,548
Biomassl 1 150 153 Ey 0,131 3433 195,5 0,884 167593 9,224
Biomassl 2 100 150 5 0,131 8534 200,7 0,853 155521 5,076
Biomaszsl 32 100 150 5 0,120 9273 2240 0,701 153513 9,044
Biomass2 1 100 150 5 0,132 7948 04,4 0,939 J2778 7,447
Biomass2 2 100 150 5 0,132 7948 204,54 0,943 T277E 7,447
Biomass2 3 100 150 5 0,132 7948 204 4 0,947 72779 7,447
Biomass2 4 100 150 5 0,132 7848 04,4 0,950 72779 7,447
Biomass3 1 100 150 5 0,173 10505 282,3 1,101 128197 8,669
Biomass3 2 100 150 = 0,173 10505 2823 1,051 128157 8,669
Biomass2 32 plee] 150 5 0,172 10505 232,23 1,001 128197 8,669
Biomass3 4 100 150 5 0,173 10505 2823 0,951 128197 8,669
Metworkl 1 100 200 1 0,084 20903 3388 1,554 50000 5
MNetworkl 2 100 2030 1 0,084 205803 3388 1,550 50000 5
Networkl 3 100 200 1 0,084 20803 338,58 1,545 50000 5
Networkl 4 100 200 1 0,084 20503 338,38 1,541 50000 5
MNetwork2 1 100 200 1 0,071 24409 387,2 1,574 50000 5
Network2 2 100 200 1 0,071 24403 387,2 1,569  SO000 5
MNetwork2 3 100 200 1 0,071 244059 387,2 1,563 50000 5
MNetwork2 4 100 200 i 0,071 24405 387,2 1,580, SO0D0O 5

Tab. I Parameters of sources.
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During the optimization algorithm, the state and output will be set randomly
for a randomly selected unit, namely for each hour of the considered period and
for each iteration of simulated annealing. The randomness will be obtained by the
use of a random number generator with a parameterizable initiation of a sequence
of pseudo-randomly generated numbers, see the SEED variable in the fragment of
the source code presented in Fortran:

6 START-HEOUR CYCLEE
DO J=2,NT+1
c SHABT— 1 PERBRAITOEN E¥ELTE

DO ITER=1,N
STATE RANDOM GENERATION

C RANDOM CHCICE OF SOURCE
I=RAN (SEED) * (NG-1) +1
IJ=(I-1)*(NT+1)+J
C RANDOM CHANGE OF STATE
IF (X (IJ).EQ.0) THEN
IF (RAN (SEED) .LE.Ponoff)X (IJ)=1

ELSE
IF (RAN (SEED) .LE.Ponoff) X (IJ)=0
ENDIF
C POWER RANDOM GENERATION

C RANDOM CHOICE OF SOURCE
I=RAN (SEED) * (NG-1) +1
IJ=(I-1)*(NT+1)+J
C RANDOM SET OF FPOWER
P{(IJ)=RAN(SEED)* (Pmax(I)-Pmin (I))+Pmin (I)

C ST O eR= 1"TERAT L &N C¥ CLE
ENDDO

:"_' S M B = Hoar TR cY gL
ENDDO

where NT resp. NG is the number of hours resp. of available source, P(1J) resp.
X(1J) is the output resp. state of the I-th source in the J-th hour, Pmin(I) resp.
Pmax(I) are the output limits of the I-th source, Ponoff is the parameterizable
probability of a change of the state of the source and the function RAN is a random
number generator whose outputs form an uniform distribution of numbers in the
interval (0,1).

The resulting ordering of sources for Saturday resp. Wednesday is provided in
Tab. II resp. Tab. III. The time of the computation, carried out on a notebook
with a 2 GHz processor, was two minutes and thirty seconds.
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Fig. 6 Predicted Daily Diagram of Saturday.
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Fig. 7 Predicted Daily Diagram of Wednesday.
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Tab. IIT Unit Commitment of Wednesday.
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5. Conclusion

By comparing Fig. 6 to Tab. II, it is clear that the power consumption on Saturday
is primarily covered by sources with more or less lower production costs, such as
both hydro-electric plants and the first wind-power park together with cogeneration
units, which contribute by supplying the town with heat. The mid-day consump-
tion peak corresponds well with the cluster of outputs supplied by the biomass
power plant and the startup of one transformer, which together with one source of
the specified cluster also covers the evening consumption peak. Referential resp.
optimal costs for the coverage of the Saturday energy consumption then amount
to 65 254 resp. 38 446 CZK, i.e. the optimization has led to savings amounting to
26 809 CZK.

By comparing Fig. 7 to Tab. III, it is clear that the Wednesday consumption
is covered in a similar fashion, but due to the increased volumes, i.e. a larger
area below its progression, the cluster of outputs supplied by the first and second
biomass power plants covering the mid-day and evening peaks is larger. Three
transformers of one of the distribution companies, specifically the one with the
lower price of energy, were turned on during the midday peak — one of which was
turned off temporarily between the peak hours. The third biomass power plant
was not used at all due to its higher startup costs and relatively high operating
costs. Referential resp. optimal costs for the coverage of the Wednesday energy
consumption then amount to 69 216 resp. 45 006 CZK, i.e. the optimization has
led to savings amounting to 24 210 CZK.

The proposed sorting of the sources in general implies that sources with the
highest production costs, i.e. transformers supplying energy from distribution com-
panies, are only used during peak hours, which is in compliance with the accentu-
ation on the energy self-sustainability of the town in our example.

The description of the computational experiment implies a high efficiency of
the optimization algorithm of simulated annealing when searching the admissible
solution space, given by the ratio of the total number of admissible solutions to the
number of simulated admissible solutions in each hour of the considered period, i.e.
107 : 109,

Appendix A

When solving optimization problems, it is possible to choose from a wide range
of optimization methods, and specifically from two categories depending on the
method of solution of the optimization task: conventional or heuristic methods.
Conventional methods, for instance mathematic programming methods, precisely
specify a free or constrained local extreme in a relatively short time, while heuristic
methods only specify one approximately and in a relatively long time. The task
of sorting sources is conventionally solved by the method of Lagrange multipliers.
As an alternative to the presented simulated annealing method, we briefly describe
the method of Lagrange multipliers below.

Consider an optimization task (1) with the following area of admissible solu-
tions:
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G:R" 5 R™ Q={FfecR"|§@) =0} m<n (A.1)

where f,g; are continuously differentiable functions and additionally let us intro-
duce the following so-called Lagrange function:

F:R™™ SR F(2) = f(7) + &.§(F) Z=][7d] (A.2)

where the components of vector @ are the so-called “Lagrange multipliers”, then
assuming the linear independence of vectors Vg (Z), ..., Vg (&) is the necessary
condition for the existence of a local extreme of the function (A.2) at point Zj in
the shape VF(Z) = 0, i.e.:

oF 3g] B
ox; 6961 Z J N

oF
80éj o gj =0
ie{l,—,n},je{l,—, m}

If, in the area of admissible solutions (A.1l), we replace the equality for an
inequality, then we can return to a constraint in the shape of an equality by an
equivalent representation of the following constraints and a Lagrange function with
an auxiliary variable ¢/ :

Q= {7 eR"|§(&) +7=0} (A.3)

F(2) = f(@) +a.(g(@) +9) Z7=[7,7,4] (A.4)

together with equivalent necessary conditions for the existence of a local extreme
of the function at Zp:

oF 8gj B
ox; 8% Z j =0
oF _ _
ayj YT

or _
8C¥j_g] y']_

Let us consider in general the restriction of task (1) in the shape: Q = {Z €
R™|Z > 0}, then the following holds for the optimal internal resp. border point of
Q:

V: g >0— 6f =0
O0x;
resp.
of
E|j (EOJ‘:O—> 8$0j >0
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i,j € {1,—,n}, so obviously the following holds for any optimal point from :
of
A2 i—— =20 AL
0 8$0,’ ( )

and then we can express the necessary condition for the existence of a local extreme
of function (1) at Zy by using (A.5) as follows:

V(@) >0 %.Vf(F) =0 (A.6)

Subsequently, for & > 0 and y > 0 we obtain the following set of necessary
conditions for the existence of a local extreme of function (A.4) analogously to
(AG) at 50 :

oF _ - OF
— >0 Z.—=0
oF = 0oz
F . )
8*_,20 _'06*420
0y ]
oOF o
7:"“ ﬂ:O
oG 3(Zo) + 7o

and by adjusting these conditions we may then, by omitting the auxiliary variable ¥/,
express the necessary conditions for the existence of a local extreme of the function
(A.2) at Zp in the are delimited by the inequalities in the so-called “Kuhn-Tucker”
compact symmetrical shape:

) _ _ or
—— >0 >0 Zg.— =0 AT
o = 0= o7 (A7)
G(Z) <0 do>0 d@o.g(T) =0 (A.8)

and point Zj is the so-called “saddle” point of function (A.2), i.e. the Lagrange
function reaches at this point its minimum resp. maximum with respect to variables
Z resp. @ and based on (A.8) it holds that F'(Zy) = f(#), and so Zy is obviously the
sought optimum of the criterion function f in the area delimited by the constraints
in the inequalities.

The saddle point of function (A.2) can then be obtained by solving a set of
n + m non-linear equations with n 4+ m variables specified by the scalar products
(A.7), (A.8) with the following Jacobian matrix:

H E
— A.
J {F G} (4.9)
o or or
Oxy o oz? o 0x10z,
H= : " :
0%F oF 0*F
0x,011 oz, 0x2
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. 99 . 09m
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g1 ... 0
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For % # 0 and g; # 0 the Jacobian matrix is clearly regular, and so there

exists an unambiguous solution to the set of equalities based on the fixed point
theorem.

Appendix B

Fig. 8 displays the content of individual sub-dimensions of intelligent buildings (and
files of intelligent buildings), reflecting the theoretical and practical perspectives
of the composition and expressing its significance. Our contribution focused on
the solution of the “intelligence” of the outer building — a smart micro-network,
as the basic premise of sustainable energy solutions with maximum efficiency of
constructing the intelligent buildings complex in the selected metropolitan area.
In connection with the integration of energy in the building at the level of in-
telligent buildings, there exists a control center in the context of the third level
of integration links. This control center then performs monitoring and energy
management as well as prediction and optimization with databases of planned
consumption of commodities used in confrontation with the state and later its ad-
justments so that everything integrates towards strict efficiency and proposals for
possible diagram revisions. Sustained and sustainable construction in the context
of sustainable energy integrates towards energy quality, which is one of the funda-
mental factors in the design of intelligent buildings. The standard of a passive or
low-energy house is universal thanks to focusing on purely functional requirements,
which can be reached everywhere in a natural way through a high potential for en-
ergy savings. This is a condition defining sustainable energy. Buildings account for
roughly half of the total energy consumption, i.e. about a half share in causing the
greenhouse effect due to nitrogen oxide emissions. Therefore projects, construction
work and operation of buildings for people is vital now as well as in the future.
This of course applies to all, both old and new, buildings. A shared feature should
be the general compliance with the formulated sustainability requirements, which
in addition to the IAQ and low production of pollutants of all kinds and power
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Fig. 8 Ezpression of the process model and intelligent building structures (Adapted
from [3]).

relations may also include social and economic factors. Sustainability in construc-
tion is a solution that meets the needs of the present without compromising the
ability of future generations to meet their needs, and this also applies to energy.

The basic condition for sustainable energy is the application of new sources of
renewable energy. The problem of energy efficiency, which takes into account the
massive deployment of information technologies in the transmission and distribu-
tion of energy with its own power generation, energy storage, energy consumption
and interaction with intelligent micro-networks, is to dynamically manage energy
demand and/or production. This problem may be addressed by including it into
the process of an intelligent building or a complex of intelligent buildings, in other
words, we are talking about intelligent solutions outside of buildings. This repre-
sents broad multidisciplinary process which addresses the issues of life and human
habitation and not only the solution of the specific energy problems - i.e. a process
which seeks to deal with these issues in a broad context.

The complex of intelligent buildings is an example of smart grids in the process
of electricity demand in the micro-network of an experiment with several intelli-
gent buildings. Management of renewable energy in the distribution of intelligent
micro-networks and accumulators in real time, including the optimization of energy
management systems such as HEMS, BEMS, etc., are the basic characteristics of
the problem that we solve in our experiment.

Efficient use of electricity on the demand-side, efficiency of its use and its di-
versification in the application of energy management is a prerequisite for reducing
the cost characteristics. One problem in the implementation of decentralized ac-
cumulation of resources is the matter of their instability and the complexity of
management of the electricity from the grid.
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The basic characteristic of intelligent micro-networks is the use of nuclear en-
ergy, as well as solar, wind and geothermal energy. Another condition is the highly
efficient transfer of energy (UHV, superconducting lines), and electricity transmis-
sion on demand instead of eccentrically localized renewable sources. Harmonized
management of intelligent micro-networks with smart distribution grids (Smart
Grids) is an environment in the near future which is both logical and targeted.
The reason for such a complex solution is to reduce the consumption in kWh, re-
sulting in a reduction in consumption and peak demand. Savings can vary from
20% to 40%. Furthermore, this includes network balancing, i.e. diverting, shaping
and shifting of demand. This allows additional potential savings of 10 to 20% of
production costs.

The driving forces of “smart” power are optimization and network balancing.
Besides tariff flexibility, we can achieve network balancing and so reduce costly
investments in new power plants, increase the quality of energy and efficiently
utilize renewable energy sources. We estimate, based on our experiment, that for
instance a 5% reduction in peak power consumption during a crisis period may
reduce the maximum wholesale price by almost 50%.

Through our experiment, the importance of optimization and the optimization
task of reducing the cost of supply of electricity algorithms are underlined. This
will enable the construction of intelligent building environments at the level of
Smart grids and Smart micro-grids.

Currently, for instance in Europe there is a large amount of unusable oppor-
tunities to achieve energy savings. This is another problem, which is discussed
and resolved by this submission at the level of the mentioned external intelligent
building, as shown in Fig. 8.
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