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RNA-seq by poly(A) selection is currently the most common protocol for whole transcriptome sequencing as it provides a

broad, detailed, and accurate view of the RNA landscape. Unfortunately, the utility of poly(A) libraries is greatly limited

when the input RNA is degraded, which is the norm for research tissues and clinical samples, especially when specimens are

formalin-fixed. To facilitate the use of RNA sequencing beyond cell lines and in the clinical setting, we developed an exome-

capture transcriptome protocol with greatly improved performance on degraded RNA. Capture transcriptome libraries

enable measuring absolute and differential gene expression, calling genetic variants, and detecting gene fusions.

Through validation against gold-standard poly(A) and Ribo-Zero libraries from intact RNA, we show that capture

RNA-seq provides accurate and unbiased estimates of RNA abundance, uniform transcript coverage, and broad dynamic

range. Unlike poly(A) selection and Ribo-Zero depletion, capture libraries retain these qualities regardless of RNA quality

and provide excellent data from clinical specimens including formalin-fixed paraffin-embedded (FFPE) blocks. Systematic

improvements across key applications of RNA-seq are shown on a cohort of prostate cancer patients and a set of clinical

FFPE samples. Further, we demonstrate the utility of capture RNA-seq libraries in a patient with a highly malignant solitary

fibrous tumor (SFT) enrolled in our clinical sequencing program called MI-ONCOSEQ. Capture transcriptome profiling

from FFPE revealed two oncogenic fusions: the pathognomonic NAB2-STAT6 inversion and a therapeutically actionable

BRAF fusion, which may drive this specific cancer’s aggressive phenotype.

[Supplemental material is available for this article.]

Despite advances in tissue preservation and handling, it remains a
challenge to obtain RNA of sufficient integrity from clinical spec-
imens (Medeiros et al. 2007; Turashvili et al. 2012). Oncological
tissues procured via needle core biopsies and preserved as forma-
lin-fixed paraffin-embedded (FFPE) blocks remain problematic
for the most commonly used RNA-seq protocols (Lister et al.
2008; Mortazavi et al. 2008; Nagalakshmi et al. 2008), which con-
trasts with their routine use in cell lines. Due to the utility of ex-
pression profiles in the diagnosis, prognosis, and therapy of
cancer, there is a growing clinical need for methods that produce
reliable data from samples that vary in source material and quality
(Bittner et al. 2000; Armstrong et al. 2002). To date, no protocol
has been shown to robustly and accurately measure absolute
gene expression from degraded RNA, which has impeded the use
of RNA-seq to profile the expression of clinical samples. As neither
mRNA enrichment “poly(A)” nor rRNA depletion “Ribo-Zero”
(Zhang et al. 2012) libraries can be reliably generated from degrad-
ed and cross-linked RNA, novel protocols are needed to unlock

these valuable data for precisionmedicine approaches or retrospec-
tive studies.

An alternative approach is to directly select for known tran-
scripts using complementary capture probes. Direct target enrich-
ment protocols were initially designed to capture the exome from
the total genomic DNA for the purpose of cost-effective clinical
resequencing (Choi et al. 2009) and were next adapted for cDNA
targets (Ravo et al. 2008; Ueno et al. 2012). In capture sequencing,
each transcript of interest is targeted with an excess of probes at
multiple positions, which makes transcript recovery possible
even if the poly(A) tail was lost. Recently, targeted RNA sequencing
was suggested as a method to comprehensively sample low-abun-
dance isoforms (Mercer et al. 2012; Halvardson et al. 2013; Fu et al.
2014) and even measure gene expression (Cabanski et al. 2014).
However, the recommendation of a novel transcriptome profiling
protocol for routine use in a clinical or research setting requires
careful examination of its relativemerits on awide range ofmetrics
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(Mullins et al. 2007; Zeng and Mortazavi 2012; Adiconis et al.
2013; Zhao et al. 2014). It is critical that the recommendedmethod
is largely compatible with poly(A) RNA-seq and Ribo-Zero libraries
as these are most commonly used for research and by The Cancer
Genome Atlas (TCGA) (The Cancer Genome Atlas Research
Network 2008).

Results

We developed the exome-capture (short “capture”) RNA-seq li-
brary preparation protocol as amodification to our clinical poly(A)
selection (short “poly(A)”) RNA-seq procedure (Fig. 1A). The proto-
cols share a number of steps but differ at two important stages
(Methods). Briefly, for poly(A) selection, oligo(dT) beads are used
at the beginning of the workflow to enrich for spliced and polya-
denylatedmRNAs. This step is omitted for capture transcriptomes;
for which, alternatively, enrichment is done after the main enzy-
matic steps of library construction. Unique to capture transcrip-
tomes is an overnight capture reaction (RNA-DNA hybridization)
using exon-targeting RNA probes, followed by a washing step,
and an additional set of PCR cycles. After the final PCR reaction,
both types of libraries are ready for clustering on an Illumina
flow-cell (Fig. 1A).

Concordance of capture and poly(A) transcriptomes

from intact RNA

To assess the similarity, consistency, and efficiency of transcrip-
tomes obtained using the exome-capture and poly(A)-selection
protocols, we prepared a total of 12 libraries (technical triplicates)
fromperfectly intact RNA (RIN 10.0, RNA degradation level 0) (Fig.
1B; Supplemental Fig. S1). Total RNA was extracted from VCaP
prostate cancer cells treated with dihydrotestosterone (DHT) or

enzalutamide (MDV3100, short MDV). First, we looked at align-
ment rates and the degree of strand-specificity (Parkhomchuk
et al. 2009; Levin et al. 2010), or “strandedness.”We found that li-
braries fromboth protocols have high and reproducible alignment
rates (∼85%) and almost perfect strandedness (Fig. 2A). Next, we
computed genomic distributions of the aligned fragments to gauge
the on-target performance of the protocols. For both protocols, at
least 95% of all aligned fragments were shown to overlap known
exons (Fig. 2B, left). Since the reference genome does not include
rRNA coding loci, we conclude that the protocols are equivalent
in providing approximately the same number of useful reads for
a given depth of sequencing.

We estimated the amount of rRNA by aligning reads to the
rRNA precursor sequences (Methods). Positive selection for
poly(A) is an efficient method for the removal of rRNA sequences
as these are never polyadenylated. As expected, poly(A) libraries
were found to be virtually free of rRNA (<1%), while capture librar-
ies were found to contain ∼10% rRNA (Fig. 2C), which makes
them superior to those from alternative RNA-seq protocols, e.g.,
DSN (40%) and Ribo-Zero (23%) in Langevin et al. (2013)
(Supplemental Fig. S2). In contrast, enrichment using oligo(dT) in-
troduces a strong and reproducible 7.5-fold overrepresentation of
adenine homopolymers (Fig. 2D). In total, the genomic origin
can be determined for 95% of reads from capture compared to
<90% from poly(A) libraries.

Next, we computed the overlap between poly(A) and capture
libraries for detectably expressed genes and single nucleotide vari-
ants (SNV) within all exons (Fig. 2E; Methods). The majority of
genes, 80% (over 11,000 genes), can be detected in both, 15%
(2452 genes) are unique to poly(A), and 4.5% (688 genes) are
unique to capture libraries. Conversely, of the total 14,271 vari-
ants, 6% (857) were unique to poly(A) and 12% (1646) to capture.
Protein coding genes are currently themost clinically relevant and
actionable gene “biotype” (Harrow et al. 2012), while noncoding
RNAs are emerging as robust biomarkers. To test whether these
are adequate, we tallied aligned reads in capture, poly(A), and
Ribo-Zero libraries by gene biotype (Fig. 2F).Weobservedno differ-
ences in the proportion of reads originating from protein coding
genes between poly(A) and capture. Compared to poly(A), capture
libraries contained more reads from long noncoding RNAs.

In summary, capture and poly(A) transcriptomes from identi-
cal and intact RNA are similar. They cover similar genomic regions
and detect overlapping sets of SNVs. Differences in coverage are
observed within introns, intergenic regions, and for non-protein-
coding genes. As expected, noncoding genes are mostly nonpolya-
denylated and are enriched in Ribo-Zero libraries (Cui et al. 2010).
Importantly, capture transcriptomes are more sensitive in calling
variants within exons (Fig. 2B, right; Fig. 2E).

Quantitative gene expression profiles from exome-capture

transcriptomes

Next, we sought to establish whether capture transcriptomes pro-
vide precise estimates of absolute gene expression. We tested
whether quantification was limited to genes included in the probe
design (Methods) and found that genes that are captured are de-
tected at the same rate in poly(A) and capture libraries (∼11,000
in VCaP), whereas genes (∼2000 in VCaP) that are not captured
are largely missing. Hence, we decided to focus all subsequent
quantitative analyses on the captured genes.

First, we benchmarked the protocols in terms of technical re-
producibility and found that both show excellent agreement

Figure 1. The exome-capture transcriptome protocol. (A) Flow-chart of
library preparation protocols. Steps unique to each protocol are highlight-
ed. Enrichment for mRNA occurs at the RNA or cDNA stage, respectively,
for poly(A) and capture RNA-seq. (B) Controlled in vitro degradation
through cell lysis and warm incubation. VCaP cells were treated with
DHT or MDV3100. Intact RNA, RNA integrity number (RIN) 10, was ex-
tracted, and libraries were prepared in technical triplicates. In parallel,
RNA was degraded by warm incubation for increasing amounts of time.
Paired poly(A) and capture libraries were prepared from the same RNA
at each degradation level.
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(Supplemental Figs. S3, S4). We also plotted mean-variance trends
(Supplemental Figs. S5, S6) and expression-level histograms
(Supplemental Fig. S7) and found, respectively, no significant dif-
ferences in variability and dynamic range between the two library
types. We compared the distributions of gene expression levels
from capture, poly(A), and Ribo-Zero libraries using Q-Q plots
and observed only small deviations for the most highly expressed
genes (Fig. 3A).

Finally, we directly compared expression estimates between
capture and poly(A) libraries (Fig. 3B) and found them in very

good agreement across the full dynamic
range of gene expression levels. We find
that expression estimates from both li-
brary types are within a factor of two for
the majority of genes (>87%). Genes
with higher expression levels in the cap-
ture libraries were identified as histones
and small nucleolar RNAs (Fig. 3B;
Supplemental Table S1), which was re-
ported for Ribo-Zero and DSN libraries
(Miller et al. 2013; Zhao et al. 2014) and
is explained by their unique biology:
Histone mRNAs in metazoans are not
polyadenylated (Yang et al. 2011), while
polyadenylation of snoRNAs is a signal
for their degradation (LaCava et al.
2005). A small number of genes were
found to be underestimated in capture li-
braries. The majority of those were inad-
equately captured (see below).

Next, we focused on quantitative es-
timates of differential gene expression.
To identify androgen receptor (AR)-regu-
lated genes, we estimated log2 fold-
changes (Smyth 2005; Law et al. 2014)
between dihydrotestosterone- and enza-
lutamide-treated cells (Methods). Both
the estimated log2 fold-changes (Fig.
3C) and differential expression P-values
(Supplemental Fig. S8) are in excellent
agreement between capture and poly(A)
libraries. The log2 fold-changes estimated
from both protocols match closely across
10 orders ofmagnitude (Fig. 3C), while P-
values of differential expression are pre-
cise even for genes with small effect sizes
(Supplemental Fig. S8). Known AR tar-
gets were found among the most up-
and down-regulated genes including
TMPRSS2 (>10-fold up) andMYC (greater
than twofold down) (Supplemental
Table S2). We see no evidence of satura-
tion. For example, the gene PGC is esti-
mated to be induced 824-fold in the
poly(A) libraries compared to 1096-fold
in the capture libraries (Fig. 3C).

Recent studies have revealed com-
plex biases inherent to RNA-seq. We de-
cided to look into the most common
sources of bias in RNA-seq libraries: GC
content (Risso et al. 2011) and gene
length (Oshlack and Wakefield 2009),

and also a factor unique to capture libraries, the “capture ratio,”
i.e., the percentage of targeted exonic bases. Our results indicate
that capture efficiency is not significantly biased by GC content
(Fig. 3D), gene length (Fig. 3E), or capture ratio (Fig. 3F). Only mi-
nor trendswere revealed; a small proportion of genes with low cap-
ture ratio (<25%) were inadequately captured, resulting in the
underestimation of their expression levels (Fig. 3F). Conversely,
long genes are underestimated in poly(A) libraries (Sigurgeirsson
et al. 2014), which can be attributed to a loss of 5′ transcript
ends clearly present even in RIN 10RNA (Fig. 3E). Altogether, these

Figure 2. Similarity of poly(A) and capture transcriptomes from intact RNA. Properties of fragments
from both types of libraries. Separate bars (colors) for each replicate in A,C,D. (A) Alignment rates and
library strand-specificity (% fragments aligned to the transcribed strand). (B) Types of genomic alignment
regions by fraction of assigned fragments and fraction of discovered variants. (C) Efficiency of rRNA
depletion (% fragments aligning to ribosomal RNA). (D) Overrepresentation of poly(A) and poly(T) hex-
amers. (E) Global concordance of detected genes and called variants within all exonic regions. (F )
Fraction of assigned reads by biological gene category.
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results suggest that exome-capture RNA-seq provides precise and
largely unbiased estimates of gene expression for the majority of
captured genes.

Improved performance of capture libraries from

low-quality RNA samples

Our initial experience with capture RNA-seq libraries accrued
through the clinical MI-ONCOSEQ project (Roychowdhury et al.
2011) indicated their improved performance for fusion calling
and greater reliability in samples of low RNA quality. To test this
rigorously, we performed controlled in vitro degradation of RNA
(Fig. 1B) by preparing paired capture and poly(A) libraries at in-
creasing levels of RNA degradation (RIN 2–9) (Fig. 1B; Supplemen-
tal Fig. S1; similar to Thompson et al. 2007; Opitz et al. 2010;
Sigurgeirsson et al. 2014).

To detail how RNA degradation affected estimates of gene ex-
pression, we first compared degraded (level 7) capture, Ribo-Zero,
and poly(A) libraries with reference poly(A) transcriptomes (level
0).We observed good agreement (R > 0.85) for themajority of pair-
wise comparisons (Fig. 4A; Supplemental Fig. S9). Importantly, the
highest correlationwith reference poly(A)was observed for degrad-
ed capture, not poly(A), transcriptomes (R = 0.96). Degraded sam-
ples correlated less well, which suggests that degradation is
associated with significant technical variability. To assess this fur-
ther, we quantified the average variability of gene expression (co-
efficient of variation, CV) across libraries from the same RNA but
a range of degradation levels (Fig. 4B). As expected, we found
that capture libraries were significantlymore precise (less variable).

We performed unsupervised clustering of DHT- and MDV-treated
samples to assess whether technical variation from RNA degrada-
tion obscured biological differences (Fig. 4C). If technical variation
is sufficiently low, samples will cluster by treatment “DHT/MDV”
and not by RNA quality “(0–9).” This was the case for capture li-
braries, which partitioned by treatment first and RNA quality sec-
ond. On the contrary, poly(A) libraries were inadequately
controlled and clustered predominantly by RNA quality, obscur-
ing the treatment (Fig. 4C). Next, we assessed the impact of RNA
degradation on the sensitivity of calling SNVs. For each sample,
we computed the fraction of SNVs that were successfully detected
(Fig. 4D; Methods). We observed that the recall of variants rapidly
declined with RNA degradation for poly(A) but not for capture li-
braries (Fig. 4D). We reasoned that the poor performance of
poly(A) libraries is likely due to a decrease in coverage of the variant
positions. To test this, we computed the fraction of unique frag-
ments (Fig. 4E) and the distribution of fragments along the gene
body (Fig. 4F). As expected, we found that library complexity
was negatively correlated with RNA quality. The deterioration
was relatively mild in capture libraries but very strong in poly(A)
libraries, for which up to ∼90% of the fragments were duplicates
(Fig. 4E). Uniformity of fragment distribution and coverage along
the gene body is critical for identifying full-length transcripts and
calling variants at the 5′ or 3′ transcript ends.We found that intact
poly(A) samples have a 3′ bias (Fig. 4F), which, as reported previ-
ously (Popova et al. 2008; Opitz et al. 2010; Sigurgeirsson et al.
2014), is associated with degradation. Conversely, capture libraries
have higher coverage at the 5′ end, and gene coverage is robust to
RNA degradation. This bias is “by design” since hybridization

Figure 3. Agreement of absolute and differential gene expression. Expression levels were quantified by counting the number of aligned fragments within
captured exonic regions and converted to the log2 of counts per million (log2[cpm]). Treatment log2 fold-changes were estimated through linear mod-
eling. (A) Pairwise Q-Q plots comparing the distributions of gene expression levels. (B) Agreement of absolute levels of transcript abundance log2(cpm).
(C) Agreement of differential gene expression between DHT-treated and ablated cells (MDV treatment) (log2 fold-changes). (D–F) Observed differences
between capture and poly(A) expression estimates are not driven by GC content, gene length, or fraction of exon bases with target probes.
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probes are placed infrequently within long 3′ UTR regions
(Supplemental Fig. S10).

Finally, we compared the two library types for their ability to
detect splice junctions and gene fusions. We quantified the cover-
age of known splice junctions as a proxy for their likelihood of
being de novo discovered (Fig. 4G). We found that the coverage
of splice junctions was highest in capture libraries independent
of RNA quality. Next, we assessed whether the differences in splice
junction coverage actually influenced our ability to detect
TMPRSS2-ERG, a known gene fusion (Tomlins et al. 2005). In
DHT-treated samples, TMPRSS2-ERG is induced and expressed at
a very high level. Correspondingly, the fusionwas detected regard-
less of RNA quality and library type (Fig. 4H, left). In MDV (bicalu-
tamide)-treated samples, where TMPRSS2-ERG is repressed, the
fusion was reliably detected in all capture libraries, but only two
out of seven degraded poly(A) libraries (Fig. 4H, right).

Application of capture transcriptomes in a rapid autopsy

prostate cancer cohort

To confirm the in vitro results in a clinical setting, we extended
the evaluation of capture RNA-seq to flash frozen tissue and FFPE
blocks from an autopsy cohort of 13 prostate cancer patients.
We sequenced a total of 29 samples divided into three types

of libraries: capture FFPE, capture frozen, and poly(A) frozen
(Supplemental Table S3). Chiefly, wewanted to establish if capture
FFPE allowed for precise estimates of gene expression and whether
the capture protocol provided a substantial improvement over
poly(A) in frozen samples.

To begin with, we probed if the patient libraries were suffi-
ciently depleted of ribosomal RNA (Fig. 5A). Levels of rRNA were
found to be variable (2%–24%) in capture libraries and, as expect-
ed, very low (∼1%) in poly(A) libraries. As previously reported for
Ribo-Zero (Zhao et al. 2014), we observed that capture libraries
from FFPE contained significantly less rRNAs compared to libraries
from frozen tissue. The lower rRNA content was also reflected in
higher alignment rates (Fig. 5B). We developed a compound mea-
sure of library quality, which we term “fragment diversity.” This
normalized score is sensitive to library complexity, 3′ bias, cover-
age, and insert size (Methods). We found capture libraries to be
more diverse (P-value < 1 × 10−16) than poly(A) in frozen tissue
(Fig. 5C). As anticipated, FFPE libraries were of lowest quality due
to their limited size distribution (Supplemental Fig. S11) and com-
plexity (Supplemental Fig. S12).

We next assessed the consistency of gene expression between
matched libraries from the same patient. For one patient, all three
library types were made, including duplicates of capture FFPE.
Technical reproducibility of capture FFPE libraries was very high

Figure 4. Improved performance of exome-capture transcriptomes from low quality RNA samples. (A) Correlation of absolute levels of gene expression
(log2[cpm]) between a reference library from intact RNA (poly[A] level 0) and libraries from degraded RNA (level 7). (B) Impact of RNA degradation on gene
expression accuracy measured as the average coefficient of variation (CV)—larger values indicate more variable measurements. (C) Impact of expression
accuracy on the unsupervised clustering of samples with biological differences confounded by technical variation. (D) Sensitivity of detection of single
nucleotide variants in libraries of varying RNA quality. (E) Library complexity estimated as the percentage of unique (nonduplicate) fragments among
all counted fragments. (F,G) Assessments of uniformity of transcript coverage. (F ) Smooth density estimate of read start positions along the scaled gene
bodies (genes <10 kb were excluded). (G) Distribution of splice junctions by depth of coverage. (H) Sensitivity of detecting the TMPRSS2-ERG fusion (junc-
tion coverage).
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(R = 0.95), as was the correlation between capture FFPE and capture
frozen (R = 0.93). The capture frozen library was in excellent agree-
ment with the poly(A) frozen library (R = 0.93), despite systematic
differences in read distribution (Supplemental Fig. S13). Next, we
compared matched libraries from all cohort patients. We observed

high correlations (R > 0.80) for all but
two comparisons (Fig. 5D) and only
small differences in variability between
the types of compared libraries. The cor-
relation of capture and poly(A) libraries
was as good as the correlations between
frozen libraries (Fig. 5D). Libraries from
FFPE were also highly correlated with li-
braries from frozen tissue, irrespective of
frozen library type. In summary, useful
gene expression data was obtained from
all frozen and all but one FFPE samples.

Finally, we compared capture and
poly(A) libraries in terms of their ability
to call variants (SNVs) and detect fusions
from frozen clinical samples. For each
patient, we computed the number of var-
iants (Fig. 5E) and fusions (Fig. 5F) found
in either library type. Informing our in
vitro cell line results (Fig. 4D,H), we
found that SNV calling was more sensi-
tive in capture libraries, with thousands
of variants called reliably only in capture
libraries. Similarly, we nominated signif-
icantly more candidate fusions in cap-
ture libraries. Since fusion junctions are
likely artifacts if they are supported by a
small number of fragments, we also cal-
culated the average number of spanning
reads per junction (Fig. 5G). We found
that fusions in capture libraries had
threefold higher read support. The ETS
gene family fusions are detected in over
50% of prostate cancer patients (Tomlins
et al. 2005). We detected one of the ETS
fusions (Supplemental Fig. S14A) in
four out of eight (50%) patients from fro-
zen capture compared to three from poly
(A) (Fig. 5H). Importantly, the junction
read support was significantly higher
for capture libraries (Fig. 5H). These
data are consistent with our observations
from anti-androgen-treated VCaP cells
(Fig. 4H), considering that many prostate
cancer patients receive anti-androgen
treatment.

Capture transcriptomes for robust

fusion discovery from FFPE

To determine the sensitivity of capture
for the detection of fusions from FFPE,
we prepared matched capture and Ribo-
Zero libraries for nine patient samples
with putative oncogenic fusions. First,
we assessed transcriptome coverage and
uniformity by comparing numbers of de-

tected splice junctions (Fig. 5I). Coverage of Ribo-Zero libraries was
poor on average and inconsistent across samples, whereas capture
libraries showed excellent reproducibility. Next, we looked at the
total number of putative fusions. For all patients, significantly
more fusions were nominated in capture libraries (Fig. 5J). To

Figure 5. Assessment of capture transcriptomes from clinical frozen and FFPE samples. (A–C)
Comparative analysis of paired capture and poly(A) libraries (grouped by patient) derived from FFPE
blocks and frozen tissue: (A) efficiency of rRNA depletion; (B) alignment rates; (C) fragment diversity
(FD)—a compound measure of transcriptome quality sensitive to coverage, complexity, and insert
size; more complex and well-covered libraries have higher FD values. (D) Within patient correlation of
gene expression (log2[cpm]) by library type (poly(A) vs. capture) and source material (frozen vs.
FFPE). (E,F) Sensitivity of libraries for detecting genetic changes by patient from frozen libraries: (E) num-
ber of called variants; (F ) number of called candidate fusions. (G,H) Robustness of fusion detection: (G)
average read support per fusion; (H) number of supporting reads for each cohort patient with the
TMPRSS2-ERG fusion detected. (I,J) Paired capture and Ribo-Zero libraries from FFPE: (I) number of de-
tected splice junctions; (J) number of called candidate fusions. (K ) Selected candidate oncogenic fusion
for each patient (read support).
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assess the clinical implications, we identified a knownor candidate
oncogenic fusion for each patient and counted the number of
reads spanning the chimeric junction (Fig. 5K). Critically, the on-
cogenic fusion was detected in only three of nine Ribo-Zero librar-
ies and with lownumber read support. Robust detection of fusions
is necessary if driver fusions are functional at a low level of expres-
sion, such as EML4-ALK (Soda et al. 2007) and BRAF (Tian et al.
2011) fusions. Previously, we have identified the NAB2-STAT6
fusion as the defining characteristic of solitary fibrous tumors
(SFT) (Robinson et al. 2013). An unusually aggressive case of SFT
was referred to us for clinical cancer sequencing as part of the
MI-ONCOSEQ program (Roychowdhury et al. 2011). The soft
tissue mass metastasized within 6 mo to the lungs (Fig. 6A), and
pathology revealed that the tumor lacked characteristics of SFT,
such as low mitotic rate, rich vascularization, and CD34+ spin-
dle-shaped cells. Mimicking a small cell sarcoma, it comprised
closely spaced sheets of uniform, small undifferentiated cells,
which were interspersed by rich vascular stroma and large zones
of necrosis (Fig. 6B). We readily detected the NAB2-STAT6 fusion
expressed at a very high level (over 2000 spanning reads) (Fig.
6C; Supplemental Fig. S14B). A more detailed look at the tran-
scriptome revealed an in-frame BBS9-BRAF fusion (Fig. 6D;
Supplemental Fig. S14B) with an intact kinase domain and recur-
rent truncation of the Ras binding domain (Poulikakos et al.
2011). Together, it is plausible that the BBS9-BRAF fusion is activat-
ing, contributes to the malignancy, and may be sensitive to either
sorafenib or MEK inhibitors (Palanisamy et al. 2010). In summary,
capture RNA-seq allows for robust yet unbiased detection of fu-
sions from clinical FFPE specimens including rare and lowly ex-
pressed fusions.

Discussion

Our data suggest that capture RNA-seq provides distinct advantag-
es over poly(A) and Ribo-Zero RNA-seq in the clinical setting. A
major difficulty in clinical RNA sequencing is the low quality of
RNA isolated from clinical fresh frozen and FFPE samples. We
and others have shown that even minimal RNA “nicking” has a
profound negative effect on poly(A) libraries that is not addressed
by the typical recommended threshold of RIN 8 (Zeng and
Mortazavi 2012; Sigurgeirsson et al. 2014). Capture libraries are
more robust to input RNA quality; splice-junctions, fusions, and
variants can be comprehensively detected in the most degraded
samples, while gene expression estimates remain precise and high-
ly concordantwith those frompoly(A) andRibo-Zero RNA-seq.We
expect that the better success rate of capture RNA-seq will further
the detection of expression signatures from frozen clinical samples
and FFPE specimens. In agreement with previous studies in cell
lines, we show on clinical specimens that target capture signifi-
cantly improves the sensitivity of gene fusion detection (Ueno
et al. 2012).

Limited amounts of starting material from clinical specimens
represent a barrier to complex transcriptomes (Gertz et al. 2012;
Ramsköld et al. 2012). We found that capture RNA-seq can accom-
modate the average RNA yields from five FFPE slides (0.5–40 µg),
which is sufficient for good coverage and complexity. Even
when frozen tissue is available, target capture outperforms poly
(A) for SNV calling, thanks to its excellent coverage and complex-
ity within coding regions (Zhao et al. 2014). Finally, capture RNA-
seq opens up the possibility for clinical expression profiling of
transcripts that are not predominantly polyadenylated, such as cir-
cular, enhancer, and long-noncoding RNAs.

Methods

Clinical samples

Samples were collected with informed consent and prior institu-
tional review board approval. Prostate tissues were from the radical
prostatectomy series and the Rapid Autopsy Program, which are
both part of the University of Michigan Prostate Cancer
Specialized Program of Research Excellence (SPORE) Tissue Core.
The solitary fibrous tumor sample was obtained as archival tissue
FFPE blocks. All CPRC specimens were obtained at rapid autopsy
from men who died of lethal castrate resistant metastatic disease.
Hematoxylin and eosin (H&E)-stained FFPE and frozen sections
were reviewed to identify blocks with highest tumor content, a lev-
el was taken for H&E staining, and consecutive 3 × 10 µm sections
were cut for RNA isolation. All H&E-stained levels were reviewed to
confirm tumor/normal content before RNA isolation. RNAwas iso-
lated using the Qiagen RNeasy FFPE kit (cat. no. 73504).

Figure 6. Clinically relevant gene fusions from FFPE in a case of solitary
fibrous tumor. (A) MRI of the spine reveals a spinal canal mass with extra-
dural extension from T10–T12withmass effect and compression along the
spinal cord (arrowhead). Recurrent disease caused cord compression at
the T12–L1 right neural foramen. (B) The tumor mass comprises sheets
of highlymitotic undifferentiated cells with rich vascular stroma and exten-
sive zones of necrosis (upper left). High-power micrograph (bottom) illus-
trates the cytological features of pleomorphic small round cells with ill-
defined eosinophilic cytoplasm, prominent nucleoli, and numerous mitot-
ic figures (arrow). (C) NAB2-STAT6 is the defining oncogenic fusion in SFT.
The trans-activating domain of STAT6 is highlighted in red, the EGR1 bind-
ing domain of NAB2 in green. (D) The BBS9-BRAF fusion is likely oncogenic
as it retains the kinase domain of BRAF (yellow) and has a truncation of the
Ras binding domain. BRAF fusions are typically expressed at a lower level,
and this rearrangement was detected with 16 reads.
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Cell culture

The immortalized prostate cancer VCaP cell line was obtained
from the American Type Culture Collection and was grown in
DMEM (Invitrogen) and supplemented with 10% fetal bovine se-
rum (FBS) with 1% penicillin-streptomycin. Before the treatments,
cells were grown in androgen-depleted media lacking phenol
red and supplemented with 10% charcoal-stripped serum and
1% penicillin-streptomycin. After 24 h, cells were treated either
with androgen (1 nM 5α-dihydrotestosterone) or anti-androgen
(enzalutamide). Cells were harvested for RNA isolation at 24 h
post-treatment. RNA was isolated using the Qiagen AllPrep kit
(cat. no. 80404).

RNA degradation

For controlled in vitro RNA degradation, after harvesting cells were
frozen and thawed two times. The whole-cell lysate was incubated
at 37°C for increasing amounts of time from 5 min to 6 h, after
which RNA integrity was measured (Supplemental Fig. S1) and
RNA was isolated as for the intact libraries.

Library preparation and sequencing

Details of the capture RNA-seq and poly(A) RNA-seq library prepa-
ration protocols are provided as SupplementalMaterial. Briefly, for
capture libraries, we start with 0.1–3 µg of total RNA and proceed
through first-strand synthesis, second-strand synthesis, end repair,
A-tailing, adapter ligation, size selection on a 3% agarose gel, uri-
dine digestion, hybridization to capture probes, washing, and a fi-
nal PCR step. The stranded capture and poly(A) libraries were
sequenced on an Illumina HiSeq 2500 using V3 chemistry.

Alignment

All the paired-end reads were aligned to the human reference
GRCh37 augmented by splice junctions from Ensembl (Flicek
et al. 2012) 75 using STAR 2.3 (Dobin et al. 2013) with default set-
tings in two-pass alignment filtering mode “–outFilterType
BySJout.”Only primary alignments were kept, duplicate fragments
were marked using SAMtools (Li et al. 2009), and BAM files were
sorted using novosort (http://www.novocraft.com/products/
novosort/). The number of reads spanning each splice junction
was obtained from the “SJ.out.tab” file provided by STAR.

Fragment quantification

All fragment quantifications were computed using featureCounts
(Liao et al. 2013) (in stranded “-2,” paired-end, and “intersection_
nonempty” mode) (Anders et al. 2015). Briefly, in this method a
fragment is assigned to a gene if it overlaps features of that gene
only. Features are typically exons, and this definition was used
for defining which genes are expressed (Figs. 2E, 3A). We also de-
fined features as the genomic intersection between reduced/flat-
tened exons (GenomicRanges) (Lawrence et al. 2013) and the
captured regions. The latter definition was used for quantification
of absolute and differential gene expression levels. Ensembl 75 an-
notations for exon type (“CDS” or “UTR”) and gene “biotype”
(“protein_coding,” etc.) were used for all quantifications.

Strand-specificity (strandedness)

To estimate the strandedness of the library, the total number of
assigned reads was counted for the correct “-s 2” and for flipped
“-s 1” orientation, and strandedness was computed as: correct/
(correct + flipped).

Ribosomal content

To estimate the fraction of ribosomal RNA (rRNA) fragments
in each library, we aligned reads (using STAR) to a small reference
including ribosomal sequences (NR_003286.2, NR_003287.2,
NR_023379.1, NR_003285.2, NR_046235.1). The fraction of
rRNA was estimated from the number of fragments aligning to
the ribosomal reference from a random sample of 1 million frag-
ments from each library.

Gene expression

Counts for each gene were transformed into cpm (counts per
million) values using the “voom” (Law et al. 2014) function. To
identify differentially expressed genes and calculate log2 fold-
changes between the triplicate DHT- and MDV-treated libraries
or capture and poly(A) libraries (see experimental design, Fig.
1B), we employed the standard limma (Smyth 2005) approach
with cpm+ precision values as input, with all default parameters.
For calculations of dynamic range (Supplemental Fig. S7), frag-
ments per kilobase per million (FPKM) were calculated using
edgeR (Robinson et al. 2010) and gene lengths as reported by
featureCounts.

Sub-exon path calculations

Tools necessary for the following computations were released as
part of the sepath package (https://github.com/mcieslik-mctp/
sepath/) implemented using the HTSeq library (Anders et al.
2015). These tools allow for the analysis of RNA-seq data in terms
of sub-exon paths, as in casper (Rossell et al. 2014).

Fusion detection

We used two different fusion callers for the analyses presented
in this manuscript. For the patient samples, we used our
MI-ONCOSEQ pipeline, which is based on a modified version of
TopHat-Fusion (Kim and Salzberg 2011) version 2.0.4, GRCh37
(excluding unplaced contigs), Ensembl 66, with the follow-
ing nondefault settings “–keep-fasta-order –no-coverage-search
–fusion-min-dist 0 –fusion-anchor-length 13 –fusion-ignore-chro-
mosomes chrM.” For the cell line samples, we used FusionCatcher
(https://code.google.com/p/fusioncatcher/) 0.99.2b, GRCh37,
Ensembl 74, with all default settings.

Variant calling

Picard Tools (http://broadinstitute.github.io/picard) was used
to remove duplicates, sort, and index the BAM files. The
SplitNCigarReads tool in GATK (Van der Auwera et al. 2002;
McKenna et al. 2010; DePristo et al. 2011) version 3.1 was
used to split reads spanning splice junctions into exon segments
and to hard-clip the sequences overhanging into introns.
BaseRecalibrator, HaplotypeCaller, and VariantFiltration from
GATK3.1 were used to recalibrate, call variants, and filter the can-
didates based on Fisher Strand values (FS > 30.0) and Qual By
Depth values (QD < 2.0). We further applied filtering steps in
SNPiR (Piskol et al. 2013; Ramaswami and Li 2014) to removemis-
matches at 5′ read ends, sites in repeat regions (UCSC Genome
Browser), and sites in homopolymer runs, and to remove known
RNA editing sites. Repeat regions annotated by RepeatMasker
were obtained through the UCSC, and the known RNA editing
sites were downloaded from the RADAR database. ANNOVAR ver-
sion-2013-08-23 (Wang et al. 2010) was used for annotation based
on gene models from Ensembl.
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Data access

The cell line data (40 libraries) generated as part of this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE64113. Patient transcriptomes (30 libraries) are appended
to the database of Genotypes and Phenotypes (dbGaP; http://
www.ncbi.nlm.nih.gov/gap) study numbers phs000554.v1.p1
and phs000567.v1.p1.
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