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Abstract 

We propose the use of explicit proof plans to guide the search for a proof in automatic theorem 
proving. By representing proof plans as the specifications of LCF-like tactics, [Gordon et al 79], 
and by recording these specifications in a sorted meta-logic, we are able to reason about the 
conjectures to be proved and the methods available to prove them. In this way we can build 
proof plans of wide generality, formally account for and predict their successes and failures, 
apply them flexibly, recover from their failures, and learn them from example proofs. 

We illustrate this technique by building a proof plan based on a simple subset of the implicit 
proof plan embedded in the Boyer-Moore theorem prover, [Boyer & Moore 79]. 

Space restrictions have forced us to omit many of the details of our work. These are included 
in a longer version of this paper which is awilable from: The Documentation Secretary, De- 
partment of Artificial Intelligence, University of Edinburgh, Forrest Hill, Edinburgh EH1 2QL, 
Scotland. 

Key words and phrases. Proof plans, inductive proofs, theorem proving, automatic programming, 
formal methods, planning. 

1 Introduction 

In this paper we propose a new technique for guiding an automatic theorem prover in its search for 
a proof, namely the use of explicit proo/plans. This proposal was motivated by a current research 
project in the mathematical reasoning group at Edinburgh to develop automatic search control 
for the NuPRL program synthesis system~ [Constable et al 86], and it was inspired by an earlier 
project of the group on the use of meta-level inference to guide an equation solving system, PRESS, 
[Bundy & Welham 81]. 

NuPRL can prove theorems by mathematical induction. In fact~ inductive proofs are required for 
the synthesis of recursive programs: the type of induction used determining the type of recursion 
synthesised. In logic and functional programs, recursion is used in place of the imperative program 
constructs of iteration, eg while, until, do, etc. We are thus particularly interested in inductive 
proofs. The best work to date on the guidance of inductive proofs is that by Boyer and Moore, 
[Boyer & Moore 79]. Figure 1 contains a simple example of the kind of inductive proof found by 
their theorem prover. Hence, we have been adapting the techniques embedded in the Boyer-Moore 
theorem prover to the NuPRL environment, [Stevens 87]. 

In order to adapt the Boyer-Moore work we first need to understand why it works. Their program 
contains a large amount of heuristic information which is highly successful in guiding inductive 
proofs. However, the descriptions of these heuristics in [Boyer & Moore 79] are not always clear 
about why they are successful nor why they are applied in a particular order. Some heuristics are 
not appropriate in the NuPRL system, or require modification to make them appropriate. Thus it 
is necessary to rationally reconstruct the Boyer-Moore work in order to apply it to another system. 

But we want to go further than this. We want to give a formal account of the Boyer-Moore 
heuristics, from which we can predict the circumstances in which they will succeed and fail, and 
with which we can explain their structure and order. We also want to apply the heuristics in a flexible 

*I am grateful for many long conversations with other members of the mathematical reasoning group, from which 
many of the ideas in this paper emerged. In particular, I would like to thank Frank van Harmelen, Jane Hesketh 
and Andrew Stevens for feedback on this paper. The research reported in this paper was supported by SERC grant 
GR/D/44874 and AIvey/SERC grant GRID/44270. 
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way and to learn new ones from example proofs. To achieve these goals we intend to represent the 
Boyer-Moore heuristics in an explicit proof plan based on the ideas of me ta -hve l  inference. 

2 E x p l i c i t  P r o o f  P l a n s  

We are confident tha t  we can find such an explicit proof plan for a number  of reasons. We believe that  
human  mathematic ians  can draw on an armoury of such proof plans when trying to prove theorems. 
It is our intuit ion tha t  we do this when proving theorems, and the same intui t ion is reported by 
other experienced mathematicians.  One can identify such proof plans by collecting similar proofs 
into families having a similar structure, eg those proved by 'diagonalization'  arguments. Many 
inductive proofs seem to have such a similar s tructure (see section 4 below). With in  such families 
one can distinguish ' s tandard '  from ~interesting' steps. The s tandard ones are those tha t  are in line 
with the plan and the interesting ones are those tha t  depart  from it. The Boyer-Moore program 
proves a large number  of theorems by induction using the same heuristics. These proofs all seem to 
belong to the same family. 

The properties we desire of the proof plans tha t  we seek are as follows: 

• Use fu lness :  The plan should guide the search for a proof to a successful conclusion. 
o (genera l i ty :  The plan should succeed in a large number  of cases. 
• E x p e c t a n c y :  The use of the plan should carry some expectation of success, ie we ought to 

have some story to tell about  why the plan often succeeds, and to be able to use this to predict 
when it will succeed and when it will fail. 

• U n c e r t a i n t y :  On the other hand, success cannot be guaranteed. We will want to use plans 
in undecidabh areas, tf  our ability to predict its success or failure was always perfect then the 
plan would consti tute a decision procedure - -  which is not possible. 

• P a t c h a b i l i t y :  It should be possible to patch a failed plan by providing alternative steps. 
• L e a r n a b i l i t y :  It  should be possible automatically to learn new proof plans. 

The above properties argue for an explicit representat ion of proof plans with which one can 
reason. The reasoning would be used to account for the probable success of the plan under certain 
conditions (expectancy), and to replan dynamically when the plan fails (patchabili ty).  The explicit 
representation would enable plans to be learnt (learnability). The uncertainty property is discussed 
in section 7. 

We have chosen to represent our plans in a sorted meta-logic. This gives an explicit representation 
to reason with, and also allows the plans to be very general (generality), in contrast  to plans which 
are merely sequences of object-level rule applications. 

We now turn  to a detailed investigation of the Boyer-Moore heuristics in an a t tempt  to extract  
from them the explicit meta-level proof plan tha t  we require. 

3 A T y p i c a l  I n d u c t i v e  P r o o f  

In order to investigate the Boyer-Moore heuristics, it will be instructive to s tudy a typical proof of 
the kind tha t  these heuristics can construct.  Figure 1 is such a proof: the associativity of + over 
the na tura l  numbers. The first line is a s ta tement  of the theorem. Each subsequent line is obtained 
by rewriting a subexpression in the line above it. The subexpression to be rewrit ten is underlined 
and  the subexpression which replaces it is overlined. The (recursive) definition of + is given in the 
small box. 

The proof is by backwards reasoning from the s ta tement  of the conjecture. The first step is to 
apply the  s tandard ari thmetic induction schema to the theorem: replacing x by 0 in the base case 
and by s(x) in the induction conclusion of the step case. The equations consti tut ing the recursive 
definition of + are then applied: the base equation to the base case and the step equation to the 
step case. Two applications of the base equation rewrite the base case to an equation between 
two identical expressions, which reduces to true. Three applications of the step equation raise the 
occurrences of the successor function~ s, from their innermost  positions around the xs to being the 
outermost  functions of the induction conclusion. The two arguments  of the successor functions are 
identical to the two arguments  of = in the induction hypothesis. The induction hypothesis is then 
used to subst i tute  one of these arguments for the other in the induction conclusion, and the induction 
hypothesis is dropped. The two arguments  of the successor functions are now identical and reduce 
to true.  
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y ~ z y +  z =  

/ 
t . r ~  

1 
Definition of + t 

0 + y : y  
sCz) + v = s ( z  + 

w , ~ , ~  ~ + (~+  ~) = C.+  ~) + z 

w { v ~ ,  z ,,, + (~ + ~,) = (,~ + ~,) + ~, - - .  v~,, ~ 4 ~ )  + (~ + z) = (s(~) + ~) + ~}  

v~{vv, .  ~ + (y + . )  = (~ + v) + .  - -~  v v , . . ( ~  + (v + . ))  = s(~ + ~) + .} 

v~{vy, .  • + ( y +  . )  = ( ~ + y )  + .  ---, e v , .  4 ~  + (~ + - ) 1  = .((~ + y) + - ) }  

w v ~ , . . ( ~  + (~ + . ))  = s(~ + (v + .)) 

Figure 1: Proof of the Associativity of + 

4 S i m p l i f i e d  B o y e r - M o o r e  P r o o f  P l a n  

We can pick out the general aspects of the proof in figure 1, and the above explanation of it, by 
displaying the schematic proof of figure 2. This schematic proof captures the spirit of the Boyer- 
Moore heuristics in a very simplistic way. Some of the extensions required to capture the full power 
of their  theorem prover are discussed in the longer version of this paper. 

In figure 2 capital letters indicate meta-variables. For instance, X and Y range over variables, 
F ranges over functions, and A, B~, Ti, etc, range over terms. The difference between T(X) and 
T[X l is t ha t  the X in the round brackets signifies all occurrences of X in T whereas the X in the 
square brackets signifies some particular occurrence of X.  Thus T(Y) implies tha t  all occurrences 
of X are replaced by Y, whereas T[Y] implies tha t  only one occurrence is replaced. In bo th  cases 
the function or term may also contain variables other  than  X or Y. Note tha t  the round bracket 
notat ion is unsound if the normal rules for subst i tut ion are applied to it. This is discussed further  
in the longer version of this paper. 

Each arc is labelled with the name of the step tha t  justifies the rewriting. Following LGF, 
[Gordon et a/79], we call these steps tactics. A ~/s ign  beside a tactic indicates tha t  it is guaranteed 
to succeed, whereas a ? indicates tha t  it might fail. As in LCF, a tactic will be implemented as 
a program whose effect is to apply the appropriate rewritings to make the proof steps illustrated. 
However, whereas the primitive tactics provided in LCF apply only a small sequence of steps, we are 
also interested in designing tactics tha t  will automatically complete a whole proof, or a substant ial  
part  of it, ie we are also interested in proof strategies. 

Just  as in the associativity proof of figure 1, the first tactic is to apply induction. Note tha t  
the induction scheme used, corresponds to the recursive scheme used to define F and tha t  the 
induction variable to which it is applied is X, the variable in the recursive argument  position of 
F. The major Boyer-Moore heuristic is to generalize this link between induction and recursion to 
most commonly occurring recursive data-structures and forms of recursion over them. The idea is 
to use the occurrence of recursive functions in the conjecture to suggest what  induction scheme to 
use (one corresponding to the recursive structure of the function} and what  variable(s} to induce on 
(those t ha t  occur in the recursive argument position(s} of the function}. See [Stevens 87] for a more 
detailed analysis and rat ional  reconstruction of this heuristic. 

The equations tha t  recursively define F are then applied to the base and step cases of the resulting 
formula, using the tactics take-out and ripple-out, respectively. The  base case is simplified by this, 
but  not  solved as in the associativity proof. In the step case the occurrences of s are raised from their  
innermost  positions to the outermost positions in the  induction conclusion. The ripple-out 1 tactic 
does this using repeated applications of the step case of the recursive definition. This application 
of ripple-out is not guaranteed to succeed because the terms 2"1, T2 and B might  not be of the 
right form. For a fur ther  description of this  tactic and a definition of what  form these terms must  
take for its success to be guaranteed, see figure 3. If ripple-out does succeed then fertilization s is 

1The analogy is to a series of waves that carry the s from one place to another. 
~The name is taken from Boyer and Moore. tn the analogy the induction hypothesis is the sperm that fertilizes 
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Let F be a primitive recursive function defined by: 

f (0)  = A 

fCsCX~) = BCX, FCX)) 

Let TI[F(X)] = T~[F(X)] be some arbitrary equation containing two occurrences of F(X).  

V X . . .  TI[F(X)] = T~[F(X)] 

induction x/ 

-..TI[F(0)] = T2[F(0)] VX{...T,[F(X)} = T 2 [ F ( X ) ]  - - ,  

2×toke20 t\/ 7 -  2×r;pple-o t? / 

r,I t = vx .. r, IF(x/I = r IF(x)l 

f e r t i l i za t ions / l  

V X . . .  s(T1 [F(X)]) ---- 8(T1 [F(X)] ) 
I 

simpli fy~/  

true 

• T,[F(s(X))] ---- T2[F(s(X))]} 

I ..... I 
t t 

, s(TI[F(X)I ) = s(T2[F(X)])} 

Figure 2: Simplified Boyer-Moore Proof Plan  

guaranteed to succeed. It  substi tutes the T1 term for the T2 term in the induction conclusion and 
the step case reduces to true via an application of some simplifying rules like the reflexivity axiom. 

Note that ,  unlike the associativity proof in figure 1, the final step of the general proof does not 
solve the problem. However, the general proof does exchange the original conjecture for a sub- 
goal from which all occurrences of the function F have been eliminated. This can be seen as the 
aim of the general proof. Repeated applications of it will cause recursively defined functions to be 
systematically eliminated from the current sub-goals and replaced by the functions by which they 
are defined. If defined functions are arranged in a hierarchy with each defined function ordered 
above those by which it is defined, and a highest function is eliminated on each round, then a set 
of sub-goals will eventually be generated in which only primitive (ie non-recursive) functions occur. 
The proof of these will not require induction. 

In the sub-proof describing the ripple-out tactic given in figure 3, the terms T1 and 2"2 take the 
form of a nested chain of recursively defined functions, Fi, where each F~ appears in the recursive 
position of F~+I and the definitions of the F~ are all very simple. The step equations merely ripple 
the occurrences of s out once. By applying these step equations repeatedly the occurrences of s are 
rippled out from their  innermost to the outermost position. Following Darlington we call a single 
application of the step equation an un fo ld  3. 

This version of ripple-out is very simple and special purpose. To make it more general, we need 
to extend it not only to constructor functions other than s, but also enable it to supplement the use 
of unfolding step equations with the application of lemmas of a similar syntactic form. This latter 
extension is discussed in section 7. 

5 T h e  S p e c i f i c a t i o n  o f  T a c t i c s  w i t h  M e t h o d s  

In LCF or NuPRL tactics can be implemented as ML programs which will guide the application 
of rewrite rules to control the search for a proof. We have begun just such an implementation of 

the step conclusion, by making it provable• 
aThe analogy is with unfolding a piece of paper and taking out the present at the end. 
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For 1 < i < rt let F,. be a primitive recurslve function defined by: 

F~(0) = A ,  

F,(4X))  = 4F,(X))  

Let T~[F(X)] or T2[F(X)] from the basic plan take the form Fn(...F2(FI(X))...). 

F~(...F~(FI(s(X)))...) 

unfolds/I 
r,(...F~(4F~(X)))...) 

recursively ripple-out v/ 

a(en(...F~(f,(X)).")) 

Figure 3: The Ripple-Out Sub-Plan 

the Boyer-Moore heuristics, [Stevens 87]. However, such an implementation would not meet all the 
required properties of a proof plan. In particular, we require the ability to reason about the tactics 
in order to construct a proof plan for a problem and to replan when an existing proof plan fails. In 
order to conduct this reason we need to represent the conditions under which a tactic is applicable 
and the effect that  it has if it succeeds, ie we need a specification of the tactic. Below we propose 
such a specification, which we plan to implement within the NuPRL or a similar framework. 

Our specification formalism was adapted from that used in the LP system, [Silver 84], which 
was an extension of PRESS. The LP formalism was itself based on that  of STRIPS. However, note 
that, unlike the plans formed in STRIPS-type plan formation, our plans will contain subroutines and 
recursion. 

Following PRESS, we call the specification of a tactic, a method. A method is a frame containing 
information about the preconditions and effects of a tactic. A list of the slots in the frame and a 
description of the contents of each of them is given in table 1. Figure 4 is an example method for 
the ripple-out tactic. Methods for the other tactics in the simplified Boyer-Moore proof plan are 
given in the long version of this paper. Each of the slots contains a formula of our sorted meta- 
logic describing syntactic properties of the goal formulae before and after the tactic is applied. The 
meta-logical terms used in this paper are defined in table 2 and the sorts are defined in table 3. 
Definitions of the terms and sorts used in the remaining methods are given in the long version of 
this paper. 

The description of the precondition is split between the input slot and the preconditions slot. The 
input slot contains a pattern which must match the before formula and the precondition contains 
additional information about the before formula which cannot be captured in this pattern. Similarly, 
the description of the effect is split between the output and the effects slots. The tradeoffs between 
representing information schematically in the input and output slots and representing it linguistically 
in the preconditions and effects slots, is discussed in the longer version of this paper. 

A method represents an assertion in the meta-logic, namely that if a goal formula matches the 
input pattern and if the preconditions are true of it then the tactic is applicable. Furthermore, if 
the tactic application is successful then the resulting formula will match the output pattern and the 
effects will be true of it. The additional condition that the tactic application be successful means 
that the method is only a partial specification of the tactic. This is the key to the reallsation of the 
uncertainty property and is discussed further in section 7 below. 

The ripple-out tactic uses the repeated application of the unfold tactic to move the successor 
function from an innermost to an outermost position, ripple-out is illustrated in figures 1 and 3. 
The specification of the simple ripple-out tactic is given in table 4. The preconditions slot specifies 
that the input must be a nested sequence of simple recursive functions whose innermost argument 
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*, N a m e  - the name of the method. (We have followed the convention of using the tactic 
name for the method, augmented with additional arguments where necessary.) 

• D e c l a r a t i o n s  - a list of quantifier and sort declarations for meta-variables global to all 
the slots except the Tactics slot. 

* I n p u t  - a schematic representation of the goal formula before the tactic applies. 
o O u t p u t  - a schematic representation of the goal formula after the tactic applies. 
. P r e c o n d i t i o n s  - a linguistic representation of further conditions required for the tactic 

to be applicable. 
• Ef fec ts  - a linguistic representation of additional effects of the method, including prop- 

erties of the output and relationships between the input and output. They hold if the 
tactic applies. 

. Tac t ic  - a program for applying object-level rules of inference. This program is written 
in a subset of the same sorted meta-logic as the other slot values. This subset consists 
of applications of the object-level rules of inference and calls to sub-tactics. The tactic 
program serves also to specify the sub-tactics of this tactic and hence the sub-methods 
of this method. Meta-variables in this slot are local to each formula that  constitutes the 
program 4. 

Table 1: The Slots of a Method 

has s as its dominant function. The output slot gives a pat tern asserting that  the output will an s 
whose argument is the input expression with the innermost s removed. No further effects information 
is required in this case. The tactic slot contains a recursively defined program, ripple-out, which 
takes a position and a formula and repeatedly applies unfold from that position to the outermost 
position. A specification of an extended version of ripple-out is given in section 7. 

6 T h e  U s e  o f  P r o o f  P l a n s  

In this formalism a proof plan is the method for one of the top-level tactics, ie it is the specification of 
a strategy for controlling a whole proof, or a large part of one. This super-method is so constructed 
that  the preconditions of each of its sub-methods are either implied by its preconditions or by the 
effects of earlier sub-methods. Similarly, its effects are implied by the effects of its sub-methods. 
If the preconditions of a method are satisfied then its tactic is applicable. If the tactic application 
succeeds 5 then its effects are satisfied. The original conjecture should satisfy the preconditions of 
the plan; the effects of the plan should imply that  the conjecture has been proved. 

We can formalize this argument by associating with each method a formula of the form: 

VO e OSort. declarations(M)(preconditions(M, input(M)) A name(M, input(M)) = 0 
----, effects(M, input(M), O) A output(M) -- O} 

where M is a method name, Slotname(M,...) means the contents of slot Slotname of method M 
applied to additional arguments ..., and - means syntactic identity. This formula can be read as 
asserting that  if the input of a method satisfies the preconditions and if the tactic succeeds when 
applied to this input then the tactic's output matches the output slot and satisfies the effects of the 
method. We will call it the expectancy formula of the method, because it formalises our expectation 
that  the method will do what it is intended to do. 

Given, as an axiom, the expectancy formula for each of the sub-methods of a plan, axioms 
consisting of each of the tactic definitions, and various other axioms defining the meta-level terms 
of table 2, we can then prove as a theorem the expectancy formula for the super-method. I have 
carried out this programme for earlier versions of the methods described in section 5, ie given the 
expectancy formula for the method unfold I have proved the expectancy formula for the method 
ripple-out, then given them for: induction, take-out, fertilization and simplify, I have proved one 
for basic-plan (see [Bundy 87] for details). The structure of each proof is: 

SThe failure of tactics is discussed in section 7. 
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• exp-a~(Exp, Posn) is the sub-expression in expression Exp at position Posn. Positions are 
list of numbers which define an occurrence of one expression within another. For instance, 
[2,1] is the position of the 2nd argument of the 1st argument, eg the x in f(g(2,x),  3). 
Note that the order of the list of numbers is the reverse of the usual convention. This 
simplifies some of the formulae in the sequel. We adopt the convention that 0 denotes 
the function symbol itself, so that [0,1] is the position of g in f(g(2, x), 3). 

• single-occ(SubExp, Posn, SupExp) means that SupExp contains precisely one occurrence 
of SubExp and that this is at position Posn. 

• replace(Posn, NewExp, SupExp) is the expression obtained from SupExp by replacing 
the sub-expression at position, Posn with NewExp. 

• simp-rec(F, N) means F is a primitive recursive function whose N t h  argument is the 
recursion argument, and whose step equation is of the simple form r ( s (Z ) )  : s(F(X),  
where X is the N th  argument of F(X) 
app(Ll~ L2) is the result of appending list L1 to list L2. 

: [HdIT1 ] is the list obtained from putting a new element Hd on the front on the list TI. 

Table 2: The Terms Used in the Meta-Logic 

• exprs is the set of all expressions. 
• Serrns is the set of all terms. 
• n u r n s  is the set of all natural numbers 
• posns is the set of all lists of natural numbers. 

Table 3: The Sorts Used in the Meta-Logic 

super-method preconditions ---4 sub-method preconditions 
sub-method effects 

- - ~  super-method effects 

The steps going between super- and sub-methods require the tactic definition for the appropriate 
link. The other step is by assumption. Such theorems prove that  if the conjecture satisfies the 
preconditions of a plan and each of the sub-tactics succeed then the resulting formula will satisfy 
the effects of the plan. 

The methods of section 5 were hand-coded to represent a rational reconstruction of a simple 
version of the implicit proof in the Boyer-Moore theorem prover. We are also interested in the use of 
the techniques of plan formation and/or  automatic program synthesis to construct such proof plans 
automatically. Of relevance here is the work of Silver, [Silver 84], who developed the technique of 
Precondition Analysis for learning proof plans from examples in the domain of equation solving. Our 
representation of method is based on that of Precondition Analysis. Desimone has been extending 
this technique by removing some technical limitations which made it inapplicable to general proofs, 
[Desimone 87]. Precondition Analysis is also capable of learning new methods, ie the specifications 
of unknown tactics. 

Also relevant is the work of Knoblock and Constable, [Knoblock & Constable 86], who have 
shown how NuPRL can be applied to the synthesis of its own tactics. We aim to explore this self- 
application of NuPRL to the generation of new tactics from the methods which specify them: methods 
which may have been learnt from example proofs using Precondition Analysis. Our representation 
of methods seems to be compatible with the specifications used by Knoblock and Constable. 

7 H o w  a T a c t i c  m a y  F a i l  

So far aU the tactics that we have specified have been guaranteed to succeed provided their precondi- 
tions are met. Thus plans formed from them are guaranteed to succeed. However, as discussed in our 
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N~m~ 
Declarations 
Input 
Output 
Preconditions 

Effects 
Tactic 

ripple-out(Post 0 
VPosn 6 posns, VSExp E exprs, VExp 6 ezprs. 
SExp 
s(Exp) 
SEep = replace(Bosh, 4 e~p-a( E~p, Po~,d ), E~p) )^ 
{VFro~t 6 posns, VBack E posns, VN E hums 
app( front ,  [ NIBack]) = Bosh ---* ,imp-rec( exp-at( Exp, [OI Back]) , N) } 
nll 
rime-out([], Ezpr) = Expr 
ripple-out(l HdITt], Ezpr) = ripple-out( Tt, un f old([HdlTl], Ezpr) ) 

Table 4: The Ripple Out Method 

list of desired properties of a proof plan, we cannot in general expect proof plans to be guaranteed 
successful, particularly in undecidable areas. Thus we must expect tactics to fail sometimes. 

An example of a tactic that  can sometimes fail is the ext-rippIe-out tactic specified by the method 
in table 5. This method is similar to the one for the ripple-out tactic except that: 

• we no longer require a nested sequence of simple recursive functions in the input, but only a 
single primitive recursive one; 

• the output is no longer of the very simple form, s(Exp),  but is some expression containing a 
single occurrence of Exp; 

• the tactic is defined using an extended version of unfold, called wavelet; 
- and there is an extra equation to deal with the case that  the rippling out process peters out 

benignly. 

The idea of wavelet, for which we have not given a method, is that  it can apply not just the step 
equations of recursive definitions, but any rewrite rule of the syntactic form: 

G(B1 (X)) =~ B2(X, G(X))  O) 

,¢ 
e v e n ( X +  Y)  => even(X) A even(Y) (2) 

where G is even, B~(X) is X + Y, B2(X; Z) is Z + even(Y) 7 and eve,~ is defined by: 

even(o) 
-~eve,~(40)) 

even(44~))) , , even(z) 

Note that  if B2(X, Z) = Z then the rippling out will peter out benignly. The step equation for even 
is an example of such a rule. 

eve,~C44X))) ~ even(X) 

ext-ripple-out is able to ripple out expressions that the simple version cannot cope with. For 
instance, consider the expression: 

even(s(~) × V) 

where × is defined by: 

0 × y  = 0 

s(x) X y  = x X y + y  

6Recall that we are reasoning backwards. The logical implication runs in the reverse direction. 
7Recall also that our notation allows the term reefs-variables, g# BI, to contain variables, eg Y, other than those 

explicitly mentioned. 
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Name 
Declarations 

Input 
Output 
Preconditions 

Effects 
Tactic 

ezt-ripple-out(app( Posn2, Posnl ), Ezp) 
VPosnl E posns, VPosn2 C posns, VEzp E ezprs, 
VSEzp E ezprs, VSExp~ C ezprs. 
SEzp 
SExp2 
3B E terms SExp = 

replace( Pos~ l, replaee( Posn2, exp-at( Ezp, Posn, ), B), Ezp) ) 
3Posn~ single-occ( Ezp, Posn3, S Ezp2) 
ez$-ripple-out([], Ezpr, S E~pr) = S Ezpr 
ezt-rippte-out( Psn, Ezpr, E~pr ) : Ezpr 
wavetet( In Psn, S Ezpr, OutPs~, OutExpr) 

e~t-ripple-out( InPsn, Ezpr, S Ezpr) : ezt-ripple-out( OutPsn, Ezpr, OutExpr) 

Table 5: The Extended Ripple-Out Method 

After one application of wavelet using the step equation of × we get the expression: 

even(x × y + y) 

We can now use wavelet to apply rule 2 to get: 

which contains even(x × y) as required. 
However, the following expression also fits the preconditions of the tactic: 

e~e.(s(~)) 
but there is no rewrite rule of form 1 rule tha t  matches this expression, so wavelet will fail, causing 
the failure of ezt-ripple-out. Thus ezt-ripple-out might fail even though its preconditions are satisfied 
because an appropriate rewrite rule is missing. This is a typical way in which tactics fail. This meets 
the uncertainty property of proof plans: a proof plan might  fail even though its preconditions are 
satisfied because one of its sub-tactics fails. 

One could argue tha t  the preconditions of methods should be s t rengthened so t ha t  they implied 
the success of the tactic. However, note that ,  in practice, this  would amount  to running the tactic 
'unofficially' in the precondition, to see if it succeeded, before running it 'officially'. 

8 T h e  R e q u i r e d  P r o p e r t i e s  a r e  S a t i s f i e d  

In this section we re turn  to the desired properties of proof plans given in section 2 and see tha t  each 
of them has been met by our proposals. 

• Use fu lness :  As the tactics run they will each perform a par t  of the object-level proof, so the 
plan guides the proof search. 

• G e n e r a l i t y :  The proof plan formalism is not  restricted to describing a sequence of object- 
level rule applications. Meta-level specifications can describe a large set of rules. The powerful 
tactic language can combine these by sub-routining, recursion, conditionals, etc. 

• E x p e c t a n c y :  If the conjecture meets the preconditions of the plan and each tactic succeeds 
then the effects of the plan will be true and the conjecture will be proved. Thus the plan is 
expected to succeed. 

• U n c e r t a i n t y :  However, a tactic may fail, causing failure of the plan, so the plan is not 
guaranteed to succeed. 

• P a t c h a b i l i t y :  Since the preconditions and effects of a failing tactic are known, plan formation 
and /o r  program synthesis techniques may be (re)used to patch the gap in the plan with a 
subplan. This could be done automatically and  dynamically enabling the theorem prover to 
recover from a failed plan without  having to throw away those parts  of the current  proof tha t  
did succeed. 

• L e a r n a b i l i t y :  An extended version of Silver's Precondition Analysis might  be used to learn 
proof plans from example proofs. New methods might  also be learnt by this technique and the 
tactics corresponding to these synthesised by a self-referential use of NuPRL. 
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9 C o n c l u s i o n  

In this paper we have explored the use of proof plans to guide the search for a proof in automatic 
theorem proving. We have advocated the explicit representation of proof plans in a sorted meta- 
logic. We have developed a formalism for representing such proof plans as the specifications of 
LCF-like tactics. This proposal has been illustrated by developing a proof plan for inductive proofs 
based on the work of Boyer and Moore and others. We have developed tactics for running this proof 
plan and methods which specify each of them. 

The domain of inductive proofs has proved a productive one since there is a rich store of heuristic 
knowledge available on how to guide such proofs. We have used this heuristic knowledge in the design 
of our tactics and methods. Our formalism has enabled us to explain why this heuristic knowledge 
is successful {when it is) and why it fails {when it does). In fact, we can give formal proofs that 
certain preconditions are sufficient for success, albeit in a very simple case. We have thus provided 
an analysis of the Boyer-Moore theorem prover which is serving as a good basis for extending and 
improving their ideas and for transporting them to a different system (NuPRL). 

Our explicit representation suggests techniques for the dynamic construction of proof plans. We 
hope it will be possible to use these to recover from failure by constructing an alternative sub-plan 
to fill the gap left by a failed tactic. We are also exploring the use of these techniques to learn new 
proof plans from examples of successful proofs. 

A major goal is the extension of the simple plans described above to incorporate some of the 
extensions described in the long version of this paper. This involves the identification of new meta- 
level relations, properties and functions, eg to describe a wavelet rule, and their incorporation in 
the meta-logic. We also intend to implement the ideas described in this paper by extending our 
version of the NuPRL system to use these proof plans for guiding search, recovering from failure and 
learning from examples. 
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