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Ve use Cartan's calculus to reformulate the general variational prin-
ciple and conservation laws in terms of exterior forms. In applyingthis
method to Einstein's gravitation theory, we do not only benefit from
the great economy of Cartan's formalism but also gain a deeper unders-
tanding of fundamental results already known. So the existence of su-
perpotential-forms may be deduced from dod = 0 and as a consequence
the vanishing of total energy and momentum in a closed universe is af-
firmed in a more general way. Simple expressions for the sundry super-
potentials are obtained quite naturally. As a byproduct, Einstein's e-
quations are rewritten in a form where the coderivative of a 2-form (the
superpotential-form) is a current, and therefore resembles the inhomo-
geneous Maxwell equations. In passing from the Lagrangian to the Hamfl-
tonian 4-form, we immediately enter the ADM formalism without lengthy

calculations.

Usamos 0 calculo de Cartan para reformular o principio variacional ge-
ral e as leis de conservagdo em termos de formas exteriores. Aplicando
esse método 3 teoria de gravitagdo de Einstein, nfo somente nos bene-
ficiamos da grande economia do calculo de Cartan como também adquiri-
mos uma compreensdo mais profunda de resultados fundamentais ja conhe-
cidos, Assim, a existéncia de formas superpotenciais pode ser deduzida
de dod = 0 e, como consequéncia, a anulacdo da energiaedo momento to-
tais en un universo fechado é estabelecida de uma maneira mais geral.
Express6es simples para os superpotenciais especificos sdo obtidas de
uma maneira natural. Como subproduto, as equagdes de Einstein séo rees-
critas de uma maneira semelhante as de Maxwel inomogéneas, em que a
coderivada de uma 2-forma (a forma superpotencial) € uma corrente.Pas-
sando da 4-forma Lagrangeana a Hamiltoniana, chegamos imediatamente ao

formalismo ADM sem muitos calculos.

636



1. INTRODUCTION

Frequently, exterior forms are believed to play an essential role in
physics (as well as in mathematics), because they are quantities clo-
sely connected with integration and are therefore well suited for ex-
pressing the physical laws of nature. But they also provideavery ele-
gant and economic calculation technique, summarized in Cartan's forma-
lism which makes the physical laws not only nicer but also easier to
survey. Moreover, in view of the de Rham cohomology, they are expected
to procure one of the best ways to join physics to the topology of the

underlying manifold.

Although Cartan's formalisn comes into effect more and more, someof its
properties are still unknown to physicists or are not expressed in the
most convenient manner. W therefore summarize the essential facts in

Appendix A, where our notation is explained.

Appendices B and C are only concerned with some explicit calculations

dropped in the main text.

In Section 2, we review the variational principle in terms of exterior
forms and apply it to Einstein's gravitation theory. The connection of
conservation laws and superpotential-forms is exhibited in Section 3.
Briefly, the existence of superpotential-forms is a consequence of the
fundamental identity dod = 0 {or "the boundary of a boundary is zero"
see Ref.l). Usually, for pure gravitation one.starts with the contrac-

ted Bianchi identities?
Dxgti=dx g+ Axg 20, (1.1

where J* = ™V e corresponds to the energy-momentum tensor or Eins-
tein-tensor respectively, by the Einstein equations. Because this cova-
riant local law (1.1) does not, in general, lead to globally conserved

quantities (Refs.3,4,12), one tries to find a 1-form e E,, so that

d*tuiwuvA*Jv (1.2)
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Obviously, #t" is unique only up to closed 3-forms. Furthermore, from
(1.2) , it is clear that tY does not transform homogeneously under chan-
ge of the basis (2.3) (below), so that the corresponding tensor V(2"

HE w e”) will be called a pseudotensor. Howeuer, once such a tY has

been found, we have as a consequence the conservations laws
dx "+t =0, (1.3)

with conserved currents J% + t*. But from the identity (1.3), one infers

the existence of an exact 3-form, say -d * s¥, so that
* "+ wtt = - d x5V (1.4)

But from (1.4) one derives not only the conservation law (1.3), but the

stronger statement (S a 3~dimensional submanifold C M%)
j *Ju.{-*tu:—{ x sM (1.5}
S a8

whence the total energy and momentum of a spacelike hypersurface may be
expressed as a surface integral. Moreover, if S is compact and withaut

boundary (3S = ¢ ) and s¥is globally defined on S, then
I xJ4 + xt! =0, (1.6)
S

that is, the total energy and momentum in a closed universe are zero.
This shows that, for instance, the "energy" concept has basically ato-
pological background and may be correlated with topological invariants.
In particular, we will see that the global existence of s* depends on
the topological properties of S, as will be discussed in Section 5,
where we sketch our topological assumptions and justifications. Tocon-
clude, we deal in Section & with a simple derivation of the ADM-Hamil-

tonian in terms of exterior forms.
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2. THE VARIATIONAL PRINCIPLE

Let ¢A € EpA (H%, A =1,2,...N, denote a set of p-forms which comple-
tely describe a physical system, where N is the number of algebraical-
ly independent fields. Let us further assume that the equations of our

theory may be derived from an action integral

I=f L(s,, do,) , LEE, (2.1)
AC_: M4 £ .
by the variational principie
GI=GJ L=20 (2.2)
A

(compact A). Because of the invariant “form" (in a double sense) of the

Lagrangian L 6 E4 under niere change of the basis,
P .e;U = Auv e’ (Auv. € gy, (2.3)

the theory will be already covariant. The second type of gauge trans-
formation besides (2.3) which will be dealt with, is the (say, arbi-,

trarily small) coordinate transformation (£ = Eueu € El)'

W

H ="+ e(g)g” ="+ Y (2.4)

Pl

Frequently, we will also assume (2.3) to be infinitesimal,

A“v = a“v + a“v’ . | a“v(p)|<< 1 (¥p € MY) (2.5)

and therefore use
se* = 4" V. (2.6)

Note, that if we are not dealing with a coordinate basis (i.e.,eu=d.zu)
(2.6) and (2.4) are independent one of each other. As usual, we intro-

duce the "'total variation®'
86, := 8¢, - 2(E)e, , (2.7)
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which commutes with ordinary differentiation when applied to functions
Moreover, 6 as well as & comute with the exterior differentiation be-
cause of the basis-invariant property of d. Now, (2.2) together with
(2.7) led&d to the identity

8L =38L+ 2(e)L =0 (2.8)

or, after carrying out the variation,

8o, a x Bt dwt(e) 20, (2.9)
where
8L Pa el
*EA .—W (=) d-a—&(?‘ (2.10)
4 A
are the usual Euler-tagrange expressions and
x £(8) 1= 2(E)L + 8¢, A L (2.11)
: A aZZsz

the canonical pseudo-energy-momentum current, '‘pseudo'’ because of the
possibly inhomogeneous transformations property of ¢A' According to P.
G. Bergmann®, we refer to weakly (i.e. modulo the field equations * EA
=0) conserved t{£) as to the generator (generating 3-form) of the in-
finitesimal transformations §. This point of view stems from analytical
mechanics, where the constants of motion of a system are identicalwith

the generators of infinitesimal canonical transformations.

Now we turn to Einstein's general relativity. According to the tradi-
tional view®, we regard the basis 1-forms {e"1c E1 as playing the ro-
le of gravitational potentials and the connection form mas € El’ defi-
ned by
de® o B8
(2.12)

dga6=guaw8+gu6wa=: wa8+w8a
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as corresponding to the field strengths. Because of the inhomogeneous

transformation property of waB under (2.3),

R AR/ L L (2.13)
o T T o T
we should rather use the curvature 2-forms RaB € E2
. m _ H A
Ras : dwaB WA W (2.14)

where the inhomogeneous terms drop out, and construct out of it an in-

variant Lagrangian 4-form. The most general expression in four dimen-

sions leading to second order equations in the 9.8 is’

B

L= Ae + Rlasl A *edB + o RMB| A RY

o

+B[EIGBI A *eaﬁ A *(Rior[ A xe’T) - Ra A %R

* Ryt *R“S].(z‘.ls)

aB

If we neglect (for simplicity) the cosmological term Ae and observe
that the coefficients of a and 8 (being essentially exact, see Appendix
B.d) equate the corresponding Euler-Lagrange expressions (2.10) identi-
cally to zero (Refs.7,9,2h4), we are left with the free (pure geometri-

cal) Einsteinian Lagrangian
e ,de) =38 nxel. (2.16)
u Cu 28" a

An independent variation of ey Jap and wus leads to® (see AppendixB.a)

1 = a B I = a 8 _
5 (GwBA*ea)+-2_5wBAD*ea

N —

5L = Eeu NE (2.17)

where ¢ "= " e, is the Einstein-form, its components forining the

Einstein-tensor (see (3.15)). The identity (2.9) then becomes

-é- Eeu A xG +d t(g) = Ol, (2.18)
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where

. (2.19)

#t(E) 1= 2(g) L+ 8

Y
‘e
>

By the Bianchi identities

i
o

DR (2.20)

aB ’

the variational derivative L with respect to the basis obeys the con-

tracted Bianchi identities

pxct= o0, (2.21)

which can also be deduced from the invariance property of (2.1}, (see
Ref.8) .

3. CONSERVATION LAWS AND SUPERPOTENTIAL-FORMS

Let {e"} be a coordinate basis (e" = d&"). Then by se* = de" - d2(¢) duc”

= 0, we obtain (see Ref. 9 for instance)

- _ - v - - v
Se, = 8g,,° (Eu;v * g, Je* ,
(3.1)
3.0 ap® Y - 1 otx % % Y
=8 =4 : -
g Mgt =g (gt Onyg T gy
where ggTB.Y = (EgTB).Y of course. By (3.1), the canonical pseudo-cur-
rent #£(£) then becomes (see Appendix B.b)
*#t() = - % a(x) + 5 d.x d, : (3.2)

where G{g) := EpGu, he Ey and Gu € El' Although *t(&) is only weakly
conserved, the expression

*3(8) 1= % 6(0) + % 8(2) =5 d % de (3.3)
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is a strongly conserved quantity, that is, irrespective of any field e-
quation, #J(&) obeys

d*J) =0, : (3.4)

and therefore we have associated a strongly conserved quantity with an
infini tesimal coordinates transformation. However, by (2.18), this is
unique only up to closed 3-forms, so we can also define another pseudo-
-current z(&) by

*J(E) = » G(8) + #E(€) = d  dE. (3.5)

Evaluating the righthand side of (3.5) in components, one obtains . at

once

= - 3u v
dwde= (5, -5, 0" e (3.6)

The comporents are known as forming Komar's generalized energy flux vec-
tor E’7’(E) (besides & factor -2, which comes from another choice of
units; see Ref.10. Let gu be constant in the eu-basis (this is possible

because of' the arbitrariness of £ in (2.4)), (3.5) becomes

*Ju=*6u+*tu=d*deu. (3.7)
We call
Vu 1= deu (e E) (3.8)

the "Mgller-form'', because its components in a coordinate basis

v VP

. )™ g% (3.9)

- (guB;a " Y4038

are 1/v/-g times the original Mgller-potential )(u\)p (Refs. 11, 2),
X, =g v (3.10)

In general, the superpotential-forms may be introduced as follows. From
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(3.1), the symmetry of "V and by the contracted Bianchi identities 2.
21), one obtains out of (2.18) the identity

dl* ¢(g) + = te)] ro . (3.11)

But from the identity one infers the existence of an exact 3-form, gay

-d = 8(g), which allows us to write
*G(g) + xt(g) = - d x 5(¢), (3.12)

where, without loss of generality we choose S(&) € E2 to be linear in &,

. . Y
that is 5(g) := ¢ 5, Su €E,.

Let for a moment gu be constant again. Then, from (3.12) and (3.2), it

follows that

*Ju:=*Gu+*tu=-d*SU (3.13)

Thus we see, that SI_' is actually the analogy of the so called "superpo-
tentials* (Refs.4,5,12), wherefore we call Su a "superpotential-form ',
Note, that the existence of this "superpotentials' follows from the fun-

damental identity dod = 0.

Instead of calculating Su explicitly from (3.12) by (3.2), we use a mo-

re direct and more elegant way to find it out8:

The simplest Lagrangian connecting geometry and matter is (8w times gra-

vitational constant = 1 : = c)

L ='R|asl A %k eaB + L (matter) " (3.”&)
whereby we obtain (see {2.17))

8 _ Sl(matter) _

* G =~ R Axe®
u o8] LRPYN

*J (3.15)
u

where I corresponds to the energy-momentum current.
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Ve can rewrite (3.15) as an equation like the inhomogeneous Maxwell e-
quation where the coderivative of a 2-form is a current. To this end,
we write the curvature form as in (2.14) and rewrite the first term in
(3.15) like this

aB  _ aB * 0B 16
dwaBA xe d(wasf\ * e u)+wa6/\ d*e o (3.16)

Retaining only the exact form on the left, we obtain8

d*su=_*(‘]p+tu)“Asu=Ju+tu’ (3.17)
where
Q
S =4 ile )e” (e E) (3.18)
u Z ap 2
and
*tu t= - % wog A (muv A K eag\) + wﬁ\) A % e(wu) . (3.19)

Comparing (3.17) with (3.13), we rediscover.the superpotential-form S

Vv
Because *-bu consists of pure geornetric terms, the interpretation of (3.

17) is that the currents of energy (u=0) and momentum (u=1,2,3) have a
contribution of matter (J) and one of gravitation (t). Note, that from
(3.15) up to this stage we are not concerned with any coordinate basis.
However, if we examine the superpotentiai-form (3.18) in such a coordi-

nate basis, its components can be readily calculated (see Appendix B.c)

Suvp ) ?(L_)QUTB—Q) ("% g% - ¢ g™ . (3.20)
-g

This is (-1/V-g) times the well known von Freud expression for the su-

perpotential {Refs. 13,12,2):

uu"p =—/—?Su“p (3.21)

out of which several pseudotensors may be constructed. For instance,the
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Landau-Lifschitz-forn *tlul is obtained by extracting 1/v<g out of d#S :
n

d*su=-‘—d*/-‘g‘ 5, -’ A, . (3.22)
~g
Therefore, we have
A v=gs =- AU = /53 .2
g5, y g (Ju + tu) , (3.23)
noL o0 u
* Ty *tu w' A * S (3.24)
(where tH = gw t ), or in components corresponding to a coordinate ba-
Sis:
v v - v
-g) (T "+ ¢ = |(~g) 8§ . .2
o)+ g 7 = Tog) 5,70 (3.25)

Although it is obvious from (3.25) (compare Landau-Lifschitzl*), we pro-
ve in Appendix C the equivalence of tlle to the Landau-Lifschitz pseudo-

-tensor. There we calculate the components ¢ "W pecause a) we hadnever

LL
seen it explicitly given and b} to show the splendour of the modern Car-

tan formalism and the miseries of the cilassical tensor calculus.

In a coordinate basis, «t EL leads to a symmetric energy-rnomentum  ex-
pression, so it will be a good (but not necessary, see Ref.15) candida-
te for a suitable angular momentum expression. Further note,. that = tH
and * tlle coincide in a basis of constant v=g (because waa = dg/2g).

Writing S, in the form (B.18) (see Appendix B)

_ 1 a
5, = deu 5 ile )demu {3.26)

and keeping only the first term on the lefthand side of (3.17), we get
in a coordinate basis
dxde =*%J +%% <« Ade =-~J + %, (3.27)
u " u u TR

T .o 21 (%
*T = wt -5 d* ile )deau , (3.28)
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which lead us again to the Mgller-form Vu = deu. Note, that in this way
Einstein's equations are cast in exactly the same form as Maxwell's e-

quations Ad4 = J3, A = potential, J = current.

Now, from equation (3.27) we read off that transformations (2.3), which

do not change the time direction e leave T, = J0 + %0 unchanged, that

is, 10“ transforms like a h-vectorounder these transformations. 1in par-
ticular, I 0 and T ! behave like a scalar and 3-vector under arbitrary
spatial transformagions and are thereforé well suited for a consistent
interpretetion as localized energy and momentum density (Refs. 11, 10).
This outstanding property of the Mgllier expression has led A. Komar to
construct his "generalized energy-flux vector', which we already deduced

from the variational principle (equations (3.3) and (3.6)).

We remark again the striking analogy to the Maxwell equations, where &
corresponds to the potential A, If & refers to a rigid time translation,

we return to the Mgller case.

Sundry expressions like (3.17) which basically rested on the existence
of superpotential-forms by do d =0, have the important property that
one can notonly deduce the conservation law (1.3) but also the stronger
statement (1.5), that is, the possibility of expressing total energy and
momentum of a spacelike hypersurface as surface integrals and that, for

instance, they vanish in a closed universe.

4. THE HAMILTONIAN

In this Section, we shall deal with the free case (J" = 0). Therefore,
the term 'energy''only refers to the energy of the gravitational field,

not matter.

Starting from a Lagrangian 4-form in (2.1), one usually changes to the

Hami 1toniein formalism through a Legendre-transformation

¢A»"’_L_’=: A (4.1)

a&sA
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by which one passes from the "configuration space' to the''phase space",
with points given by (¢A,TrA). But to carry this out in our formalism,
one has to know what the dot in (4 .1) (the "time=- derivative'™) stands
for, that is, to single out a time direction. Let us specialize to ge-
neral relativity and recall that our basic variables are not the metric
coefficients but rather the basis 1-forms eu, where the time direction

may be (locally) chosen to be represented by el

or e, To make this
choice transparent, we pass over to a Gaussian (''comoving' or "synchro-
nous'', see Ref.l) basis {;u}, where the splitting of time and space di-

rections becomes more graphic. This basis may be defined by

-1 0 -1 0
9 = | s (G,g) = . (2

lg
-1k -
0 g 0 9ik

In terms of this basis {Eu}, the metric g = Eu 8 2" splits into

- =k
g=‘80980+ek®2 , (4.3)
where
3, .= 5 @ 3K
g i=e, ®e (b.4)
corresponds to the 'projection operator'’ orthogonal to g% (Ref. 3). If

there is a hypersurface $ C M"‘, such that éo(s 0, then 39[5 may be
interpreted as the ™ first fundamental form' (no_t form in the sense € Ep)

on that hypersurface.

Because of ghe simple decomposition of the nietric in (4.2), one immedi-

ately obtains for the'connection 1-forms

1
i
(=)

o, =

00

€1

%oy, =

ok+“’ko=0”‘;0k=‘5ko ’ (4.5)

i = =3 - > _0
Bup = Ogp * gy = "By * gy, o> e,
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where 34 means exterior derivative with respect to E (S). Before decom-

posing the curvature form R__ in the same way, let us assume (for sim-

plicity) 2" = &} to be aazoordinate basis, {yu} being the Gaussian
coordinate systern. Let S be given by yo = constant (a hypersurface of
proper time simultaneity). Then 2% is the unit hypersurface orthononal
and the ''second fundamental form'* of S (or "exterior curvature™) is de-

fined by

e L (30} 3, . p
K.-zz(e) g=tkK ®c |, (4.6)
where K, = K{J Zj is given by (recall Z(ZO)Zk = 0)
= }'Q(eo)ei = woi, (4.7)

will be called "exterior curvature form"™ (although " exterior connection

form'' would be a more appropriate terminology). Note, that by (4.7), X
represents the (proper-) time derivative of the éi ’s off the hypersur-
face S. Therefore, we shall decompose the Lagrangian (2.16) in tens of
{;k’Ki}' This can easily be done by using the,Gauss - Codazzi equations,

'which we write like this:

'R =0,
00

R .=Dke = 3DK + k., +x9x. )Z°k (4.8)
07 - 1k, 0 7 ik ’

P = 3P =08

B = By * Kpn Ko+ Ko =~ Kypppde s

where 3D and 3R. % are the covariant exterior derivative and its corres-
ponding curvature form with respect to E (S), the vertical bars denoting

the component notation of 3D.

Inserting (4.8) into (2.16) leads to

- (4.9)

L= l-)Kk‘A *50k+% (37?1: + K A K,)

or, by
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Y R I R P L A1)

L=d(Kk,\*é°k)+—;—(3ﬁ’ik-l{i/~]{k) *é”‘. (4.11)

The main advantage of (4.11) is, that the time derivatives K‘zi are sin-

gled out and one can compute the '"conjugate momentum'' of ék as

-ki

T = = - — —— =~ K. A xe (4.12)
(e )ek 2 BKk 2
or in component notation (rk €E)
“’Lk =_% (gtk tr K - K'Lk)’ (4.13)

where tr K : = Kli. Therefore, we obtain the Hamiltonian &-form
L %
H:= L+ 2e)e, A *7 (4.13)
o’k

or, when (4.11) and (4.12) are inserted into (4.13)

- dk, A x2%) -1 CR., + K, ak)a x2 K, (a14)

k 2 <k 7 k ’ :

which by (4.9) once more reduces to

H = (K A L sh xT (4.15)

where G® is the zeroth Einstein-form, written in the Gaussian basis {¥"}:

70 = (3 » -1ko k-
* G (Rik+KiAKk)A*e: Z(Kil

Q- R L. (he)

Y1 acccr-

If we express the Gaussian basis {e"} in term of any basis {e
ding to (2.3), there are only four functions " sufficient to determine

Au“, which may be written as
A =% a0 - 8" 0 (4.17)
v v A\ 1] v
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or explicitly

0= Hed, 30 = (1M (e - e
' (4.18)
& _ Kk, ok

= 0 e, =
e e + N e’ , g ek s
where N : = ¥% and Nl(i =1,2,3) are the lapse and shift functions (see

Refs. 1, 16). Clearly, {€') is Gaussian iff N = 1 and N' =0 for alli.

By (4.18), the metric coefficients in terms of {€', N"} are written as

-1 _INk ) —IV2+1V1:1V. m,
w2 N2 i
(") = - v gy =
;]2- it k- le e j w, 7.2 |
(.19)

where the indices of Nk are raised and lowered by the components of 3g.
Usually, (4.19) is the starting point of a canonical treatment of gene-

ral relativity.

For instance, (4.7) reads in terms of {e",#"} (using (2.13))

= " = - w0 = = 0 = - 0 .
K, =wy, w . N w P Kik NT i (4.20)
which leads to the well known equation!
}
K =75 Wele * xje ™ 9ax,0)2 (k.21)

where the extrinsic curvature is expressed in terms of the ADM lapseand

shift functions.

the homogeneous "transformation property of ¢t (see (3.15)) and by (4.

y» We obtain immediately for the Hamiltonian in terms of {€, Nu} the
expression

H = d@g, o x &)+ 3 2 (4.22)
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e A% G° = -;7 * GO0 (4.23a)

o
=)=

[}

- % Gok . (4.23b)

Hy =" e, a %GO
By (k.16), Hu may be also easily expressed in terms of k* and 3R (see
Ref. 1). We omit it as well as the further canonical treatment, since
the line is clear and follows closely the ADM formulation of gravity
(Refs.1,16). Writing the Lagrangian (4.11) in the basis {e"}, it turns
out that there are no #* involved and therefore no canonical momenta to
™ do appear. This leads to the primary constraints aL/aW™ = Owhich in-
dicate that the N" play the role of mere Lagrangian multipliers.The fact
that the primary constraints hold for any space-time point leads direc-
tly to the more serious secondary or dynamical constraints Hu =0, which
indicate that the conjugate variables cannot be arbitrary on an initial
hypersurface, that is, not all of the canonical variables are 'true",i.
e, dynamical. But this is exactly what has to be expected since, bythe
general covariance of the theory, the Lagrangian must be singular, which
leads to constraints when passing to a canonical formalism. Finally, the
rest of the Hamiltonian field equations may be derived from varying (4.
11) with respect to ék and nk.’Because of (4.23a,b) they reproduce the

remaining Einstein equetions GT’k = 0.

Remark, As is well known, the exact 4-form d(Kk A ¥ eko) does not alter
the dyﬁamical equations but does change the definition of enel:gy ( see
e.g. Ref.17), and it is still an open question whether the full Lagran-
gian (2.15) has to be considered (see Appendix B.d).

5. TOPOLOGICAL REMARK

0f course, the considerations made in Section 4 depend on the existence
of a '"Cauchy-splitting' of space-time, i.e., if space-time may be ex-
pressed in the form of a topological product ofa 3-hypersurface with the
real line, such that each member of the family of hypersurfaces is spa-
ce like. This is the case if we demand space-time to be globally hyper=-

bolic3.
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The existence of superpotential-forms implies the possibility of expres~
sing the total energy and momentum of a spacelike hypersurface in terms
of surface integrals (Section 3). But, as already remarked 'by C. w
Misnerl®, closed surfaces cannot be covered by a single set of singu-
larity-free coordinates, so that the total energy and momentum defini-
tions involving pseudotensors may become problematic. This would also
be the case in our formalism, if we were dealing only with holonomic (=
coordinate) bases, which refer to a suitable covering of the manifold
by charts. However, our various total energy and momentum definitions
are more generally established on any suitable form-basis and are the-
refore only concerned with the parallelizability (or at least with ori-
entability) of the manifold. So for instance, the torus s! x sl (orthe
sphere $2) is paralielizable (orientable, respectively), though it can-
not be covered by one non-singular chart. W therefore conclude that
the surface integrals like (1.5) with (3.18) make sense if the surface
is parallelizable. Parallelizability is known to be closely connected
with the Euler-Poincaré-characteristic of the underlying manifold. So,
every compact oriented manifold of odd dimension has vanishing Euler-
-Poincaré-characteristic and is therefore parallelizable (and hence ori-
entablelg). For that reason, we also believe that the argument concer-
ning a vanishing total energy/momentum in a closed universe makes sense

indeed.

In general, in the compact as well as in the noncompact case, the main
question we are left with is orientability of space, since every 3-ma-
nifold, if oriented, is also parallelizable (according to a theorem of
E. Stiefel?9). Since several physical facts (entropy theorem, expansion
of the universe) induce us to believe that space-time is time -orienta-
ble, then by the CPT theorem it is also space-orientable3.|f then, aswe
assume, space-time is globally hyperbolic, it is itself parallelizable21
and our forrnalism is globally defined. Moreover, we were also allowedto
use a global orthonormal basis and gre therefore immediately bound up

with the spinor structure of space-time?l,
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APPENDIX A

Let M* be an n-dimensional differentiable manifold and E_(M") the modu-
le of exterior differential p-forms over Eo(Mn):=C°°(Mn;R‘)‘, the set of
smooth mappings from M? to the real numbers R. The direct sum ofEP(l"fz),
p =0,1,..., # is then widen to a (graded) algebra by the componentwise

extended exterior product

: E E > E
MU Tp AT T Tpag

Out of a I-basis (ea) C £y, a =0,1,..., n-1, we construct a (g) - ba-
sir {%1°°°%}C E_ by
p
[¢ BEEITIR ) a o . o Q,
el P.oglaliaeP=p! 1@...®ep], (A7)

e” =p.e

where ® denotes tensor products and square brackets antisymmetrisation,

i.e.
1 o
S - A.2
O U e P N N RN S (.2)
p
(LP, the p-th permutation group). Thus, any p-form ¢ € EP can be writ-
ten as
al...a
— . p = (A
W= w e w w .3)
txl...a l > E;l...qp] al...ap

Vertical bars demand summation over @ €0, € o0 €0,

2 p
Differentiation is represented by the exterior derivative d. EP-> Ep”,
defined by
Qpeee0 ’
e e, S (AB)

o

Lu"‘dw:=dw|a
1%

where \;\e define df to be the ordinary differential of f € Eo‘ So, when
applied to the coordinate functions e E0 {u =0,1,..., n=1), we get
a special kind of basis e = dz*, called coordinate (or natural) basis.

In general, the describing features of 4 are:
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1) d(m1 + “’2) =do, + dw2 ("’1’ w, € Ep),

2) d(uo1 A wz) = dml A, + (-)P w, A dwz (A.5)

3 dod=0.

Ap-form o is closed iff da =0, it is exact iff there isa g € Ep-l
such that a = dB. Of course, every exact form is closed, but the con-
verse is only true on a starshaped region {or open ball} of M? (Poinca-

réts ‘lemma) .

If the manifold admits of a pseudo-Riemannian metric , we may use it
-to define a sealar product in EI, <,> - E1 x E1 > E0 by
<%, efs, = g%8 = g(e%, ). (A.6)
As dual basis (cobasis) {ea} to {e%}with respect to g (or <,> ,respec-
tively), we shall use
By _ 5 Y

. . B -
e i =gge (CE), g9 . A7

Note, that we are therefore dealing with dual basis-forms and not with

dual basis-vector fields (say, auin acoordinate basis).. Because for eve-
ry vector field £ € J(MY there is a unique adjoint (with respect to g9)
7
)

1-form € € J*(M") = E; by

= , W) E = v, .8
1 g(g )«-—rau I & . (A.8)

and it is therefore equivalent to deal with basis and cobasis 1-forms
or with basis forms and cobasis vector fields or with basis and coba-
sis vector fields, the latter frequently used within the vierbein (or
tetrad) formalism. However, making use of forms is usually more prac-
tical by 1-eason of the Cartan-formalism, which we are now going to sum-

marize.

There is a natural extension of <,> iptroduced by the inner product (or

contraction) W = E_ x Ep -+ Ep-l (E,=9)
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(a,0) = Z(a)w : = wla,...) , (A.9)

so that for instance

a)B 8

o a B aB
e=<e,ei>=<e,e>=g .

i(e

Ve list the main properties of # (a,3 6 E, s h,f € E):

1) 2(fo + hB) = £ ila) + 1 2(8) ,

2) 75(@)((1)1 + wz) 71((1)1»1 + i(a)wz (ml,wz €E),

14
e rw + ()P u ailw, (w€E,we€
1 2 1 2 1 p 2

3) o) (w, A w)
1 2
4) 2(a) o 2(a) = 0,

A veal a, ¢4

5) i TPl apl (@P)o... o ile Do (w€E,q>p)

(A.

The last property allows us to define an extended inner product
forms, Z{(a)w, a E Ep’ w E Eq’ p £, but this ought to be handled
refully. Note that property 3) is only valid in this form a € El‘

the extended inner product we obtain an extended scalar product in

1 p - . 1P
<e ) >:=1{e, )o 0ile, ) e
81 'Bp B B
1 * °p
=.BT (eB .8 )e (A
1 p

Thus, by the linearity of <, we get

U ool
< a, B>=Ct!u o--qu
1 14

(A. 11) is often called "'p~th permutation temsor'' and is denoted by
a o o
s 1= <o ! p > = 1 § §2...8 p

1
e a [ “on
2R .L..B p-.

B, 6, 8]
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where the last equation is easily proved by (A.11).
Exterior derivative and contraction define the Lie-derivative

2 E xE =+E , o,e) = 2{a)w ,
1P

p+1

where

2(a) :=7(a)d + d i(a), (A.14)
so that the following formulas are valid (a € El’ wl € EP, wz € Eq):
1) 2(a) E.ul A w2] = R(a)wl Aw, oA Sl(oz)w2 ,

2) 2(a)d = dela) , (A. 15)

3) 2la)oi(a) = 2(a) o 2(a) .

A convenient notation is the covariant exterior derivative D, D : EP -

Ep+l corresponding to a connection V of M. So for instance, ina coor-
dinate basis, D meets d but the ordinary derivative " , " exchanged
for the covariant derivative ' ; ''. Thus, in general, D equals d when

applied to forms. without free index, otherwise property 3) in (A .15)

must be replaced by

HVe en 1 ov \Y] .
po(...) =R _ al...) +Rn A(...)‘lo' + 0.,
(A.16)
(...)"'GEp ,p=0,1,..., n-1,
where 5%, are the curvature forms of the connection V. If D corres-

B

ponds to the unique Levi-Civita-connection (Vv metric-compatible and

torsion-free), then

Dgye =0, (A 17)

Deu=deu+wuvA e’ =Tor" =0. (A.18)

Roughly speaking, one may think of D as the antisymmetric part of v,No-

te, that whereas d is basis-invariant, D is not.
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With D, the ordinary Lie-derivative may be extended to the covariant

Lie-derivative L : E; x Ep > Ep’ L(a,w) = L{a)w, defined by

L(a) := 2{(a)D + Di(a) . (A.19)

For instance, when applied to forms without free index, L(e”) is quite

the analog of v, . Property 2) of (A.15) is no longer valid for L. W

H
remark that 2 and L may be extended by use of the extended inner pro-

duct, but we do not need them further and therefore they will be omit-
ted.

Let M* be ortentable, i.e. there exists a continuous nowhere vanishing
e € En(Mn). Because dim En(p) =1 for all p 8 M, aconnected manifold
is orientable iff En(p) has two components, each component forming an
equivalence class of n-forrns, called orientation. ¥ are concerned with
the canonical n-form (metric volume element' or '‘generalized Levi-Ci~

vita tensor'):

£ = V(-)SgeerlA---Aen_i (e E,,) ’

(A.20)
g = Det (gaB) ;. (-)% := signature of g.
Inner product together with e provide a linear isomorphism *, * Ep >
En—p (Hodgestar-operator), definedby
v = ilwe  (all w €E), (A.21)
p. p
so that e.g.
a ...0 [N
wol P ot n o, | , (A.22)
Bpppee Oy
a asxd a seea
where, by (A.21}, ¢ ! a .. Ta* e 1 N are the components of E with
respect to the basis {e 1 }. Sometimes it is convenient to denote

the metric volume element and its components with respect to an ortho-

normal basis differently, say ¢ and €, €, (the latteralsodenoted
1°°. "n

by @]...an], see Ref,1). Note that,, for instance,
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= (=)S .0l...n=1 = 1] - A2
SN OLE : (a.23)

€ "= € = - € _lgl™t e , (A.2h)
/(:)—Sz ms‘g‘ A eeell o ..Otn
Y PRI TR T
8 =-¢ p b noe (A.25)
Y B8 «es B u ces l
81"'Bp - 1 P p+l n

We alsolist some important features of * :

1) * o *= (-)(n-p)p+s id.
Ep
2) o AxB=BA%xa, x0 AB=xB A (a,BGEp), (A.26)

3) aAxB= (-)’(""‘7)(1’*") S oxi(w)B, (c€E,BEE, 12p<q)

p. p q

Nre=()°,%1=¢,

5) (% a, *8) = (-)° <a,8> , ("isometry').

Star-operator and exterior derivative allow for the definition of the
coderivative d : E_ +E E . :=8),
4 p-1 -1

e (o) v g (A.27)

as well as the Laplace-Beltrami operator A : EP -+ Ep >

A:=)Md+d) . (A.28)
We summarize some important properties of h and A:

D AodA=z0,
2) Ax=(-Paud , xh= (-)P*1 g4,
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3) dAx =xAd ,xdA=Md=*, (A.29)
L) dr = Ad , AM=aN ,
§) #%A = A% ,

Integration on an n-dimensional orientable manifold M* is defined via
. 7 .
pull-backs to the model-space {e.g., R in our case). In R", one inte-

(p). the elements of a module, which is

grates p-forms over p-chains ¢
freely generated by the set of p-cubes or p-simplexes. In order to
transfer these structure into the manifold Mn, one defines singular p~
-cubes or p-simplexes, that is, p-cubes or p—sir.np\lexes in & together
with differentiable and orientation preserving mappings ¢ of ' into

M?,

Let [c(p) /.= ¢(o(p)) c M" denote the support of o(p), and carr (a) the
carrier (or also support) of a € E (Mn), i.e. the closure of the set
of points € M* outside of which a is equal to zero. Then, since ¢ s
continuous, Io(p)]ﬂcarr(a) is compact (there exists a finite "volume")

and we define the integral of a over o P) by

|

whete ¢* is the usual pull-back of forms (¢* : Ep(Mn) - Ep (RH).

a = I % o , (A.30)
o)y o

After suitable cubulating or triangulating the rnanifold Mn, one defi-
nes the integral over singular p-chains by linear extension of (A.30),
Conversely, given an integral ./'A a,AC M* , One triangulates or cu-
bulates A before calculating an integral like (A.30). W recall . the
most important theorem in integration theory, namely the theorem of

Stokes (A = compact submanifold of suitable dimension):

f da = J’ a . (A.31)
A DA

In general, integrals of forms with noncompact carriers within the sup-

port of a singular chain are to be understood as improper integrals
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(with sufficiently rapidly vanishing components outside a suitable re-
gion), which lead directly to the notion of de Rham-currents: (distri-

bution-type forms).

In the siinplest case, they are defined as tinear functionals onE_. For
instance, a linear mapping Ep (M) - Ep (at = € M") may be defined by

w - I (S,_ A W= mi_ s (A.32)
n

where Ga—c E Ep|a_c ® En_p , the (Dirac) §-distribution p-form, reproduces
the value of a p-form w at z € M*, It can be written in a coordinate
basis e" = dx" at. ¥ (see Ref. 8) as

lot eee |

s = (PP 2T Plg e Fed) . (A33)
.x @

e

For further references on differential geometry and integration theory

see Ref.23.

APPENDIX B .

a) To obtain the field equations, suppose for a moment that L depends

also on the metric coefficients:

o B
RBA*ea . (.B.l)

N

L= L, €, w“B, dw"B) =

Varying all arguments of L independently, one readily calculates

o

R )

= dew? . + 6(Wau A w g

B 6
(B.2)

wherefore we obtain
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- 1 o B 1 .« B
GL—zd(GwSA*ea)+26wBAD*ea
_ K 1 KA .
Se A% G + 7 89x E , (8.3)
where
*GK = - R!asl A % eaBK; (B.4)
A e RkB Ak B g'd R|a8f Ak B (8.5)
But from (B.4) and {(B.5) one has
PN (B.6)

that is, the components of (B.4) and (B.5) are equal (the Einstein ten-
sor GK)‘) and, therefore, variation of - and dup leads to the same field
equations. Thus, one could also vary the basis with constant scalar pro-

duct gm‘5 = <e.s eg> (e.g., an orthonormal basis, see Ref.8).

B
B

Incidently, equating (B.3) to zero, the Palatini principle leadsto Die
= 0, and therefore to the usual correlation of basis and connection forms
(see (2.12)). If the variation in (B.3) is §, then (B.3), together with
(B.6), gives (2.17).

b) From (2.16) and (2.14), one immediately obtains

oL
o
adw 8

% * ec’,6 . (B.7)

Further, we calculate

Z(e)l = i(a)R, B ag)

' aB a
U:Bl Ax 2 +RIU-BI A*(e

*R(g) - xG(g) , R{g) = F,“Ru , (B.8)
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and

78y nwe m g (Ba v Be o - Bg e 4w ot
= % 89,18 el nxe™
= % (EY;TB ‘Ewr;er)'eY nxett
= - *R(£) +% (g " gT;Y);Y * of
= - xR(g) + 5 d « dE . (8.9)

The last set of equations is accompanied by the following steps: (1) in-
sert (3.1); (2) equate the first term to zero and sum the last two be~

cause of the symmetry/antisymmetry contraction; (3) insert (3.1); (4) in-

sert & - &
;u\) o

o]
w ¥ & R Y T8 YB T YT B (5)

HY pauY and e A% e =g *xe -g * e

compare the last terrn to (3.6).
Thz sum of {B.8) and (B.9) gives then (3.2).
c) In order to analyze the expression (3.18), we compute

, o B . a o
i{w A = - +
( aB)e e, z(ea)de ae v ae

i(was)es A emu = ifea)dea A el-l + waa A eu , (B.10)
. af = . +) - .
z(wus)eu Ae z(eu)de A e, deu ,

so that

5, =-% _i(eu)dea Ae - i(ea)dea ney - 26e%) (de A eu)] . (8.11)

. . o (e2 .
In a coordinates basis e = dx, this reduces to
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S, = "5 i(e®) (e n e). (8.12)

If we employ

i(em)c&eel i(ea)dea - <dgg ePre® + Zw“a (B.13)

i(ea)dea = - waa - e, A (8.14)

(in a coordinate basis, (B.13) = O) in (B.12}, we obtain

-1 _ B a
Su T [g‘ (gfieu d ~ eu) * <dgyge”> e u:] (8.15)

~f

(note, that dg = 2g waa). With

- PR TV
gde, =g 9,1 9 9 g ey
(B.16)
- vB _Tp
dg rey=g,.9 g9 g ey
we get
_ - pPB TV _ VB _1p
gde, - dg re =g, [9d°" ¢ ;-9 49" ¢"le,
1 vt _pB _ PT _VB _ B, o
=509, g g% g ") g ey, = gtdg gieien
and therefore
1 1 vt pB _ _pT By
Su 7 wgm[q(g g g g )]aB e\)p. (3.17)

Because of Su = (1/2) Su\’p €yo’ this gives equation (3.20) for Suvp. To

construct the Mgller-form Vu’ we only rewrite (B.12):

S = wdo -

. ” %zj(e“)deau : (8.18)
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d) Consider the characteristic Pontrjagin- and Euler-forms, respectively

(apart from a constant, see Ref.22)

ag _ 1 .0 B8
Rlasl AR —ZRB AROL , (B.19)
afys _ 1 aByés
Flag| » Flye] & T H Rag M Rys = (6.20)

where (B.19) is the coefficient of a in (2.15). W rewrite (8.20) by

using (A.22) and Boguy = R oeg

Flas|  Flys] » * B8 Rlyg) » PLAN (B 1 8y, (B.21)
Using (A.26), we compute (note that B = 1l(e°‘)11‘r‘0‘B corresponds to the
Risci-tensor by g% = ROLB eB; "Ricci-form') the following:
R Ae® oAx(r a %)

|oB| luv]
= R|“3| A% 2(e”) i(eY) E?lwl A eaB]
_ RY 1 aB . Uy OB
_Rlaﬁi Axi(e”) [71?\)/\2 +R]w| A i(eMe™ ]
- -1, aB _ coovy B oluv| caB
—RlaslA*l—ZRe R\)Az(e et + R ij
= aB Yy 0 ag .
_RIO‘B| AKke A%k (R|W| A ke ) RQA*R +R|“Bl A xR
(B.22)

so that (B.20) is exactly the coefficient of 8 in (2.15). But (B.19) and
{B.20) are exact (or "essentially exact" in the latter case, see below)
in terms of the connection 1-forms maB and the basis e insert (2.14)
into {B.19) to get (use (2.20))
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=

>

€

>
o,
1

i medi atel y obtain

B

o B _ o
B, AR d[deAm

g 42 a B Y
a.3wBAwYAma].

(B.23)

(B.26)

Likewise, insert (2.14) into (B.20) to get (use DIIE’O‘6 A * ewsﬁ = 0)

aBy$
RaBARytSA*e

= d(w("B A Z-?Y(S R emsé) -

Bs

g
,\wB,\RYaA*e .

Yo

This can also be rewitten with the help of

w Aw 8 A RY_ A e_ BS

SO - daw

where
= o Y
Aw) deAw Ad*eya
- wao_ A mGB A wYT A * e‘me6
= (du)O‘B + -;— wac A wGB) A st A d x ezYaBS

(8.27)

(8.28)



86

(the last equation may be obtained by D * €a = 0). Note, that 4(w)
vanishes in a basis of constant <5a,58 > = 9“5, because d * o%BY¢ =
de*BY8 _ ¢ (see (A.22) and (A.23)).
Equation (B.27) now reads
aBYS

RaB A Ryé A ke
=d[(dwa A w' +gwa Awl Awt) A xe 66]+1A(w). (B.29)

B $ 3 8 T [ Yo 3 ,

As mentioned above (Section 5, see also Ref. 8), to obtain the field
equations we are allowed to use an orthonormal basis throughout, so that

the last term in (B.29) does not contribute.

The coefficients of a and 8 in (2.15) are now show to be exact (the lat-

ter at least in a constant, e.g, orthonormal, basis) and therefore donot

alter the field equations (as may be seen from

af _
8 JA R[asl A RT=0, (8.30)

s| & R B8 _ g, B.31
,{A o8] % Flys| © (830

which follow from the fact that the variation ofthe variables vanishesat

9A; see also Ref, 24 for a classical treatment of this topic).

Remark. Although in any nonspecialized basis the Euler-form (8.20) fails
to be exact by 1/3 A(w), even then it can be shown that it does not con-

tribute to the field equations. To this end, let us abbreviate (B.29) by

R AR

ot B h 88 L 4 Bw) + % alw) . (8.32)

Since (8.32) is invariant under (2.3), we get

48 () +3 Aw) = dBG) +5 4@ , (8.33)
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where J:as corresponds to the basis {a"}. Explicitly, this can be proven

by use of (2.13) and

wsf\*ea =w8/\*ea —BBA*ea,
=0 B _ 8 B
deA*ea —dws,\*ea +DBBA*ea , (B.34)
;acA;BA*;a'B:wudAw A*eB-DBBA*ea R
where
o _ -1\ a [
B% = (a7’ (8.35)

Now take the basis {Zu} as constant in the above rnanner; then A(J;) in {B.

33) vanishes and we are léft with

%A(w) = d[B(w) - B(u)] , (B.36)

or explicitly

Alw) = - d[(ZdwaB + DBQB),\ BY(S A % eyaséj . (8.37)

But from (B8.34) one has 6 / A(w) = 0, since se" as well as Gmas trans-
form hornogeneously (as tensorial quantities). For the latter, this can be

seen imnediately if one rewrites (2.13) as follows:

S R ‘ (B.38)

APPENDIX C

In order to prove the equivalence of the Landau-Lifschitz 3 -form to
the Landau-Lifschitz pseudo-energy tensor given in Ref.14, we rewrite

(3.24) 1like this (the constant 8sk reintroduced):
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o . ] o (V] v auB o auv
* L = w A ﬂb A ke twa,A %€ -—w A ke ].
tL 167k WY - 8 g °
(c.1)
With the help of
dxe®™ == * A % eBuv LN ean -w’ A% eauB
B8 B8 "B
= oMV deg - wc0 A x ™Y (c.2)
(C.1) immediately reduces to (see Ref.8)
* tﬁL i TP WVG Ay T w oA W A eg) (c.3)
160k BY v H Y
or, in a more compact notation,
o _ 1 asy[u §]
* 5% © WA e A e (c.4)

Ve express (C.4) in a coordinate basis {e" = d"} and obtain for the
K KA

components (%t = Tt *9
16rke ™ = 2620 6% 8w v (c.5)
ouy 8 o YT
9sing.the Christoffel-symbols ruvp = <wuv,ep> (equation (A.25) andthe
identity e s = €ooen * e will be helpful to get (C.5)).

Using the i-elations

“1"'“p|“p+l"‘“n' e
=gl P (c.6)
81...Bp Up+]...un 31...Bp

KpT8 _ KPT Y _ KPT .Y KPT Y KPT Y
sowe = sqw 8y 60116 8, + 8 "o 6u . 5we 8o (c.7)
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§KPT = dKA PT 6K ap'r
oguv oy Av Vv ou

we compute

KA Ao = KPT LV U
Tomk 2 =g = 85,y Ty Ty

+ GKpT re YoV
agve p YT

_GKDT reur v]
0T

- A0 YK LPT v 6 u _ v u 8
g7 sy 80y (r oo T ¢ AR )
Ao YV K g u K ¢ .6
+ -
9" 80 (r w6 Ty T )

£ 5KH 591 Feyr}\v +<SeYI'KvI‘}‘u
yv 6p p T uv 6 Y

with the help of

Ao sYK Ay P

g7 8, Fg 8t g

we obtain at last

16mk tta

- Zg)\[Y GK]u( rvve Fevu - rvve Fevl‘x
-r¥ Feye r“Y“ Teve )

+ 29)\5 gv]u ( FKYS I'e\)u ) FKYU reve)

e oY g zgx[i 5
o u

(c.8)

(c.9)



g gv YH
(g)‘Y KH o g)\K ngl) (ZF\)Y“ Feve _ Fer reuv' I.Vyv reue)
+ MY gpv(rKye Feuv * FKuv re“{e B FK\)S reYu ) FKYU Fe\’e)
+ g Y gV g ot F)\uv Feye - Ty wa ™)
. guY g\,e‘(g)\Yv I,Kue _ r}\yu FKVe)
= 16nk M (c.10)
KX

The last equation and therefore the symmetry of t in the coordinate

LL
basis seems to be obvious. We finally arrived at the Landau-Lifschitz
expression given in (Ref.14), which can be readily verified, setting

ArZ, x>k, y> 2% u>m, v->nandm>p.

Remark. Of course, it would have been much easier to write out (C.5)
explicitly as it stands, but some of the above manipulations (like in-
dex-rearrangings frequently involved) are made to facilitate the com-
parison with the original Landau-Lifschitz expression. Nevertheless, it
shows once more two attributes of the Cartan-formalism employed in (3.

24) - its expediency and beauty.

Acknowledgement. The authors would like to thank Boz. H.K. Urbantke for
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