

UNCEASSIFIED

Security Classificetion

THE USE OF FACES TO REPRESENT POINTS IN n-DIMENSIONAL SPACE GRAPHICALLY

by
HERMAN CHERNOFF

TECHNICAL REPORT NO. 71
December 27, 1971

PREPARED UNDER CONTRACT
N00014-67-A-0112-0051 (NR-042-993)
FOR THE OFFICE OF NAVAL RESEARCH
Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFGRNIA

THE USE OF FACES TO REPRESENT POINTS IN n-DIMENSIONAL SPACE GRAPHICALLY

by
Herman Chernoff

1. Introduction

Graphical representations serve to communicate essential information conveniently and effectively. They are also useful in exploratory work with data. In particular, a scatter diagram is a powerful device for indicating at a glance the essential relationships between two variables which have a bivariate distribution. In a field like cluster analysis, where the concept of cluster is not clear-cut, the actual data may have a profound effect on what the investigator would choose to call a cluster. In the bivariate case tne scatter diagram can be used effectively to help decide which concept to use. For some problems the ingdequacy of the classical linear techniques of normal multivariate analysis may be clearly revealed by graphs which can be used to suggest suitable transformations or other modifications of linear theory.

When dealing with multivariate data involving more than two variables, the scatter diagram can be used only $i_{i n}$ the limited form where two variables are studied at a time. This is unwieldy when the number of variables involved is large. Moreover, subtle relations or effects which require the simultaneous consideration of more than two variables may go undetected when this approach is used.

A new method of representing multivariate data graphically is described here. Briefly, it consists of representing a point in k-dimensional space by a picture of a face whose characteristics are determined by the position of the point. A sample of points in k-dimensional space is represented by a collection of faces.

In the next section, two illustrations are sketched briefly. In one of these where the investigator was interested in a cluster analysis, his task was merely to group together those faces which resemble each other. In the second, where the investigator was interested in detecting time points where a multivariate stochastic process changed character, he had to look at the sequence of faces corresponding to successive points in time to locate the places where the faces change character.

Following sections discuss the potential advantage of this graphical method over that of looking at numerical data and consider some alternative approaches to and predecessors of this method. Detailed documentation, including the data for the illustrative examples and the method of generating the faces, is contained in the appendix.

2. Illustrations

We present two examples illustrating this representation.
Example 1. Fossil Data
Eight measurements were made on each of 88 nummulited specimens from the Eocene Yellow Limestone Formation of northwestern Jamaica. Two measurements thought to be age-dependent vere discaraed. One specimen (Number 34) was rejected because of a permutation in ar carly copy of the measurements for that specimen which cast doubt upon its
accuracy. The data and definition of the measurements appear in Table $2 a$ of Appendix A4. The 87 faces corresponding to the 87 remaining specimens are presented in sequential order as indicated in Figure la. This order was selected after the data and had been grouped into three clusteri.

The number at the bottom and lef't of each face is a randomly selected code number. Because the data were handled in two subgroups, these code numbers are repeated twice, but half were marked with a cross. The 1.d. numbers were added for publication. It is imnediately obvious how these faces divide into three distinct clusters. This division is obvious partly because of the special arrangement of the faces. When copies were made, separated and mixed up, and then given to people to cluster visually, these people selected the same clusters. On several occasions there were one or two discrepancies. The people, having the code number but not the sequence number, had no way of knowing except through the faces what grouping was expected.

A follow-up attempt to separate the large cluster of the first 40 faces (1-41 with 34 omitted) into subclusters seemed to be difficult, and the resulte of various individuals were inconsistent with one another. Since the ranges of the variables in the first 40 specimens were smaller than for the 87 specimens, it seemed reasonable to magnify the effects of variation by renormalizing the data according to the ranges in the first 40 specimens. A new set of faces was produced and is presented in Figure 1b. I clustered these visually. The groups were

(

1

FIG. IB

Figure 10

$$
\begin{aligned}
& \text { I: } \quad(1,2,3,9,22,29) \\
& \text { II: }(4,5,6,7,8) \\
& \text { III: }(10,11,14,23,25,26,27) \\
& \text { IVa: }(13,15,16,17,18,19,20) \\
& \text { IVb: }(12,24) \\
& \text { V: } \quad(21,28,30,31,37,38,39,40,41) \\
& \text { VI: } \quad(32,33,35,36)
\end{aligned}
$$

where IVb seemed to be similar to IVa but slightly different. Professor Switzer also clustered them visually. He obtained:

$$
\begin{aligned}
& \text { Ia: } \\
& \text { Ib: } \\
& \text { Ic: } \\
& \text { Ic: } \\
& \text { II: } \\
& \text { II } \\
& (13,12,15,24,26,26,29) \\
& \text { III: } \\
& \text { IV: } \\
& \text { IV, } \\
& \\
& (30,11,14,20,19,20,21,23,25,26,27,28,31) \\
& \hline
\end{aligned}
$$

which, though not in complete agreement with my groups, has substantial similarity. These grouping attempts were more ambitious than is ordinarily necessary for one can easily choose to leave peculiar cases out of the groupings. Furthermore these lists in numerical order do not indicate which specimens were obviously members of a group and which were regarded as borderline.

Finally, in connection with this example, a graph of $\left(z_{5}, z_{6}\right)$ for these specimens is presented since these variables seemed important in the set of 87 specimens. See Figure 1C.

Example 2. Geological Data
Mineral analysis data from a 4,500-foot core drilled from a Colorado mountainside yielded 12 variables. These represent assays of 7 mineral
$-\infty$
I
$\underbrace{3}-1$
$(--)^{3}(-2)^{2}(-1)$

$(-1) \sim$

I.
i.
i.

$1 .(\theta-1): \frac{i}{i}$

contents by one method and repeated assays of 5 of these by a second method. These 12 variables were observed on each of 53 equally spaced specimens along the core and are presented in Table 2a of Appendix A4.

The 53 faces obtained are shown in Figure 2a in the sequence as marked. They clearly indicate the sequence number where certain critical changes take place. One substantical change begins to take place after the 20th specimen, and those from 25 to 32 are quite distinct from the others. Another substantial change evolves from speciments 32 to 35. Particularly characteristic of the group from 25 to 32 are the tiny and high eyes, round face, bivad smile, with mouth close to the relatively long nose. The group from 36 to 53 are characterized by a different constellation of special features, suggesting that a traditional linear analysis of this 12-dimensional time series may disguise some of the phenomena clearly observable.

In a casually designed experiment to determine (1) whether the large number of variables used interfered with comprehension, and (2) whather certain features had more impact than others, two additional sequences of faces were run. In l'igure 2 b , only the first seven variables were used. In Figure 2c, only the last 5 variables were used. These variables, which mainly controlled the eyes in Figure $2 a$, were made to control the face and mouth. A mistake gave the mouth too large a range, resulting in some peculiar idiosyncracies. The results seemed to indicate that the additional variables add richness to the picture and seem to he?p the viewer. This cannot be regarded as a serious test, especially since the last 5 variables are supposed to measure 5 of the quantities in the first 7.

Mr. Elliott, the geologist who provided me with the data, seemed to feel that the shape of face arried the essential information and that there was an element of luck in the particular choice of facial parameters selected to be controlled by the variables. He was challenged to make selections which he felt would be least informative. This resulted in Figures 2d, $2 e$ and $2 f$ for the 12 , first 7 and last 5 variables respectively.

3. Potential Advantages

Graphical representations have many uses. These include (1) enhancing the user's ability to detect and comprehend important phenomena, (2) serving as a mnemonic device for remembering major conclusions, (3) comunicating major conclusions to others, and (4) providing the facility of doing relatively accurate calculations informaly. The representation by faces seems to have potential in the first two of these uses.

People grow up studyins and reacting to faces all of the time. Small and barely measurable differences are easily detected and evoke emotional reactions from a long catalogue buried in the memory. Relatively large differences go unnoticed in circumstances where they are not important. This implies that the human mind subconsciously operates as a high-speed computer, filtering out insignificant visual phenomena and focusing on the potentially important. Particularly valuable is this flexibility in disregarding non-informative data and searching for useful information. It is this flexibility which is lacking in canned computer programs.

Moreover, this ability is great when applied to the study of faces. Experience with caricatures and cartoons would seem to indicate that
the need for realistic faces on pictures is not great and that lack of realism is compensated, at least in part, by the ability to caricaturize. The ability to relate faces to emotional reactions seems to carry a mnemonic advantage. For example, in looking at the numerical data from the geological problem, major changes in individual variables are readily apparent. The author found that when studying these numerical data visually with no background in the scientific problem, many changes were observed but attention would be distracted quickly by other effects. After a substantial time, a confusion of reactions remained with little useful memory. Certain major characteristics of the faces are instantly observed and easily remembered in terms of emotions and appearance. Finer details and correlations become apparent after studying the faces for a time. The awareness of these does not drive out of mind the original major impressions.

I would anticipate that the faces would have relatively little usefulness as a communication device. If results from a study of data were trarslated from the data to the faces, then the mnemonic advantages of the faces could conceivably make it desirab!e to use faces to communicate a relatively large assortment of results of varying degrees of importance.

Anyone who uses graph paper to analyze data is aware of how precise one can be with rough drawings which are strategically arranged. It would seem that the faces should not be expected to be usefill except in the grossest types of calculation.

4. Alternative Representations

One is led to as.. two questions. First, if this simple idea is so good, why wasn't it thought of before? Second, what alternative representations are there for points in high-dimensional space?

Introspection would suggest that this idea must have been considered before in a simpler form. However, the effective application in this form would require a computier technology which has only recently become available. Thus it is unlikely to have been used in this or similar form in spite of the growing need for a useful representation.

Several more primitive versions have come to my attention. Anderson [1] developed a method of using "glyphs", which are circles of fixed radius with rays of various lengths and directions extending from the boundary. The length of the ray represents the value of a variable. Pickett and White [4] used triangles which represent 4 variables (the three lengths of the sides and the orientation ${ }^{1}$). Both the glyphs and triangles can raise the dimensionality by 2 by locating the center on a point in twodimensional space. I have some memory of being told of a scheme to convert cardiograms or brain waves to sound in the hope that the human processing of sound would be more revealing than looking at graphs. This idea seems interesting, but no follow-up has come to my attention.

Several alternative representations have been considered. The most standard is the use of profiles. Here one represents a point in k-dimen-

[^0]sional space by a series of k bars at heights corresponding to the values of the variables. It would seem desirable to standardize each variable so that the ranges either go from 0 to 1 or center about the mean. In some variations the bars are replaced by a polygonal line.

A relatively novel variation of the profile method is one due to Daetz [3] where a circle is drawn and along k equally spaced rays from the center, points are marked whose distance from the circumference are equal to standardized distances from the means of the k variables. These points are connected to form a polygon.

The polygons resulting from this variation seem to be more readily translatable to human experience than the simplor profiles. They assume "meaningful" shapes, and the tendency to lean in certain directions has mnemonic force.

A new technique of Andrews [2] consists of generating a Fourier Series of the form

$$
f(t)=\frac{x_{1}}{\sqrt{2}}+x_{2} \cos t+x_{3} \sin t+x_{3} \cos 2 t+\cdots
$$

where the x_{i} are the cbserved variables. This method has the interesting property that if x generates f, and y generates g, then

$$
\int_{0}^{1}[f(t)-g(t)]^{2} d t=\sum_{i=1}^{k}\left(x_{i}-y_{i}\right)^{2},
$$

suigesting that the method could be useful for expressing moderately refined calculations relevant to linear analysis. Ansrews has applied this method using the principal components, in place of the original
observations, for the x_{i}. In the normal multivariate model, these x_{i} would be independent, and the distances in the above expression would be quite meaningful. A value of t which consistently and widely separates the $f(t)$ of two classes of observations provides an effective linear function for discriminating between the two classes.

It seems reasonable to conjecture that one may, in the spirit of Daetz, achieve more suggestive curves by plotting $(i f t)+C, t)$ in polar coordinates.

5. Summary

The use of the face representation provides a promising approach for a first look at multivariate data which is effective in revealing rather complex relations not always visible from simple correlations based on two-dimensional Inear theories. It can be used to aid in cluster analysis, discrimination analysis, and to detect substantial changes in time series.

The study of faces does not seem to become more difficult as the number of variables increases. Example 2 indicated that the information content transmitted seems to become richer as the number of variables increases. At this point, one can treat up to 18 variables ${ }^{1}$, but it would be relatively easy to increase that number by adding other features such as ears, hair, facial lines, and even possibly by taking pairs of faces.

This approach is an amusing reversal of a common one in artificial intelligence. Instead of using machines to discriminate between human

[^1]faces by reducing them to numbers, we discriminate between numbers by using the machine to do the brute labor of drawing faces and leaving the intelligence to the humans, who are still more flexible and clever. One question frequently asked is whether some features are more informative than others. The indivicuals who worked on Example 1 felt that one only looked at eyes. Elliott was convinced that only the shapes of the head are relevant. In my opinion, the human will tend to concentrate on what is important in the data. However, this question requires serious study. At present an experiment is under way to determine whether permuting the variables has an effect on the ability of subjects to separate data from a mixture of the two normal multivariate distributions into the appropriate families.

In the meantime, there are a few obrious limitations which require care. When the eyes are very small, the position of the pupil becomes hard to detect. The zero point in the variable which controls the curvature of the mouth may have unusual significance and hence has been avoided in some st,udies. The corner points where the ellipses of the face meet disappears when the face is circular, losing some information. These are minor points and can easily be avoided.

While the method looks promising, it still remains to be seen whether it can produce results not easily obtained by standard computations on the part of an investigator well versed in statistics arlithe field of application. One minor success was on the clustering of a randomiy selected subset of Fisher's iris data which yielded poor results under the King stepwise clustering aigorithm [5]. However, nothing that I would regard as a convincing major success for this method has yet been obtained.

Al. Construction of Faces

Given 18 numbers ($x_{1}, x_{2}, \ldots, x_{18}$) in appropriate ranges (which will usually be 0 to 1), we define a face (see Fig. 3) as follows. Let H be a nominal distance and let $h^{*}=\frac{1}{2}\left(1+x_{1}\right) H$ be the distance from the origin to a "corner" point P. As x_{1} varies from 0 to 1 , h^{*} varies from $H / 2$ to H. Let $\theta^{*}=\left(2 x_{2}-1\right) \pi / 4$ be the angle of $O P$ with the horizontal. Let P^{\prime} be a point symmetric to P about the vertical axis through 0 . Let $h=\frac{1}{2}\left(1+x_{3}\right)$ H represent the distance from 0 to U the top of the head and L the bottom of the head, both on the vertical line through 0 . The upper part of the head is an ellipse which is determined by P^{\prime}, U, and P and an eccentricity x_{4}. Let x_{4} represent the ratio of the width to height of the upper ellipse. Similarly, x_{5} is the same ratio for the ellipse througi P^{\prime}, L, and P. The nose is a vertical line of length $2 h x_{6}$ with 0 as center. The mouth iatersects the vertical line extended through the nose at a point P_{m} whose distance below 0 is $h\left[x_{7}+\left(1-x_{7}\right) x_{6}\right]$. This represents a point x_{7} part of the way from the bottnm of the nose to U. The mouth is part of a circle whose center is $\mathrm{h} / \mathrm{x}_{8}$ above P_{m}. Thus a positive value of x_{8} yields a smile. The nouth is symmetric about the vertical axis through 0 . Its projection on the horizontal axis has the half-length $a_{m}=x_{9}\left(h /\left|x_{j}\right|\right)$ unless $\left(h /\left|x_{8}\right|\right)$ exceeds the half-width w_{m} of the face at the height of P_{m}. In that case $x_{9} w_{m}$ is used. The eyes are located at height $y_{e}=h\left[x_{10}+\left(1-x_{10}\right) x_{6}\right]$ above 0 and at centers which are $x_{e}=w_{e}\left(1+2 x_{11}\right) / 4$ from the vertical axis

Figure 3
[
where w_{e} is the half-width of the face at the neight $y_{e_{e}}$. They are symmetrically slanted at an angle $\theta=\left(2 x_{12}-1\right) \pi / 5$ with the horizontal. The eyes are ellipses with eccentricity x_{13} (height/length before slanting) and half-length $L_{e}=x_{1} 4^{\min \left(x_{e}, W_{e}-x_{e}\right)}$.

The only asymmetry appears in the location of the pupils which move together an amount $r_{e}\left(2 x_{1.5}-1\right)$ from the center of the eye where $r_{e}=\left(\cos ^{2} \theta+\sin ^{2} \theta / x_{13}^{2}\right)^{-1 / 2} L_{e}$ is the horizontal half-length of the slanted eye at height y_{e}.

Finally the eyebrows are symmetrically located with centers at a height $y_{b}=2\left(x_{16}+.3\right) L_{e} x_{13}$ above the eye centers and slant $2\left(x_{17}-1\right) \pi / 5$ with respect to the eye, i.e., $\theta * *=\theta+\left(2 x_{17}-1\right) \pi / 5$ with respect to the horizontal and half-length $L_{b}=r_{e}\left(2 x_{18}+1\right) / 2$.

One final step taken by the programer and which has been left intact, is to normalize both horizontal and vertical axes, each by a multiplicative factor, so that the width of the head at its widest part and its height are both equal to a specified constant. This step, which essentiaily removes two degrees of freedom, was left unaltered for intuitive and aesthetic reasons that are somewhat vague and may require reconsideration when dealing with 18-dimensional data. In the meantime, the effects of x_{1} and x_{3} are almost but not completely eliminated because of the secondary effects of the normalization, which will adiust all of the other feaiures at the same time as the width and height are normalized.

Most of the parameters x_{j} are adjusted to range within a subinterval of $(0,1)$. The exceptions are two of the eccentricities, x_{4} and x_{5}, and the parameter controlling curvature of the mouth, x_{8}.

Ordinarily x_{4} and x_{5} are kept within $1 / 2$ to 2 , and x_{8} is kept within ($-5,5$) . The eccentricity of the eye x_{13} has usually been kept within (. $4, .8$) . Some of the ranges must be controlled caref!lly. We do not want negative length eyes. Others need not be so carefully controlled. It is no calamity to have eyes extend beyond the face.

When the two ellipses of the head meet smoothly, the corner point P is ost, and the variable x_{2} loses effect. Restricting X_{4} and x_{5} to widely separated ranges seems to avoid this problem.

Data ere converted to the x parameters as follows. If the variable Z is used to control the parameter X_{i}, which is to be allowed to range from a_{i} to k_{i}, we let

$$
x_{i}=a_{i}+\left(b_{i}-a_{i}\right)\left|\frac{Z-m}{M-m}\right|
$$

where m and M are the observed minimum and maximum of Z.

A2. Formulae Used on the Construction
We describe a few of the less trivial formulae used in the construction of the faces.

The point P has coordinates $x_{0}=h^{*} \cos \theta^{*}$ and $y_{0}=h^{*} \sin \theta^{*}$. The ellipse through PUP' has equation

$$
\frac{x^{2}}{a_{u}^{2}}+\frac{\left(y-c_{u}\right)^{2}}{b_{u}^{2}}=1
$$

where $b_{u}=h-c_{u}, a_{u}=x_{4} b_{u}$ and

$$
c_{u}=\frac{1}{2}\left[\left(h+y_{0}\right)-\frac{x_{0}^{2}}{x_{4}^{2}\left(h-y_{0}\right)}\right]
$$

The ellipse through PLP' has equation

$$
\frac{x^{2}}{a_{L}^{2}}+\frac{\left(y-c_{L}\right)^{2}}{r_{L}^{2}}=1
$$

where $b_{L}=h+c_{L}, a_{L}=x_{5} b_{L}$ and

$$
c_{L}=\frac{1}{2}\left[\left(-h+y_{0}\right)-\frac{x_{0}^{2}}{x_{5}^{2}\left(-h-y_{0}\right)}\right]
$$

The head is then descrived by $(\pm x(y), y)$ where

$$
\begin{aligned}
x(y) & =x_{4}\left[b_{u}^{2}-\left(y-c_{u}\right)^{2}\right]^{1 / 2} & & y_{0} \leq y \leq h \\
& =x_{5}\left[b_{L}^{2}-\left(y-c_{L}\right)^{2}\right]^{1 / 2} & & -h \leq y \leq y_{0}
\end{aligned}
$$

The mouth is a circular arc with curvature $\left|x_{8} / h\right|$ through $\left(0, y_{m}\right)$ where $y_{m}=-h\left(x_{7}+\left(1-x_{7}\right) x_{6}\right)$. It is described by

$$
y=y_{m}+\left(\operatorname{sgn} x_{8}\right)\left[\frac{h}{\left|x_{8}\right|}-\sqrt{\left(\left.\frac{h}{x_{8}}\right|^{2}-x^{2}\right.}\right], \quad 0 \leq x \leq a_{m}
$$

where

$$
a_{m}=x_{9} \min \left[x\left(y_{m}\right), h /\left|x_{8}\right|\right] .
$$

The eyes are nominally centered at (x_{e}, y_{e}) where

$$
\begin{aligned}
& y_{e}=h\left[x_{10}+\left(1-x_{10}\right) x_{6}\right] \\
& x_{e}=x\left(y_{e}\right)\left[1+2 x_{11}\right] / 4
\end{aligned}
$$

and have half-length

$$
L_{e}=x_{14} \min \left[x_{e}, x\left(y_{e}\right)-x_{\epsilon}\right]
$$

Let (u, v) be the coordinates of an ellipse with center at the origin, half-length L_{e} and eccentricity x_{13}. Then $v=x_{13}\left(L^{2}-u^{2}\right)^{1 / 2}$ describes part of the ellipse. A similar part of the slanted eye can be described for $0 \leq u \leq L$ by

$$
\begin{aligned}
& x=x_{e}+u \cos \theta-v \sin \theta \\
& y=y_{e}+u \sin \theta+v \cos \theta
\end{aligned}
$$

and symmetry is used to complete both eyes.
To place the pupils within the eyes, both are moved a distance $r_{e}\left(2 x_{15}-1\right)$ from the center of the eye, where r_{e}, the horizontal half-length of the slanted eye at height y_{e}, is $\left(u^{2}+v^{2}\right)^{1 / 2}$ when $v / u=\tan \theta$. This yields

$$
r_{e}=L_{e}\left(\cos ^{2} \theta+x_{13}^{-i} \sin ^{2} \theta\right)^{-1 / 2}
$$

The program then normalizes all heights and widths by multiplicative factor k / h and $k / \max x(y)$ respectively. Currently k is set at 2 inches. A copy of the program follows.
 1122: REAO 13,40 I) IFMT
reajes, timpano
READIS,lilirandill, I=1,NRANOI IFIIFID.EQ.OIGO TO 407
NO TADENRANDH 1
07 AYRE
c
C
408 READ 5 ,40511FMT
00403 I=1,NRAND
403 8IHAIII=BIIIt-AII!
C
read in minimun and maximuy of keybom values
RED
READ(5,2IMINYII), MAXYYt)
RANGEYIII=MAXYIII-M*NYIII
$\stackrel{c}{c}$
c
c
6
RSTR=INTRAN
XIOI = Yi! ${ }^{\text {ONOI }}$
JFIIDNO.E G.NYREADIGD TO 3
OO 232 J=IDHO,NRANO
riji=rijel
IDCNT=JDCNTH 1
XIDI-INCNT
3 IF(KSTR.GT.99999.0)GO YO
RSTK=RSIR. $1 C .0$
GO TO 3

ISTR=RSTR
IFIIPLOT.ED.OIGO 1046
DO $45 \mathrm{~J}=1 \mathrm{IIPLOT}$
IFIISTR-NE, IOENT(J)IGO TD 445
ISTREISTR +
45 IFIISTR.LT.IDENTI.IIGO TO 450
45 CONTINUE
46 IPLOT=IPLOT +1

1×2=NUP 2-1
XFACEIIX2I=LHSRHSIIX2)
6 YFACE(1x2)=YSAME(I)
XFACE\{HSTPPI \}*LHSRHS(NSTPPI)

c
YSAMEIII=YO
LHSRHS $11=\times 0$
NLP $1=\mathrm{FiL}+1$
YSAMETMSTPPII=-SMALLH
LHSRHS(NSTPPII $=0.0$
STPSIZ=(YO+SMALLH)/NSTEP
DO 7 I=1,istop
1P1=1+1
MLMI =NLPI-1
YSAiAF(IPI)=YO-I*STPSIZ
XPLUS=DATAC5)*SQRT(BCSU-(YSAME11)-CL1**2)
IFIXPLUS,GT.XHAXIXHAX=XPLUS
LHSNHSIP1)=XPLUS
LHSRHS(ALMI) $=-$ XPLUS
7 Continue
c
NLP2= $\mathrm{fLL}+2$
XFACE(NUP 1)=LHSRHS(1)
YFACE(NIJP 1) = YSAME(1)
OO Y $I=2$,NSTEP
XFACE(NU $(1)=$ LHSRHSit)
YFACEINU $11=Y$ SAME (II
1 $\times 2=$ NLP2- 1
XFACE $(N U+\{\times 2)=$ LHSRHS\{ 1×21
YFACE(NU $1 \times 21=Y S A M E T I!$

- continue

Xr̈aCE (NU世NSTPP1)= LHSRHSINSTPPI)
VFACE(INU +NSTPPI)=VSAMEINSTPPI)
XMIN $=-X$ MAX
Y MAX $=5$ MALLLH
YMIN=-SMALLH
C
C
ANESMALLH HATA(6)
xNOSE(1)=0.0
XNOSE(1) $=0.0$
XNOSE(2) $=0.0$
XNOSE $(2)=0.0$
YNOSE $(1)=A N$
YNOSE(2)=-AN
$\stackrel{C}{C}$
ORAW MDUTH

AXB=SMALLH/ABSIDATA(B)I)
AM=DATA(+) \#AMIN1 $(X G F Y M, A \times 8)$
NSTEP=NMJUTH/2
NMP 1 = NMOUTIT 1
YNDUTHINS TCP $+11=Y M$
XMDUTH(NSTCTP+1)=0.0
STPSILAM/NSTEP

HAYEOAXA
IFIGAPAIBI.LT.O.CISIGN=-1.0
IFIOATARY:GT.0.OISIGN=1.0
DO 11 lal, NSTEP
XPLUS=-4M+\{1-1) कS $\{P \$ 12$
xMOUTHITIEXPLLS
NMMI - NMP1-I
XMOUTH(NMMI) $=-$ XPLUS
YMOUTH(I)AYM+SIGN*(HAY日 -SQRT(XASL-XHLUS**?)
11 YMOIJTHIINMMII=YMCNTHI II

```
DRAW EYES
YE=SMALLH*{OATA(6)*(1.0-0ATA{6))*OATA(I0))
XOFYE=DAYA(4|&SQRT,18USO-(YE-CU)**21
XE=XOFYE*(1,0&2.0*CATA(11)}*0.25
THETA={2.0^DATA(12)-1.0)*P! %0.2
XI3=DATA1131
L=DATA\14)\oplusAM{N1{XE&XDFYE-XE}
L50xL**2
SINTH=SINITHETA)
COSTH=COSITHETAI
```



```
PUP1LX{1) =-XE&R*(2.0*DATA\151-1.G)
PUPILX(2)=XE*H* (2,0*DATA(15)-1.0)
PUPILY(1)=YE
PUPIIY(2) =YE
NSTEP=NEYES/4
STPSII=L/IISTEP'
11=1
12=NSTEP+1
-13=2*NSTEP+1
14=3*MSTEP+1
J}=0.
U=0.0
V=X13&L
YSTAR zV FOSTH
XX=XE+XSTAR
YY=YE+YSTAR
XREYE(IZI=XX
XLEYF(IZ)=-XX
YEYES(IZI):YY
XX=XF-XSTAR
YY=YE-YETTAR
XREYE(14)=XX
XLEYE\14):a-XX
\LEYE(14):#-XX 
UFL
XSTAR =U*COSTH
YSTAK =U#SINTH
XX=XE + XSTAR
YY=YE#YSTAR
XRE YE{I\)=XX
XLEYFII3I=-XX
YEYFS(13)=YY
XX=XE-XSTAR
YY=YE-YSTAN
XRFYF(11):\X
XRFYF||||{XX
XLEYE\I||=-XX
1!=12
13=14
ISTOP=NSTEP-1
DO La j=1,ISTDP
Ur:*STPS:?
```



```
XSTAR=U*COSTH-V*SINTH
YSTARQU*SINTH*V*COSTH
XX=XE&XSTAR
YM=YE&XSFAR
YY=YE&YSTAR
I2=12+1
|&||4|
XPEYE(S2IEXX
XLEYE(II)=-XX
YEYRSIl2isYY
XX:XE=XSTAR
```

YY＝YE－YSTAR
XREYETT4）$=X X$
XLEYE 14 I $=-X X$
YEYESII4｜xYY
XSTAR $=U$ UCOSTH＋V＊SINTH
XSTAR＝U＊COSTH＋V＊SINTH
YSTAR＝U＊SINTH－V＊COSTH 11＝11－1
I3＝13－1
$X X=X E-X S T A R$
$Y Y=Y E-Y S T A R$
XREYEITII $=X X$
X\＆EYEIIII $=-x X$
YEYESCIII＝YY
$X X=X E+X S T A K$
YY＝YE\＆YSTAR
XREYE（！ 3 ）$=\mathrm{XX}$

ORAW EY ᄃRKNWS

THSTSTETHETA＋PJ\＃（2．0＊DATA（17）－i．G）事し， 2
COSTH＝CUS（THSTST）
SINTH＝SIN（THSTSTI

$X X=L B \not \subset C O S T H+X E$
YY＊L日まSINTH＋YB
XRAROW I $1 / E X X$
XLBR（TW（1）$=-x X$
YBROWS（1）＝YY
$X X=-L 5 * C O S T H+X E$
YYx－LR\＃SINTH＋YB
XKBFOU（Z）$=x X$
XLBROW（2）$=-x X$
YBRONS（2）$=Y Y$
ADJUST x AND Y MIN ANG MAX IT JLLIT FI，MARGIXS
XLAB $=X Y I \mathrm{I}$
OEL $1=\left\{x^{H A} A X-X M T N 1 / 8.0\right.$
$X M!N=X M I N=D E L!$
X MAX $=X$ MAX $+0 \angle L 1$
OFL2F（YNAX－YMIN）／8．0
YLAR＝YMIN－i）ELZ
YMIN＝YHIN－2．0＊DEI 2
DRAW CURVES UN CAL COMP

LAREL PEUT HITIT S DIGIT NUMJEM
CALL ITUMPUIAMROE S，XLAE，YIAS，G，ISI．I
ORAM FACE
CALL LIAESGIAMDOES，NU，XFACF，YFACHI
CALL IINESCIAMUDES，NL，XFACE（HUPL），YFAN．（AIVIII
NOSE
CALL LINEGAAMCDES，D，XNOSEIII，YVAE＝I！！
CALL LINEG（AMOUES ；I，XNOSEIT），YNJSEIてII
MUUTH
CALL LIPIS SGIAMODES，NLOUTH，XMOUTH，YMIUTII
EVES
CALL LINESSIAMODES，NEYES，XLEYE，YFYEKJ

```
            CALL LINESGIAMONES,NEYES,XREZYE,YEYESI
C
C EVEBROWS
    CALL LINEGIAMODES,0,XRBROW(1),YRFOWS(11)
    CALL LINEG(AMODES,1,XRBROW(2),YBROWS{2)}
    CALL LINEG(AMODES,O,XLBROW(1),YBROHS11)
    CALL LINEG(AMODES,1,XLBPOW(2),YHRUWS(2))
C
C. PUPILS
            CALL POINTGIAMODES, 2,PUPILX,PUPILY)
            YRMIN=YRMAX
            YRMAX=YRMAX+250.
        4 9 ~ C O N T I N U E ~
        50 CONTINUE
C
            WRITE(6,402)
    401 FORMAT(F10.3,2X,1101
            WRITE(6,401)IIDI(J),IDENT(J),J=1,NPLOTS)
C
            CALL EXITG(AMODES)
C
            STOP
            END
/*
//FT16F0O1 DD UNIT=2314,VOLUME=SER=SYSO3,DISP=(NEW,PASS),XXX
/1 OCB=(RECFM=F,BLKSIZE=6CO),SPACE=(TRK, (15,5), (KLSE)
//PLOTTAPE DD CSNAME=PLOTTAPE,DISP=(NEW,KEEP),VOLUME=PFIVATE,
xXx
//. UNIT = TAPE7,LABEL=(,BLP)
//LKED.SYSLMOD DD DSNAME=J683.LIBRARY(FACES),UNIT=2314, xxX.
/1 SPACE=(TRK,(10,5,1),RLSF),VOLJME=SER=SYSO4, XXX
// DISP=(NEW,KEEP)
/*
```

A3. Dictionary of Parameters and Features They Control
The following table provides a dictionary and ranges within wh:ch the x_{i} are typically restrained.

Table 1
Range

$(0,1)$		constrols	h^{*}	distance from 0 to P
$(0,1)$	X_{2}	constrols	θ^{*}	angle between $O P$ and horizontal
$(0,1)$	x_{3}	controls	h	half-height of face
$(0.5,2)$	X_{4}	is		eccentricity of upper ellipse of face (width/height)
$(0.5,2)$	x_{5}	is		eccentricity of lower ellipse of face (width/height)
$(0,1)$	x_{6}	controls		length of nose
$(0,1)$	x_{7}	controls	P_{m}	position of center of mouth
$(-5,5)$	${ }_{8}$	controls		curvature of mouth (radius $=h^{\prime} \mathrm{x}_{8}$)
$(0,1)$	${ }^{\prime} 9$	controls	a_{m}	length of mouth
$(0,1)$	${ }^{10}$	controls	y_{e}	height of centers of eyes
$(0,1)$	${ }^{X_{11}}$	controls	${ }^{\text {e }}$	separation of centers of eyes
$(0,1)$	X_{12}	controls	θ	slant of eyes
(0.4,0.8)	X_{13}	is		eccentricity of eyes (height/width)
$(0,1)$	${ }_{1} 14$	contro"s	L_{e}	half-length of eye (I_{e} also depends in part on x_{10} and ${ }^{e} x_{11}$)
$(0,1)$	x_{15}	controls		position of pupils
$(0,1)$	${ }^{X_{16}}$	controls	y_{b}	height of eyebrow center relative to eye
$(0,1)$	${ }^{17}$	controls	$\theta * *-\theta$	angle of brow relative to eye
$(0,1)$	${ }^{1} 18$	controls		length of brow

A4. Data for Examples
Example 1: In Table 2a we present a list of variables $Z_{1}, Z_{2}, \ldots, Z_{6}$ preceded by a specimen number. At the end of the list are appended the minima m_{i} and maxime M_{i} for the six variables $Z_{i}, i=1,2, \ldots, 6$ used in the faces. The 34 th specimen was omitted from the faces because an error in copying hai made it seem unreliable.
(In a second study, the 40 specimens from 1 to 41 , omitting 34, were used. The minima and maxima used for that study are listed as $\left.\mathrm{m}_{1}^{*}, \mathrm{M}_{1}^{*}.\right)$

The variables are measurements of 87 nummulited specimens from the Eocene Yellow Limestone Formation, Jamaica [6]. They represent

$$
\begin{aligned}
& \mathrm{Z}_{1}=\text { inner diameter of embryonic chamber (in microns) } \\
& \mathrm{Z}_{2}=\text { total number of whorls } \\
& \mathrm{Z}_{3}=\text { number of chambers in first whorl } \\
& \mathrm{Z}_{4}=\text { number of chambers in last whorl } \\
& \mathrm{Z}_{5}=\text { maximum height of chambers in first whorl (in microns) } \\
& \mathrm{Z}_{6}=\text { maximum height of chambers in last whorl (in microns) }
\end{aligned}
$$

Table $2 b$ identifies the feature variables controlled by the data and the ranges $\left(a_{1}, b_{1}\right)$ which correspond to the minima ($\left.m_{1}, M_{i}\right)$ in the first set of faces and (m_{1}^{*}, M_{1}^{*}) in the second set. Tables $2 c$ and $2 d$ are the dictiunary relating specimen identity (i.d.) numbers to random code numbers for the two studies.

Table 2a
6 Measurements on 87 Nummulited Specimens
from the Eocene Yellow Limestone Formation, Jamaica

ID	Z_{1}	Z_{2}	z_{3}	Z_{4}	Z_{5}	z_{6}
1	160	51	10	28	10	450
2	155	52	8	27	85	400
3	141	49	11	25	72	380
4	130	50	10	26	75	560
5	161	50	10	27	70	665
6	135	50	17	27	88	570
7	165	50	11	23	95	675
8	150	50	9	29	90	580
9	148	48	8	26	85	390
10	150	45	7	31	60	435
11	120	40	6	33	55	440
12	120	51	8	32	56	650
13	100	42	8	30	55	640
14	100	44	9	35	48	430
15	150	40	7	29	65	650
16	90	415	9	30	70	655
17	75	42	8	28	60	640
18	120	47	7	35	67	645
19	200	43	9	30	$6 ?$	660
20	120	41	8	28	63	530
21	105	50	7	27	64	435
22	210	52	9	26	67	440
23	90	40	10	25	68	430
24	110	52	11	25	60	530
25	100	43	9	25	70	440
26	90	44	7	36	63	454
27	70	45	8	23	64	450
28	100	48	9	27	65	355
29	130	52.	9	25	70	380
30	90	45	11	37	74	350
31	80	46	10	32	78	450
32	95	49	10	25	82	260
33	70	44	12	30	85	262
35	95	51	15	31	70	270
36	100	46	11	24	76	270
37	95	48	10	27	74	355
38	85	47	12	25	73	360
39	70	48	11	26	78	365
40	80	54	10	21	80	370
41	85	55	13	33	81	355

Table 2b
tails on Faces for Fossii Data

Feature	First Set of Faces		Second Set of Faces	
	Range	Data	Range	Data
x_{1}	$(0.3,0.8)$	z_{1}	0.9	
x_{2}	(0.1,0.5)	Z_{2}	(0.2,0.8)	z_{1}
x_{3}	0.7		0.9	
x_{4}	(1.2,2.0)	Z_{3}	0.75	
x_{5}	1.0		(1.0,2.0)	z_{4}
x_{6}	0.3		0.4	
x_{7}	$(0.2,0.8)$	Z_{4}	0.5	
x_{8}	$(0.5,5.0)$	z_{5}	$(-4.0,4.0)$	23
${ }^{9} 9$	0.5		$(0.2,0.8)$	Z_{4}
x_{10}	0.5		0.5	
${ }^{11}$	0.5		0.5	
${ }_{12}$	0.5		(0.2,0.3)	Z_{5}
${ }^{x_{13}}$	0.6		0.6	
${ }^{14}$	$(0.2,0.8)$	z_{6}	(0.2,0.8)	z_{6}
${ }_{15}$	0.5		0.5	
x_{16}	0.5		0.5	
x_{17}	0.5		0.5	
x_{18}	0.5		0.5	

Table 2c
Dictionary for 8 ? Faces in Figure 1A

ID(1)	Integer	ID(1)	Integer	ID(1)	Integer	ID(1)	Integer
1.000	2069660917	46.000	2069660917	43.000	10975	87.000	$75 \times$
2.000	1998401550	47.000	1998401560	8.000	11475	53.000	$11475 \times$
3.000	490779840	48.000	49077540	35.000	11518	79,000	11518x
4.000	52082753	49.000	52082.753	39.000	11675	83.000	$11675 \times$
5.000	1328985342	50.000	1328985342	26.000	11704	71.000	$11704 \times$
6.000	2.79230547	51.000	279230547	21.000	12820x	66.000	12820
7.000	776034734	52.000	776034734	16.000	13111	61.000	13111×
8.000	1147586107	53.000	114?586107	5.000	13289x	50.000	13289
9.000	929066642	54.000	929066642	23.000	13627×	68.000	13697
10.000	469454757	55.000	459454757	31.000	$14317 \times$	76.000	14817
11.000	271181821	56.000	271181821	18.000	14888	63.000	14888x
12.000	792566613	57.000	792566613	22.000	15697	67.000	$15697 \times$
13.000	1973485997	58.000	197348599?	24.000	16034	69.000	$16034 \times$
14.000	494223664	59.000	$4942 ? 3664$	45.000	16079	78.000	16128
15.000	2097857899	60.000	2097857895	33.000	$16128 \times$	17.000	17081×
16.000	1311192047	61.000	1311192047	32.000	17081	62.000	18750
17.000	1875032062	62.000	1875032052	1;.000	18750x	70.000	19083
18.000	1488829956	63.000	1488829956	25.000	19083x	58.000	19734
19.000	285615648	64.000	285615648	13.000	19734×	47.000	$19984 \times$
20.000	716244891	65.000	716244891	2.000	19984	46.000	20696
21.000	1282041602	66.000	1282041602	1.000	20696x	80.000	20726
22.000	1569774463	67.000	1569774463	36.000	20726x	60.000	2.0978
23.000	13627962.46	68.000	1362796246	15.000	$20978 \times$	84.000	21101
24.030	1603411267	69.000	$160341126{ }^{7}$	40.000	2.1101x	85.000	26989x
25.000	1908361913	70.000	1908361913	41.000	26989	56.000	27118
26.000	1170403846	71.000	1170403846	11.000	$27118 \times$	72.000	27233
27.000	27233202	$7 \times .000$	27233202	27.000	$27233 x$	51.000	? $9233 \times$
28.000	294409203	7. 000	294409203,	6.000	27923	64.000	28561
27.000	333152133	14.000	333152133	19.000	$28561 \times$	73.000	29440x
30.000	798031602	75.000	798031602	28.000	29440	7!.000	33315
31.000	1481? כ¢ ¢¢	75.000	1481759299	29.000	$33315 \times$	55.000	$46945 \times$
32.000	1708167681	77.000	1708167681	10.000	116945	48.000	49077
33.000	161282147.1	78.000	1612821471	3.000	$49077 \times$	50.000	$49422 \times$
35.000	1151870663	79.000	11.51870663	14.000	49422	81.000	$51114 x$
36.000	2072638983	50.000	2072638983	37.000	51114	49.000	$52082 \times$
37.000	511149294	81.000	511149294	4.000	5208:	86.000	5:387
38.000	951590258	82.000	951596258	42.000	$57887 \times$	65.000	$71524 \times$
39.006	1167588997	83.000	1167588997	20.000	7162.	52.000	77603
40.000	2110189940	84.000	2.10189940	7.000	77603 x	88.000	78283
41.000	269801375	85.000	259897375	44.000	78283x	57.000	7925Ex
42.000	578877121	86.000	578877161	12.000	792.56	75.000	$79803 \times$
43.000	108752.401?	87.000	1087524017	30.000	79803	54.000	9×906
44.000	782834.102	88.000	$7828) 4102$	9.000	92906×	8 c . 0000	55159
45.000	1607930792			38.000	95159x	,	

Table 2d
Dictionary for 40 Faces in Figure 1B

Example 2: Table 3 a contains specimen number (i.d. and 12 measurements) for 53 specimens taken at intervals from a 4500-foot core drilled from a Colorado mountainside to locate a deposit of molybdenum. The 12 variables $Z_{i}, i=1,2, \ldots, 12$ represent mineral contents. The last 5 variables are measurements by different methods of 5 of the minerals covered in the first seven measurements. At the bottom of the table are the minima and maxima m_{i} and M_{i}. Further identification of the data has not been furnished me. When no trace of the element appeared, the nominal value 0.001 was used.

Six different sets of faces were obtained. The feature variables and the ranges $\left(a_{i}, b_{i}\right)$ corresponding to each set are identified in Table 3b.

Table $3 c$ indicates the two-way dictionary between the specimen number (ID) and the randomly generated code number. In the second part, the first five digits of the code number is presented, but in the first part the code has up to ten digits.

A copy of the program is presented in Table 4. This program was put into a memory file in compiled form and requires a simpler program to enter the relevant data and parameters to drive the main program. This program was constructed by Mrs. Elizabeth Hinkley. At this time the cost of drawing these faces is about 20 to 25 cents per face on the IEM 360-6\% at Stanford University using the Calcomp Plotter. Most of that cost is in the computing. I believe that with some attention to cost-cutting it may be possible to reduce this cost considerably. For example, many square roots needed for neighboring points could be replaced
by linear approximations derived from Taylor Expansions based on the preceding point,

I wish to thank Mrs. Hinkley for her exceifent work in assembling the program so that it cculd be used conveniently.

Table 3a

Data on 12 Variables Representing Mineral Contents From a 4500-Foot Core Drilled from a Coloradc Mountainside

ID	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}	Z_{6}	Z_{7}	Z_{8}	Z_{9}	z_{10}	z_{11}	Z_{12}
200	320	105	057	050	001	001	001	060	020	250	210	370
201	280	150	040	050	001	001	001	060	040	210	130	420
202	260	165	033	050	001	001	001	060	010	250	290	440
203	305	110	044	040	001	001	001	050	050	260	140	250
204	290	160	035	035	001	001	001	050	020	210	060	510
205	275	130	047	035	001	001	001	050	020	230	090	570
206	230	155	035	035	001	001	001	080	020	270	170	400
207	300	115	050	060	001	001	001	120	010	280	190	300
208	250	130	041	030	005	001	001	070	030	250	110	330
209	285	120	047	040	001	001	001	070	010	240	170	280
210	280	105	047	070	001	001	001	060	020	370	070	300
211	300	135	050	040	001	001.	001	120	060	250	160	200
212	280	110	056	050	001	001	001	150	010	280	270	280
213	305	080	065	080	005	001	001	130	010	300	260	260
214	230	175	029	035	001	001	001	270	030	250	140	240
215	325	060	052	090	001	001	001	160	010	280	260	170
216	270	170	025	040	001	001	001	160	010	290	070	330
217	250	185	031	025	001	001	001	120	001	260	080	330
218	260	185	030	015	001	001	001	270	080	480	010	330
219	270	185	032	010	005	001	001	180	040	450	020	220
220	325	045	053	005	020	001	001	600	080	660	020	250
221	315	090	047	005	020	001	001	410	200	600	060	260
222	335	100	047	010	040	001	001	360	080	590	110	170
223	310	010	049	005	080	018	001	640	240	630	060	190
224	410	001	049	001	075	032	001	760	440	800	001	001
225	360	001	048	001	080	055	001	770	260	770	010	010

Table 3a (Cont'd.)
$\begin{array}{lllllllllllll}\text { ID } & \mathrm{Z}_{1} & \mathrm{Z}_{2} & \mathrm{z}_{3} & \mathrm{Z}_{4} & \mathrm{z}_{5} & \mathrm{z}_{6} & \mathrm{z}_{7} & \mathrm{z}_{3} & \mathrm{Z}_{9} & \mathrm{z}_{10} & \mathrm{Z}_{11} & \mathrm{z}_{12}\end{array}$ $\begin{array}{lllllllllllll}226 & 310 & 015 & 051 & 001 & 105 & 036 & 001 & 660 & 380 & 640 & 001 & 010\end{array}$ $\begin{array}{lllllllllllll}227 & 420 & 005 & 049 & 001 & 095 & 056 & 001 & 620 & 520 & 680 & 001 & 001\end{array}$ $\begin{array}{lllllllllllll}228 & 415 & 020 & 049 & 005 & 025 & 036 & 001 & 370 & 220 & 340 & 001 & 001\end{array}$ $\begin{array}{lllllllllllll}229 & 420 & 005 & 041 & 0 C 1 & 070 & 060 & 001 & 630 & 510 & 580 & 001 & 001\end{array}$ $\begin{array}{lllllllllllll}230 & 450 & 005 & 040 & 001 & 090 & 070 & 001 & 690 & 570 & 630 & 001 & 101\end{array}$
 $\begin{array}{lllllllllllll}232 & 380 & 010 & 027 & 025 & 035 & 039 & 001 & 350 & 320 & 400 & 001 & 270\end{array}$ $233 \quad 4330010 \quad 025 \quad 030 \quad 030 \quad 025 \quad 001 \quad 340$ $\begin{array}{lllllllllllll}234 & 410 & 075 & 022 & 010 & 005 & 015 & 001 & 170 & 170 & 170 & 001 & 060\end{array}$ $\begin{array}{lllllllllllll}235 & 520 & 055 & 024 & 040 & 005 & 001 & 001 & 210 & 190 & 190 & 001 & 180\end{array}$ $\begin{array}{lllllllllllll}236 & 385 & 135 & 18 & 010 & 005 & 008 & 001 & 140 & 200 & 260 & 001 & 020\end{array}$ $\begin{array}{lllllllllllll}237 & 535 & 065 & 010 & 020 & 001 & 001 & 001 & 110 & 230 & 270 & 001 & 070\end{array}$ $\begin{array}{lllllllllllll}238 & 550 & 095 & 001 & 010 & 001 & 001 & 001 & 050 & 230 & 270 & 001 & 030\end{array}$ $\begin{array}{lllllllllllll}239 & 510 & 100 & 001 & 001 & 001 & 001 & 001 & 190 & 150 & 230 & 001 & 110\end{array}$ $\begin{array}{lllllllllllll}240 & 510 & 095 & 001 & 040 & 001 & 001 & 001 & 140 & 100 & 150 & 001 & 040\end{array}$ $\begin{array}{lllllllllllll}241 & 385 & 180 & 010 & 001 & 001 & 001 & 001 & 050 & 050 & 300 & 001 & 050\end{array}$ $242505125 \quad 001 \quad 001 \quad 001 \quad 001$ $243 \quad 470 \quad 090 \quad 001 \quad 020 \quad 001 \quad 001$ $\begin{array}{lllllllllllll}244 & 465 & 110 & 001 & 035 & 001 & 001 & 001 & 260 & 440 & 500 & 001 & 060\end{array}$ $\begin{array}{lllllllllllll}245 & 400 & 140 & 001 & 015 & 001 & 023 & 001 & 330 & 400 & 390 & 001 & 040\end{array}$ $\begin{array}{lllllllllllll}246 & 415 & 105 & 015 & 02 j & 040 & 032 & 001 & 220 & 190 & 270 & 001 & 010\end{array}$ $\begin{array}{lllllllllllll}247 & 435 & 075 & 010 & 015 & 001 & 069 & 001 & 370 & 360 & 500 & 001 & 010\end{array}$ $\begin{array}{lllllllllllll}248 & 370 & 145 & 010 & 010 & 005 & 012 & 040 & 130 & 080 & 330 & 001 & 030\end{array}$ $\begin{array}{llllllllllllll}244 & 380 & 210 & 001 & 001 & 001 & 001 & 020 & 070 & 001 & 050 & 001 & 030\end{array}$ $\begin{array}{lllllllllllll}250 & 430 & 065 & 001 & 005 & 020 & 001 & 075 & 130 & 070 & 300 & 001 & 020\end{array}$ $\begin{array}{lllllllllllll}251 & 420 & 080 & 030 & 001 & 005 & 026 & 001 & 050 & 100 & 350 & 001 & 050 \\ 252 & 425 & 060 & 035 & 005 & 001 & 001 & 030 & 100 & 010 & 340 & 001 & 010\end{array}$

m	250	001	001	001	001	001	001	001	001	050	001	001
M	520	210	065	090	105	071	075	770	570	800	270	570

Table 3c

Dictionary for Specimens in Figures 3A-3F

ID(1)	Integer	ID(1)	Integer	ID(1)	Integer	ID(1)	Integer
200.000	1532932388	227.000	1290947939	205.000	10617	218.000	208.1
201.000	633332057	228.000	934725132	229.000	10824	222.000	2087.3
202.000	1482927467	229.000	1082415719	231.000	11352	204.000	21172
203.000	201421:143	230.000	827015496	238.000	11548	235.000	21684
204.000	2117264577	231.000	1135277888	208.000	11980	232.000	22326
205.000	1061714849	232.000	223260021	209.000	12003	219.000	23251
206.000	799844220	233.000	677241638	242.000	12375	225.000	24447
207.000	1881658967	23 ir. 000	736880766	247.000	12524	246.000	26279
208.000	1198072647	235.000	216841913	212.000	12894	244.000	29127
209.000	12003038.7	236.000	182282832	227.000	12909	210.000	45544
210.000	45544681	237.000	1315876802	223.000	13115	250.000	46205
211.000	965275235	238.000	1154814408	237.000	13158	251.000	51382
212.000	1289405207	239.000	8553670	245.000	13385	248.000	6178.5
213.000	775832172	240.000	2027610988	202.000	14829	216.000	62992
2.14.000	2038093867	24.000	1787364720	200.000	15329	201.000	63333
215.000	1879453019	242.000	1237594804	224.000	16008	233.000	67724
216.000	629926610	243.000	1876749633	247.000	16379	226.000	71100
217.000	82154560	244.000	291274695	220.000	16720	234.000	73688
218.000	2087188546	245.000	1338567352	221.000	16795	252.000	75608
219.000	232.518877	246.000	262799092	241.000	17873	213.000	7758;
220.000	1672011846	247.000	1637961012	236.000	18228	206.000	79984
221.000	1679574727	248.000	617857791	243.000	18767	217.000	82154
222.000	2087280521	249.000	1252460092	215.000	18794	230.000	82701
223.000	1311559055	250.000	462058350	207.000	18816	239.000	85536
224.000	1600884577	251.000	513820898	203.000	20142	228.000	93472
225.000	244472376	252.000	756088099	240.000	20276	211.000	96527
226.000	711006721			214.000	20380		

References

[1] Anderson, E. (1960), "A semigraphical method for the analysis of complex problems", Technometrics 2, 387-391.
[2] Andrews, D.F., "Plots of high dimensional data", to be published in Biometrika.
[3] Daetz, D., "A graphical technique to assist in sensitivity analysis", unpublished report.
[4] Pickett, R., and White, B.W. (1966), "Constructing data pictres", Proc. of 7th Nat'1. Symp. of Soc. for Info. Display, 75-81.
[5] Solomon, H. (1970), "Numerical Taxonomy", Stanford Technical Report No. 3.67, 1-44.
[6] Wright, R.M., ard Switzer, P., "Numerical Classification Applied to Certain Jamaican Encene Nummuliteds", submitted for publication to the Journal of the Int. Assoc. for Math. Geology.

[^0]: $l_{\text {I have felt greatly indebted to Pickett for many conversations we had }}$ in which he emphasized how the human ability to process subconsciously large amounts of information of textures is fundamental to the ability to lo:omote and, indeed, to exist. After having developed the faces, I noticed his paper containing the triangie representation and realized that I had seen it before but had not paid special attention to it in the form presented.

[^1]: We shall note in the appendix that the normalization of the wirth and length of the faces almost eliminates two of these variables.

