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Summary - Single gene associated effects on polygenic traits may often be confounded
with the effects of a non-random genetic relationship between individuals sharing a
particular allele of the investigated gene. Two different statistical models are suggested to
separate the single gene associated effects from the remaining additive genotype: a fixed
effect model with ancestor variables and a mixed model with random effects of the additive

genotypes of the individual animals (individual animal model). The use of the models is
illustrated by an example from an experiment with the chicken major histocompatibility
complex (MHC) gene region.

single gene effects / fixed effect model / animal model / chicken / major histocom-
patibility complex

Résumé &mdash; L’utilisation des modèles à effets fixes et des modèles mixtes pour estimer

des effets de gènes individuels sur des caractères polygéniques. Des effets de gènes
individuels sur des caractères polygéniques sont souvent confondus avec des effets d’une
relation génétique non aléatoire entre individus partageant un allèle étudié. Deux modèles
statistiques différents sont proposés pour séparer les effets associés au gène unique du
génotype additif restant: un modèle à effets fixes représentant les contributions des ancêtres
et un modèle à effets aléatoires des génotypes additifs individuels (modèle individuel

animal). L’emploi des modèles est illustré par une expérience impliquant la région génique
du complexe d’histocompatibilité chez la poule.
effet de gène individuel / modèle à effets fixes / modèle animal / poule / complexe
majeur d’histocompatibilité
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INTRODUCTION

The possibilities of detecting genetic polymorphism in domestic animals by
analysing gene products or by direct DNA analysis are steadily improving. The
utilization of this kind of information in selection programmes or by naked gene
transfer techniques is dependent on an increased knowledge of single gene associ-
ated effects on polygenic traits. Such effects are often analysed by direct comparison
of the average performance of individuals grouped by their genotype for the poly-
morphic gene. However, since relatives have an increased probability of sharing any
particular allele, such groups are not always expected to be randomly related. The
single gene associated effects may then be confounded with the effect of a system-
atic sampling of other unidentified genes affecting the investigated polygenic trait.
The problem will be magnified in small, closed populations of animals with high
reproductive rates. The obvious solution to this problem will be to restrict the anal-
ysis to comparisons of sibs or inbred lines segregating for the polymorphic gene.
This, of course, also sets limits to the type of material that may be analysed and
to the efficiency of the analysis. The need for statistical models that may separate
single gene associated effects from the remaining genotype of any individual in a
heterogeneous population is, therefore, obvious.

The present paper describes 2 models that may be used for this purpose.
Within certain limitations, they are applicable in most pedigreed populations.
Individuals from several generations can be analysed together. It should be noted
that the models are not designed to study the nature of the single gene associated
effects. To distinguish between direct effects of the investigated gene and effects
caused by linkage disequilibrium with other genes or to determine linkage distance,
appropriate experiments should be carried out. However, if the investigated material
can be divided into distinct subpopulations, applying the present models on each
subpopulation separately will often result in variable estimates if the single gene
associated effects are caused by linkage disequilibrium.

MODELS FOR ESTIMATION OF SINGLE GENE

ASSOCIATED EFFECTS

If a random genetic relationship is assumed between individuals sharing the same
genotype for the investigated gene, then the single gene associated effects can be
analysed according to the following basic model of fixed effects.

where

I i!!. is the polygenic trait performance of the kth individual in the ith
non genetic fixed effect classification with the jth genotype for the

investigated gene



a is a constant

S, is the effect of the ith non genetic fixed effect classification (herd, year,
season, etc)

Gj is the effect of the jth genotype for the investigated gene
Ciik is a random error.

Estimates of the Gj parameters in the model may be obtained by least squares
means analysis. The significances of the contrasts between the estimates may be
tested according to standard general linear models procedures. The Gj effects reflect
the total effect associated with the two alleles constituting the genotype, both the
independent effect associated with each allele and any interaction effects between
them. Direct gene action may not be distinguished from linkage effects.

If the total number of individuals recorded is n, the number of non-genetic fixed
effect classifications is f, and the number of genotypes for the investigated gene is
f2 , Model 0 may be written in matrix notation as follows:

where

Y is a (n x 1) vector of ll jk performance records
Xl is an (n x f ) incidence matrix for the constant, the Si effects

and the Gj effects ( f = 1 + fl + f2)
bl is a ( f x 1) vector including the constant, the Si effects

and the Gj effects

e is an (n x 1) vector of random errors.

As pointed out previously, a random genetic relationship within each Gj group
may normally not be assumed, and the Gj estimates according to Model 0 may
then be confounded.

Ancestor model

To avoid the confounding effects, the model should be extended to include inde-
pendent parameters estimating the remaining additive genotype affecting the poly-
genic trait. Such independent parameters may be estimated when the investigated
gene shows variation within family lines or family groups. If the genetic relationship
between each of the individuals included in the analysis and each of the complete set
of ancestors in a common base population is known, the basic principles of several
general linear models estimating crossbreeding parameters (reviewed by Fimland,
1983) may be applied.

The present model is modified to deal with individual gene contributions rather
than breed contributions, and the fixed effects of these contributions are regarded
as correction terms rather than parameters to be estimated. The extended model
may be written as follows:

r



where

(3m is the fixed, additive effect of genes originating from the mth base

population ancestor
r is the number of base population ancestors

Bmij/,; is the expected proportion of the total genotype of the kth individual
contributed by the mth base population ancestor, E Bmijk = 1.0 for

each k, (m = 1, 2, ... , r).
The Gj effects may be estimated and tested according to the same standard

procedures as under Model 0. Model 1 may be written in matrix notation as follows:

where

X2 is a (n x r) relationship matrix of Bmijk values showing the expected
genetic relationship between each of the recorded individuals and
each of the base population ancestors.

b2 is a (r x 1) vector of (3111 regression coefficients.

Individual animal model

The confounding effects of the remaining additive genotype for the polygenic trait
may also be eliminated in a mixed model including the random effects of the
individual additive genotypes of the recorded animals. The use of an individual
animal model to estimate single gene associated effects was suggested by Kennedy
and Schaeffer (1990). Basically, this model may be written as follows:

where

Uk is the random, &dquo;single gene free&dquo; additive genetic effect on the polygenic
trait in the kth individual.

In matrix notation, this model may be written as follows:

where

Z is an (n x n) incidence matrix for the individual additive genotypes for
the polygenic trait

u is an (n x 1) individual additive genotype effect vector of Uk values.

It has been shown by Henderson that the fixed effect vector (bl) and the random
effect vector (u) may be obtained by computing the best linear unbiased estimates
(BLUE) for the fixed effects and the best linear unbiased predictors (BLUP) for



the random effects. If all animals have single records, the radom error covariance
is assumed to be 0 and the random error variance is equal for all individuals, the

following mixed model equations may be applied (Henderson, 1973, 1977):

where

A is an (n x n) individual additive genetic relationship matrix

h2 is the heritability of the investigated trait when the single gene associated
variation is not included in the additive genetic variance component
(&dquo;single gene free&dquo; heritability).

The appropriate heritability may be obtained from variance components esti-
mated from the equivalent model by restricted maximum likelihood (REML) and
the derivative free approach described by Meyer (1988, 1989).

To ensure maximum precision of the b1 and u solutions, individuals without
records in y that contribute to the genetic relationship between individuals with
records in y should be included in A. The extended A should always include
the base population individuals and their common ancestors during the last

preceding generations. If the total number of individuals with and without records
in the analysis is n’, the dimension of the extended A will be (n’ x n’) and the
corresponding dimensions of Z and u will be (n x n’) and (n’ x 1). BLUP solutions
(u) will consequently be computed for all animals, including individuals without
records in y.

To compute the least squares means of the fixed effects under Model 2 and the
contrasts between them and to test the significances of the contrasts, a simplified
approach may be applied. The complete mixed model equations may be condensed
by absorbing the random variables (u) into the fixed effects design matrix (XiXl).
This condensed ( f x f ) matrix may then be applied to estimate and test the
contrasts according to standard least squares procedures (see eg Searle, 1982).

The estimates of the contrasts between the Gj effects will be directly comparable
with the contrasts obtained under Model 0 and Model 1. However, to compute least

squares mean estimates of the Gj effects that can be directly compared with the
estimates under Model 0 and Model 1, the average BLUP value of individuals with
records in y must be included in the estimates. This will require the solution of the

complete set of mixed model equations to obtain individual BLUP values.

Modifications of the models

The Gj effects in the models may be decomposed according to the following general
formula:



where

81’ is the average linear effect of the pth allele of the investigated gene
v is the number of alleles of the investigated gene
AI, is the frequency of the pth allele carried by the individual (Ap = 0, 1 or

2, I: Ap = 2 for p = 1,2, ... ,v)
Î is the regression coefficient for the general effect of heterozygosity in the

investigated locus
H is the degree of heterozygosity in the investigated locus (normally H = 0

or 1)
éq is the regression coefficient for the qth specific combining effect of two

. different alleles of the investigated gene
w is the number of different specific combinations of two different alleles

C9 is the incidence of the qth specific combination of two different alleles
of the investigated gene (C, = 0 or 1, ! Cq = 0 or 1 for q = 1, 2, ... , w)

If the Gj effects in the models are substituted according to the formula above,
the contrasts between the linear effects of the investigated alleles, the general effect
of heterozygosity and the contrasts between the specific combining effects of the
investigated alleles may be evaluated separately. If the specific combining effects
are assumed to be negligible, the e9Cq elements may be excluded from the models.
The number of single gene associated estimates may then be reduced compared
to the original models. This reduction may be important if a large number of
unevenly distributed alleles are investigated simultaneously in a limited number
of experimental animals. The parameters of this reduced model may be estimated
with a higher accuracy, and the performance of any particular genotype may be
predicted from the 81’ and the -/ estimates, even if the genotype is missing in the
experimental records.

PROPERTIES OF THE MODELS

The genetic relationship parameters required in both Models 1 and 2 may be

generated from pedigree records. Several generations of related individuals may be
analysed simultaneously. In Model 1, the pedigree of the investigated individuals
must be traced back to a common ancestor base population. In many cases, the
parents of the first experimental generation may be regarded as the base population.
In Model 2, the complete genetic relationship matrix between all investigated
individuals should be generated. In most cases, this will require pedigree records
for several generations of ancestors prior to the first investigated generation.

In addition to the genetic relationship parameters, the covariance between
relatives is determined by the heritability of the investigated polygenic trait. In
Model 1, the realized additive genetic effect of each ancestor genotype is utilized to
obtain the (3m estimates. Consequently, (3m by definition estimates the &dquo;single gene
free&dquo; additive genotype of the base population ancestors and it may be possible
to obtain a kind of average &dquo;single gene free&dquo; heritability estimate based on the
variance of the (3m estimates if the phenotypic variance of the polygenic trait in



the base population ancestor is known. In Model 2, the heritability is a required
input parameter. The use of a a priori heritability estimates in an individual animal
model may be justified. As shown in the example in the present paper, the fixed
effects solutions may be affected if the difference between the assumed and the real

heritability is too large. Since the required heritability input should be &dquo;single gene
free&dquo;, reliable a priori estimates may not be available. Kennedy (1990) concluded
that the heritability may then be estimated from the experimental records. This
can be done by the RENIL approach referred to earlier.

The accuracy of the (3m estimates according to Model 1 is dependent on the
number of individuals originating from each of the base populations ancestors. In
most species, the number of first generation offspring per ancestor dam may be
quite limited. Furthermore, applying Model 1 to first generation offspring only may
cause an additional problem because of limited segregation of the investigated gene
within offspring sharing proportions of a common additive ancestor genotype. The
required genetic composition of the experimental individuals may be achievied by
multiple matings of the base population ancestors in different combinations, by
recording offspring from generations later than the first one or by pooling several
generations of offspring. If possible, the mating scheme should be designed to ensure
genetic ties across genotypes for the investigated gene. Model 2 is less sensitive to
this type of problems but a certain degree of genetic relationship across genotypes
for the investigated gene is still required to eliminate the confounding effects.

In Model 1, the error variance is not expected to be constant across generations.
The direct offspring of the base population ancestors may be scored without error
for the B&dquo;,,i!!. variables (0 or 0.5). In the successive generations, the Bmijk variables

represent the expected ancestor gene contributions while the real contributions
are influenced by the random sampling of alleles during gamete formation. This
sampling error is accumulated as the number of generations increases. The precision
of the estimates according to Model 1 may consequently be poor, if the number of
generations between the ancestor base population and the investigated individuals
is too large. The error variance of Model 2 is not influenced by such generation
effects.

The average effect of selection for the dependent variable may be adjusted for
by including generation effects as fixed effects in Model 0 and Model 1. However,
the effect of selection on the (3m estimates according to model 1 may vary from one
estimate to another due to random differences in the realized selection intensities
in the gene flow from different base population ancestors. This will violate the basic
assumption that the (3n effects may be regarded as fixed effects across generations.
A similar problem may arise as a result of genetic drift, if severe bottle-necks appear
in the gene now from some of the base population ancestors to any of the offspring
generations. Consequently, selection and genetic bottle-necks should be avoided
when applying Model 1. This problem will be less important if Model 2 is applied.
The additive genetic effects (V! ) are then regarded as random effects and the (Vk)
values are predicted from the complete genetic variance-covariance matrix rather
than from ancestry lines. Any genetic trend will then be corrected for by the BLUP
values (U! ) and/or fixed generation effects, depending on the genetic ties between
the recorded individuals.



GENETIC INTERPRETATIONS OF THE SINGLE GENE

ASSOCIATED PARAMETERS

The parameters of interest in the models are estimated by the Gj effects. The
total effect associated with each of the genotypes for the investigated gene on the
polygenic trait is computed. Since direct gene effects may not be distinguished
from linkage effects, the term &dquo;gene region&dquo; will be applied in the following
discussion, indicating that the polymorphic gene may function as a marker gene.
The Gj estimates will contain the additive effects of each of the two gene regions
constituting the genotype, the general and specific dominance interactions between
the two gene regions and the average epistatic effects between each of the two
gene regions and the remaining genotype of each of the individuals within each Gj
group. The epistatic effects are true single gene associated effects, but they may
be difficult to reproduce if the interacting genes are variable, unidentified and not
randomly occurring in the Gj groups. In addition, heterozygosity in the investigated
locus may serve as a marker for general heterozygosity. The Gj effects may then be
confounded with general heterosis. This may be checked by including the individual
coefficients of inbreeding as an independent variable in the model. The parameters
of interest in the modified models are estimated by the 6,, !y and eQ effects. The

average, linear effects associated with the different allelic gene regions are estimated
by the 6p effects. The total linear contribution to any particular genotype may be
calculated by adding together the values of the <*)p estimates for each of the two gene
regions constituting the genotype. The 6p estimates will reflect the additive, single
gene associated effects. The general effect of heterozygosity is estimated by the q
effect. The estimate reflects the average deviation from the 6p determined genotype
in heterozygous individuals and is influenced by the general dominance interaction
between the different gene regions and by the general deviation from linearity caused
by epistasis. In addition, any average effect of the investigated gene serving as a
marlcer for general heterozygosity will be included. As pointed out earlier, this may
be checked separately. The Eq estimates are influenced by any specific combining
effects in the different heterozygous combinations of the investigated gene, including
specific dominance and epistatic interactions involving the two gene regions.

AN EXAMPLE OF THE MODELS IN USE

The ma,jor histocompatibility complex (MHC) in birds and mammals is a cluster of
linked genes coding for major cell surface antigens and is known as the B complex in
chiclcens. MHC associated effects have been shown on resistance to certain diseases
and on immune responsiveness. The association between the MHC gene region and
several productivity traits in laying hens was investigated in an experiment at the
Agricultural University of Norway. The MHC genotypes of the experimental birds
were determined by serological typing at the Institute of Experimental Immunology
in Copenhagen according to Simonsen et al (1982).



MATERIALS AND METHODS

The experiment was started by mating individuals with heterozygous combinations
of the B13, B19 and B21 gene regions (MHC haplotypes). The birds were taken from
a randomly mated control population (Li) and from a selection line for increased
egg weight body to weight ratio (Lz). The selection experiment has been described
by holstad (1980). The number of parents in the base population (r in Model 1) was
28 in Ll and 80 in Lz but since each dam was mated to only one sire, the number
of ancestors in Model 1 may be reduced to the number of dams which was 21 in Ll
and 63 in L2. The mating procedure was repeated with heterozygous individuals
from the first and the second generation of experimental birds to produce three
non-overlapping generations contributing to the experiment (fl = 3 in all models).
No cross-mating between Ll and L2 was allowed.

The design resulted in a mixture of individuals carrying all possible combinations
of the 3 MHC haplotypes: G, = B13/813, G2 = B19/BI9, G3 = B21/B21, G4 =

B13/B19, G5 = B13/B21 and G6 = B19/B21 ( fz = 6 in all models) and varying
fractions of ancestor gene contributions crosslinking the MHC genotypes. The total
number of birds in the experiment (n in all models) was 321 for Ll and 505 for
L2- In model 2, the relationship matrix (A) was generated by including individuals
without records in the experimental generations and all common ancestors in the
last 3 generations prior to the experiment. The total number of birds in the extended
A (n’ in Model 2) was 636 in Ll and 761 in La. The full stored coefficient matrix
in Model 2 was solved by Gauss-Seidel iteration. The solutions were considered
converged when the average value of the product 1’A-lu was < 0.001. The program
picks some generalized inverse of the coefficient matrix in the iteration (Smith,
1982).

One of the productivity traits recorded was the laying intensity during the period
from the start of laying until 58 weeks eggs of age, measured as the number of eggs
laid per 100 days. The association between laying intensity and MHC genotypes
was analysed according to Model 1 and Model 2 for both 11 and Lz.

The sensitivity of Model 2 to changes in the heritability parameter input was
checked by applying 5 different values of the parameter to the investigated material
(h2= 0.1, 0.3, 0.5, 0.7 and 0.9). The &dquo;MHC free&dquo; heritability was estimated from
REML variance components in each of the 2 lines separately according to Model 2,
as described earlier.

RESULTS AND DISCUSSION

The least squares means of laying intensity for the fixed effects of NIHC genotypes
(Gj), according to Model 0 and Model 1 and according to Model 2 over the entire
heritability scale are shown in figure 1 for Ll and figure 2 for L2.

The Gj effects according to Model 2 at hz = 0 are by definition equal to the Gj
effects according to Model 0. In order to compare the results from Model 2 with the
other models, a &dquo;MHC free&dquo; heritability value must be chosen. The &dquo;MHC free&dquo;

heritability estimates indicated in the figures were based on the REML variance
components shown in table I.





Several points may be made from the results shown in the figures.
- Considerable confounding effects were demonstrated between the MHC geno-

type and the remaining additive genotype, especially in Li. Introduction of the
&dquo;1VIHC free&dquo; additive genotype in the model affected both the rank and the magni-
tude of the NIHC associated effects (Gj). The significance of the ranking of the Gj
effects according to the different models is shown in table II.

Applying Model 0 to the present material would lead to false conclusions

according to table II.
- The agreement between the Gj solutions according to Model 1 and Model 2 was

quite good. A non-significant re-ranking was indicated for G4 vs G6 in Ll and for G3
vs GS in L2 (table II). As pointed out earlier, Model 1 utilizes the realized additive
genetic effect of each ancestor genotype to obtain the 13m estimates, while Model 2



assumes an average heritability for the entire material. Since MHC genotypes were
not equally distributed over ancestor lines, this may cause some differences between
the 2 models in the Gj estimates. The standard errors of the contrasts between the

Gj effects in pairwise comparisons with G6 are shown in table III.

The Gj contrasts were estimated with a higher level of accuracy under Model 2
than under Model 1 (table III). This did not affect the significance of the ranking of
the Gj effects in the present material when the significance level was fixed at 0.01
(table II). However, due to the different precision of the two models, Model 2 may
discriminate between Gj effects which will not differ significantly under Model 1.

The sensitivity of the Gj solutions according to Model 2 to changes in the
heritability input parameter appeared to be moderate. In the present material, the
stability of the Gj estimates seemed to be quite acceptable if the heritability input
was varied within an interval of 0.2, at least for heritability estimates > 0.1. Good
a priori estimates are available for the total heritability of laying intensity (not
&dquo;MHC free&dquo;) in a related material (Kolstad, 1980). The heritability was reported
to be 0.37. As may be seen from figures 1 and 2, applying this heritability to the
present material would not change the conclusions on the Gj effects very much.

The rank of the MHC genotypes (Gj) was different in the 2 lines. The lines orig-
inated from a common synthetic population formed in 1973 (Liljedhal et al, 1979)
and had only been separated during 7 generations when the present experiment was
started. The genetic relationship between the 2 lines was consequently quite close.
The MHC associated effects may still be different in the two lines if the effects were

caused by distant linkage between the MHC gene region and genes affecting laying
intensity. The observed effects would then be temporary effects because of link-

age breakdown. The increased mangnitude and significance of the MHC associated
effects in Ll compared to L2 is consistent with the linkage hypothesis, since the
smaller number of base populations ancestors in Ll (28 compared to 80) increases
the probability of linkage disequilibrium.
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