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The use of flat-ended projectiles for determining 
dynamic yield stress 

I. Theoretical considerations 

BY SIR GEOFFREY TAYLOR, F.R.S. 

(Received 24 July 1947) 

It has long been known that metals may be subjected momentarily to stresses far exceeding 
their static yield stress without suffering plastic strain. One of the simplest methods for 
subjecting a metal to a high stress for a short time is to form it into a cylindrical specimen 
and fire this at a steel target. The front part of this projectile crumples up, but the rear part 
is left undeformed. If the target is rigid the distance which this portion travels while it is 
being brought to rest may be taken as the difference between the initial length and the length 
of the deformed specimen after impact. Knowing the velocity of impact, a minimum possible 
value can be assigned to the maximum acceleration of the material, and from this a minimum 
value for the yield stress can be calculated. The actual yield stress is considerably greater 
than this minimum, and methods are given for calculating a more probable value. 

INTRODUCTION 

When a cylindrical projectile strikes perpendicularly on a flat rigid target, the stress 
at the impact end immediately rises to the elastic limit, and an elastic compression 
wave travels towards the rear end. The stress in this wave is equal to the elastic 
limit. If the material is one in which the stress rises when the strain exceeds that 

corresponding with the elastic limit, the elastic wave is followed by a plastic one. 
On reaching the rear end of the projectile, the elastic wave is reflected as a wave of 
tension which is superposed on the compression wave. At this stage the velocity of 
the material in the part of the projectile which the reflected wave has not yet reached 
is U - S/pc, where S is the yield stress of the material, p its density, c the velocity 
of elastic waves, and U the velocity of impact. The stress in this portion is S. In 
the reflected wave extending from the wave front to the rear end of the projectile 
the velocity is U- 2S/pc and the stress is zero. 

The reflected elastic wave runs forward along the projectile until it meets the 
front of the plastic wave advancing from the target plate. In this plastic wave, the 
stress will not rise appreciably above the yield stress at any point close to the 

plastic-elastic boundary, but the velocity may be nearly zero, or, at any rate, will 
be very different from that in the rear part where plastic flow has not taken place. 
At the moment when the reflected wave has just reached the plastic boundary, the 

part of the specimen which lies behind this is stress-free, and is moving as a solid 

body with velocity U - 2S/pc. It is, therefore, in the same condition as the projectile 
at the moment of impact, except that its speed is U- 2S/pc instead of U, and its 

length is less than the original length L. 
The length x of this portion which has not yet suffered plastic strain will depend 

on the speed of the projectile, the speed of elastic waves in it, and the velocity with 
which the plastic-elastic boundary moves away from the target plate. Under the 
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conditions of all the experiments which are here considered, c is much greater than 

U, the velocity of the projectile, or V, the velocity of the plastic-elastic boundary, 
and S is comparable with pU2, but small compared with pc2. 

If h is the distance of the plastic boundary from the target plate at any time, x the 

length of the portion which has not yet been plastically compressed, and u the 

velocity of this rear portion, the above considerations lead to the following equations 
for the small changes in u, h and x during one passage of an elastic wave from the 

plastic boundary and back to it. The duration of this double passage is 

2x 
dt-- (1) c 

2x 
so that dh = v-, (2) c 

2x 
dx = -(u + v) (3) c 

2S 
du=- . (4) 

pc 

Eliminating c, equations (1) to (4) reduce to 

dh 
t =v (5) 

dx 
-= -( + v), (6) 

du 2S S 
dt 2xp px 

It will be noticed that (5), (6) and (7) are the equations which would be derived if 
the rear portions of the projectile were regarded as rigid, and all the quantities as 

continuously varying. 
The equations (6) and (7) are not sufficient to determine the motion. In fact, the 

velocity of the plastic boundary, v, is determined by the plastic flow between this 

boundary and the target. To analyze the dynamics completely, it would be necessary 
to know all the intermediate states of the projectile between the instant of impact 
and the time when it comes to rest, or leaves the target plate. The object of the 

present work is to extract as much information as possible from measurements of 
the projectile recovered after impact. In the absence of measurements made during 
the impact, it is necessary to make some assumption about how the plastic boundary 
moves from the surface of the target to the final position in which it is measured after 
the projectile has come to rest. 

SIMPLE THEORETICAL MODEL 

In order to obtain a simplified picture of the phenomenon to serve as a framework 
for thinking about the motion, the simplest possible assumption about the plastic 
stress-strain relationship was made, namely, that the stress in the part of the 
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projectile where the material is yielding is constant and equal to the yield stress S. 

Further, the radial inertia is neglected, so that the stress can be considered as con- 
stant over any cross-section. It is not possible to discuss the plastic flow between 
the plastic boundary and the target without analyzing the complete problem of 

plastic waves. It is possible, however, to imagine a state in which the material which 
has just passed through the plastic boundary is brought to rest in a very short length. 
For this to be possible, the material must spread out very rapidly. The appearance 
of the theoretical model at a time when the rear end is still moving is shown at the 

right-hand side of figure 1. If Ao is the cross-section of the projectile before it has 
been compressed plastically, and A the area at the point where the material is 

brought to rest, the continuity equation is 

Ao(u + v) = Av, (8) 

and if the stress is S on both sides of the thin region where the change in area occurs, 
the momentum equation is 

pAo(u + v)u = S(A - Ao). (9) 

1.0- 
end state 

0 -8- UOendstate intermediate stat 

[ p12 when -t= 0483 

t 06- X S end state 
-0?50 e 1-A? 1063 

Elmnt L -a I-S 1 63 end state 
1^ 0'4- \ OU-=3-2[ x=0-398L 

O 
///arge t//////////////// pe /////////// 

FIoURE 1. Simple theoretical model of flat-ended projectile fired at speed U at flat target. 

The longitudinal compressive strain at any point may be defined as 

e = 1 A (10) A ' 

Eliminating v from (8) and (9), and employing (10) to eliminate A and A0, we obtain 

pu2 e2 

S 1-e' 
From (6), (7), (8) and (10) 

dx (u + v)px pux 
(12) du- S - Se' 

Integrating (12) 

log,(2) -id ) - loge (1 - ) + constant. (13) 

At the moment of impact xa = L, and e = el, say, and from (11) 

pU2 - (14) S 1 -el 
19-2 
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When the projectile is brought to rest, x = X and e = 0. X is one of the lengths 
which can be measured, hence 

x 
(2 

1 
(e+log 15 log, )1 - log (I - e)-1 - + log, (1 - el) (15) 

and loge() = 1 + g(1e log, r) = .-... + log, (I -el). (16) 

Eliminating el between (14) and (16) gives X/L as a function of pU2/S. The results 
are given in table 1 and shown graphically in figure 2. 

TABLE 1. RESULTS OF CALCULATION BASED ON SIMPLE 

e6 0 0.1 0.2 0-3 0-4 0.5 0-6 
X/L 1-0 0-897 0-789 0-675 0-555 0-430- 0-299 
pU2/S 00011 0-050 0-128 0-267 0-500 0.900 
h/L -- - - 0-382 
L1/L - - - - 0-812 

THEORETICAL MODEL 

0-7 0'8 0-9 
0-171 0-061 0-003 
1-633 3-200 8410 
0-376 0-288 
0-547 0-349 

0 1'0 2'0 3-0 4-0 5'0 
pU2/S 

FIGURE 2. Results of calculation based on a simple theoretical model. 
* measured values L1/L; () measured values (L,-X)/L. 

To find the shape of the projectile after impact, we obtain from (5) and (6) 

dh -v - = - - +e 
dx u + v 

so that h = - (1-e)dx. 
J L 

(17) 

This integration was performed numerically in three cases, e1 = 0-5, 0-7 and 0.8. 
Taking a given value of e1, p U2/S was taken from table 1, and (x/L) calculated from 
(15) for the range of values of e from 0 to e,. The resulting values of h for el = 0-5 and 

1'0 
0 
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el = 0-7 are given in table 2. The corresponding cross-section is A = A0/(1 -e), so 
that the diameter of the projectile at this point is d = do({1l/( - e)}, where do is 
the diameter of the projectile before firing. The values of d/do and h/L are given in 
table 2. Similar calculations were made for el = 0*8. 

TABLE 2. CALCULATIONS FOR SIMPLE THEORETICAL MODEL OF 

PROJECTILE FOR TWO IMPACT VELOCITIES 

e = 070, pU2/S- 1-633 

e 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

x/L 0.171 0.180 0.190 0-202 0-216 0.233 0.253 0.277 
h/L 0-376 0.368 0.358 0.348 0.336 0.323 0-309 0.293 
Ut/L 0.720 0.708 0.695 0.681 0.665 0.646 0*625 0.599 

d/do 1.00 1.026 1.054 1.087 1.118 1.155 1.196 1'241 

e 0.40 0.45 0-50 0-55 0-60 0.65 0.70 

x/L 0.307 0.346 0.398 0.468 0.571 0.730 1.000 
h/L 0.274 0.251 0.224 0.191 0.147 0.088 0 
Ut/L 0.568 0-531 0-483 0.420 0.333 0.207 0 

d/do 1-292 1.349 1414 1.492 1.583 1-690 1.827 

el = 0-50, pU2/S 050 

e 0 0.05 0-10 0-15 0.20 0.25 0.30 0.35 0.40 0.45 0-50 

x/L 0.430 0-452 0-478 0'508 0-543 0-585 0.635 0.696 0.773 0.871 1.000 
h/L 0.382 0.361 0.337 0.311 0-282 0.250 0.213 0-172 0.124 0.067 0 
Ut/L 0.332 0-315 0.298 0.277 0.255 0-229 0.199 0.163 0.119 0.067 0 

d/do 1.000 1-026 1.054 1-087 1.118 1.155 1.196 1.241 1.292 1.349 1-414 

The shapes of the projectile in the three cases are shown in figure 1 for the case 
where the diameter was initially 0-3 of the height. Comparing these with the profiles 
of the steel slugs shown in figure 1 of Mr Whiffin's paper (see part II), it will be seen 
that the calculated shape for p U2/S = 0 5 is very similar to that of the slug fired at 
810 ft./sec. The shapes of the slugs fired at greater speeds do not resemble at all 

closely those calculated for pU2/S = 1-63 or 3-2. The plastically strained parts of 
the slugs fired at speeds greater than 810 ft./sec. have a concave profile, due, appar- 
ently, to the high radial velocity imparted to the material near the target which was 

neglected in the analysis. 
As previously stated, the object of these calculations was to form the basis for 

an appropriate rough assumption for the rate at which the plastic boundary reaches 
its final position. To determine how h varies with t, the time since the beginning of 
the impact, equation (12) was integrated numerically. Using equations (7) and (11) 

_PX -d f 1 d( e) - L xP (1- 2e) de, t =-| = - J ^ p J S L ( e) 

and, using (14), this may be written 

Ut_ e1 je(1le) 
L (-e Lde. (18) L L (I-e) 

The integration of (18) was performed numerically in the cases when e1 = 0-5 and 
el = 07. The results are given in table 2, together with the values of h. The relation- 



Sir Geoffrey Taylor 

ship between Ut/L and h/L for these two values of e1 are shown in figure 3. It will 
be seen that h increases nearly uniformly with Ut/L, so that the velocity of the plastic 
boundary, as it moves away from the target, is nearly uniform. 

0'4 - - . . 
tend state end state 

0'3 

Q30 0/12 

03 2/ / t 

0'14 .17 

0 01 0-2 0-3 0-4 0-5 0-6 0-7 
Ut/L 

FIGURE 3. Propagation of plastic boundary in a simple theoretical model. 

The complete system of plastic waves occurring during an impact has been analyzed 
by Messrs E. H. Lee and S. J. Tupper in a case where the plastic stress-strain relation- 
ship was assumed known. Good agreement was found with the strains calculated 
using the simple theoretical model here described. The main difference is that the 
strains calculated by the complete plastic-wave theory change in discontinuous 
jumps along the length of the projectile. This, as the authors point out in a paper 
which is not yet published, is due to the neglect in their analysis of the radial inertia 
of the plastic material as it spreads out near the target plate. The present calculations 
also neglect this radial inertia, but the discontinuities of strain disappear from the 
calculations when the finite difference equations (1), (2) and (3) are replaced by the 
differential equations (5), (6) and (7). 

It is worth pointing out that though the plastic wave system can be calculated 
with considerable difficulty, when the plastic stress-strain relationship is known, 
this relationship can only be measured at low rates of straining. It is not possible 
to use these calculations directly to determine the stress-strain relationships from 
the shape of a projectile measured after an impact. It appears that the most which 
can be done at present is to determine approximately the yield stress using sim- 
plifying assumptions as to the general nature of the plastic stress waves. This is the 
line of attack developed in the present work. 

APPROXIMATE FORMULA FOR ESTIMATING YIELD POINT 

FROM MEASUREMENTS OF SLUGS AFTER IMPACT 

In developing a simple formula for estimating the yield point from measurements 
of the position of the yield boundary after the impact, it will be assumed that the 
plastic-elastic boundary moves outwards at a uniform velocity from the impact end 
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to its final position. This, together with the assumption that the yield boundary 
represents the position where a definite compressive stress S is reached, is sufficient 
to fix the whole history of the deceleration of the rear part of the projectile. 

If C is written for the constant velocity of the plastic boundary, equations (6) 
and (7) give du S 

(19) dx px(u + C)' 
which may be integrated to give 

p g (20) 
When u = 0, x = X, so that 

og (L) 1U2- CU. (21) 

If the deceleration of the rear of the projectile were exactly uniform, C/U could be 
determined simply from the fact that the time of deceleration T is equal to 

(L1- X)/C (where L1 = overall length of the projectile after test), and is also equal 
to 2(L-L&)/U, so that C/U = (L1-X)/(L-L1), and equation (21) would then 
assume the form (LX) 

sA (JL-X) 1 
pU2 2(L-L1)log, (L/X)' 

where S, has been used instead of S to distinguish it from the value calculated by 
more exact methods. In fact, the deceleration is not uniform, so that (22) is only 
approximate. It is, however, the formula used with success by Mr Whiffin to inter- 

pret his experiments (see part II). In Mr Whiffin's experiments, slugs fired at very 
different speeds gave different values of X/L and L1/L, but, when the measured 
values were inserted in (22), the values of S so deduced were found to be nearly 
independent of U. This fact affords a strong confirmation that (22) is an approximate 
equation which can be relied on to give the values of S from measurements of U, 
X/L and L1/L. In practice, it is sometimes found that the slug makes a depression 
in the target. In this case, equation (22) can still be applied, but if L1 is the total 
measured final length, and d the depth of the hole into which it fitted at the end of 
the impact, L, in (22) must be replaced by (Ll -d). 

MORE EXACT CALCULATION 

The fact that the deceleration of the rear of the projectile is not uniform under the 
conditions assumed introduces an error which can be calculated. Since 

dx 
dt (u +C), 

equation (20) may be written 

(dX\2 2S /X \ 

-dt) =- logL)+(U + )2 (23) 

and when u = 0, x = X, so that 

2S X 
log, = C2- (U C)2. (24) 

p L (24) 



Sir Geoffrey Taylor 

Writing 2SIp = a2, K = (U+ C)/a, x = x/L, t1 = at/L, and T1 = aT/L, where T is 
the duration of the impact, the non-dimensional form of (23) is obtained: 

dxl /(K2 + loge X), dt, 

r6"K2 dx1 
so that T, = f 1x - (25) 

/(K2 + log,xX) , 

and, putting K2+ log xl = Z2, 
K 

T= 2e-K 2 ez2dz. (26) 
Cla 

Values of F(K) = e-K2 ez2dz have been tabulated (Miller & Gordon I931) in the 
Jo 

range K = 0 to K = 12. To use these tables, (26) can be expressed as 

T = 2[F(K)-exp [-K2 +(C/a)2] F(C/a)]. (27) 

Since the plastic-elastic boundary moves with velocity C, CT = L -X, which, in 
non-dimensional form, becomes 

C L, X 
T,- 

= 
- (28) 

while (24) becomes log, (L/X) = K2- (C/a)2. (29) 

Equations (27), (28) and (29), together with 

K =U/a +C/a, (30) 

are sufficient to determine C/a, U/a, K and T, when X/L and L1/L are known. 
To estimate the error arising from the use of equation (22) instead of the more 

accurate equations (27) to (30) in any particular case where L, and X are measured, 
it is necessary to solve transcendental equations. This laborious calculation was 
carried out by Mr Whiffin in the case of several of the experimentally determined 
values of L, and X. It was found that, in all cases, equation (22) underestimated 
the yield stress as compared with the equations (27) to (30). Subsequently, the 
corrections were calculated systematically in the form of a correcting factor S/S,, 
which, when applied to Sl, as calculated from (22), gives the value which would 
have been obtained for S if (27) to (30) had been solved. 

Combining equations (27), (28) and (29) 

L- =2-F(K)-[2 F(C/a)- L X 
(31) L a 'a L J 

2S a2 1 
Since 

pU2 U2 (K - C/a)2 

S L- L, loge (LIX) the correcting factor is ( / (32) 8, L- X (K- C/a)2' 

In performing the calculation, a value of X/L was taken, and a series of values of 
C/a covering the range from 0 to infinity were used to calculate the corresponding 
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values of L1/L and S/S1. These were plotted on a diagram with ordinates S/S1 
and abscissae L1/L. A series of curves were thus obtained, each corresponding with 
a given value of X/L. The values of L1/L corresponding with definite values of 

S/S1, namely, 1.0, 1-05, 1-10, ..., 2.0, were taken from these curves. In this way, 
and with the help of scattered values calculated by Mr Whiffin, the diagram of 

figure 4 was constructed. Here the ordinates are X/L and the abscissae L1/L. The 
curves on the diagram are contours of equal correction factors. It will be seen that 
the curvature of these contours is very slight except near the axis X/L = 0. 

L1/L 

FIGURE 4. Contours of ratio of yield value S computed by exact 
formula to value S1 obtained by approximate formula. 

It will be noticed that the contours cut the line L1/L = 1 0 without any apparent 
singularity. The limit points on L1/L = 1.0 were calculated using the asymptotic 
form of F(x) as x-co, namely 

lim F(x)= + + . (33) 
X-- >O 2xO: 
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In this way it is found that, when C/a and K are infinite, 

L1/L = 1.0, (34) 

and (35) an -- I X /L log, (L/X) ( 

The limiting points on the line L1/L = 1.0 in figure 4 were calculated from equa- 
tion (35). 

EXPERIMENTS WITH PARAFFIN WAX 

The method described above was first applied to find the dynamic yield stress of 

paraffin wax. Transparent cylinders of this material were cut from cast blocks, and 
these were projected by means of a catapult, capable of giving them a speed of 

125ft./sec., at a heavy anvil hung as a ballistic pendulum. The cylinders were 
1*75 cm. long. After the impact they were found to be shorter, but they remained 
coherent. Paraffin wax has the property of remaining transparent under compressive 
stressing until a sudden collapse occurs. The material which has yielded is full of 
small cracks, which give it an opaque white appearance. The cylinders which had 
been projected were found to be opaque at the impact end, but they remained 

transparent at the rear end. The yield point was taken to correspond with the 

boundary between the transparent and opaque portions. The length of the trans- 

parent portion was taken as X. Static tests were also made by compressing paraffin 
wax cylinders between polished plates in a parallel-motion compression machine, 
and it was found that sudden and catastrophic breakdown occurred at a certain 
load, the wax remaining transparent up to the instant of breakdown. 

Some results are given in table 3. It will be seen that the dynamic yield stress 
varied from 840 to 930 lb./sq.in., while the static yield stress was only 485 lb./sq.in. 
The ratio (dynamic yield stress)/(static yield stress) was therefore about 1-8. 

TABLE 3. EXPERIMENTS WITH CYLINDERS OF PARAFFIN WAX 

s S 
dynamic static 

yield stress yield stress 
from (mean of 

L U L1 X eqn. (22) 6 observations) 
(cm.) (ft./sec.) (cm.) (cm.) (lb./sq.in.) (lb./sq.in.) 
1.774 126 1.635 0.95 854 
1.757 128 1.625 0.95 930 485 
1.779 132 1*625 0.95 840 

INTERPRETATION OF RESULTS 

The measurements made by Mr Whiffin show that his specimens maintained the 
stresses, which are here called dynamic yield stresses, instantaneously without 

suffering strain greater than 0.2 %. When considering the results of mechanical 
tests at comparatively low speeds, in which the elastic limit is passed and plastic 
strain occurs, the rate of strain is definable in terms of the experimentally measured 
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quantities. In fact, if I is the length of the specimen at time t, and L its original 
length, one definition of rate of strain is simply 1/L.dl/dt. In experiments of the 

type here considered, it is possible to define the mean rate of strain of the plastically 
distorted portion of the projectile. If the approximation represented by (22) is 

adopted, the mean rate of strain is U/2(L - X), because the reduction in length is 

(L - L1), and this is entirely confined to the material whose initial length was (L - X). 
The total strain of the portion which has yielded is therefore (L- L)/(L-X). 
Since the deceleration is assumed uniform, its duration is 2(L- L)/U, so that the 
mean rate of strain is 

(L-L1) jU U 
_= 2 (36) 

(L-X) (L-L1) (L-X X)' 

Values of this mean rate of strain are given in Mr Whiffin's paper because they are 
the only rates of strain which can be deduced from his measurements. It must, 
however, be remembered that, at all stages of the impact, the analysis refers only 
to,the part of the projectile which has not yet suffered plastic compression, so that 
the connexion between the rate of strain just defined and the yield stress can only 
be an indirect one. 

It seems impossible to derive further information about the physical factors 
which determine the dynamic yield stress without making more complete measure- 
ments of the successive states of the projectile during impact. It is, however, worth 

noticing that, if the deceleration of the rear portion of the projectile is continuous, 
as is contemplated in equations (5), (6) and (7), the maximum stress S at a distance 
X from the rear end is only attained instantaneously at the end of the impact. At the 

beginning of the impact, the stress in this part of the projectile is XS/L. If the stress 
at distance X rises uniformly from the value XS/L at the beginning to S at the end, 
the stress at time t would be 

t (L-X)- 

The duration of stress greater than, say, S(1 - y), where y is small, is L/(L - X). Ty. 
To a rough approximation, therefore, one may expect that, at the place where the 

yield point is found, the stress has exceeded, say, 99 % of S for a duration of the 
order of (0.01) L(L-X). T, and, according to the simple theory of equation (22), 
T = 2(L - L1)/U. In one group of Mr Whiffin's experiments, recorded in his table 2, 
the estimated value of T lies between 5.2 and 7-0 x 10-5 sec., so that there is very 
little variation in the duration of the impact, although there is great variation in 
U and (L - L1). It seems possible that the constancy of S, which is found for varying 
velocities of the projectile, is due to the constancy of the duration of impact. 
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