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ABSTRACT Previously, we presented evidence that it is
possible to predict functional coupling between genes based on
conservation of gene clusters between genomes. With the rapid
increase in the availability of prokaryotic sequence data, it has
become possible to verify and apply the technique. In this
paper, we extend our characterization of the parameters that
determine the utility of the approach, and we generalize the
approach in a way that supports detection of common classes
of functionally coupled genes (e.g., transport and signal
transduction clusters). Now that the analysis includes over 30
complete or nearly complete genomes, it has become clear that
this approach will play a significant role in supporting efforts
to assign functionality to the remaining uncharacterized genes
in sequenced genomes.

Gene clusters are known to be prominent features of bacterial
chromosomes. Demerec and Hartman (1) postulated in 1959
that ‘‘regardless of how the gene clusters originated, natural
selection must act to prevent their separation’’ and the ‘‘mere
existence of such arrangements shows that they must be
beneficial, conferring an evolutionary advantage on individu-
als and populations which exhibit them.’’ One of the most
striking features of prokaryotic gene clusters is that typically
they are composed of functionally related genes. For the past
40 years, there has been vigorous, ongoing discussion on the
functional significance of gene arrangement on the chromo-
some, as well as the origin and mechanisms of maintenance of
gene clusters (see, for example, refs. 2–5).

Here, we present a method that uses conserved gene clusters
from a large number of genomes to predict functional coupling
between genes in those genomes. This article further develops
the approach that we previously reported (6) and uses this
method to reconstruct several major metabolic and functional
subsystems.

Methodology

The data presented below are computed via the WIT system
(http:yywit.mcs.anl.govyWIT2y), developed by Overbeek et al.
(7) at Argonne National Laboratory. WIT was designed and
implemented to support genetic sequence analysis, metabolic
reconstructions, and comparative analysis of sequenced ge-
nomes; it currently contains data from over 30 genomes, albeit
a few of them are incomplete.

Our approach to detection of conserved clusters of genes is
based on the following definitions: a set of genes occurring on
a prokaryotic chromosome will be called a ‘‘run’’ if and only
if they all occur on the same strand and the gaps between
adjacent genes are 300 bp or less. Any pair of genes occurring
within a single run is called ‘‘close.’’ Given two genes Xa and
Xb from two genomes Ga and Gb, Xa and Xb are called a
‘‘bidirectional best hit (BBH)’’ if and only if recognizable
similarity exists between them (in our case, we required FASTA3

scores lower than 1.0 3 1025), there is no gene Zb in Gb that
is more similar than Xb is to Xa, and there is no gene Za in Ga
that is more similar than Xa is to Xb. Genes (Xa, Ya) from Ga
and (Xb, Yb) from Gb form a ‘‘pair of close bidirectional best
hits (PCBBH)’’ if and only if Xa and Ya are close, Xb and Yb
are close, Xa and Xb are a BBH, and Ya and Yb are a BBH. The
notion of a PCBBH is illustrated graphically in Fig. 1.

Computation of PCBBHs for 31 complete or nearly com-
plete prokaryotic genomes established several critical points:

1. We found 58,498 PCBBHs among the 31 genomes consid-
ered.

2. As is typical of most forms of comparative evidence, the
number of PCBBHs grows roughly as the square of the
number of genomes (see Table 1).

3. From the 31 complete or partial genomes, we were able to
infer that approximately 35% of the genes assigned enzy-
matic functions from known pathways appeared in the same
run with genes assigned other functions from the same
pathway.

4. A smaller percentage of genes showed inferred couplings
that could not be confirmed as ‘‘real.’’ This set of coupled
genes no doubt includes some ‘‘false positive’’ couplings, as
well as pairs of genes that are indeed functionally related
but whose connection has not yet been experimentally
confirmed.

The question of whether gene clusters are widely present in
the Archaea is worth a comment. Our computation shows that
there are 2,504 PCBBHs among Methanococcus jannaschii,
Archaeoglobus fulgidus, Methanobacterium thermoautotrophi-
cum, and Pyrococcus horikoshii. The number of PCBBHs for
the first four sequenced bacterial genomes—Haemophilus
influenzae, Mycoplasma genitalium, Synechocystis sp., and Hel-
icobacter pylori—equals 1,616. However, when Haemophilus
influenzae, Escherichia coli, Bacillus subtilis, and Synechocystis
sp. are used, we find 2,981 PCBBHs. Finally, if one considers

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

PNAS is available online at www.pnas.org.

Abbreviations: BBH, bidirectional best hit; PCBBH, pair of close
bidirectional best hits; PCH, pair of close homologs; COGs, clusters of
orthologous genes.
‡To whom reprint requests should be addressed. e-mail: overbeek@
mcs.anl.gov.

FIG. 1. Illustration of the definitions of PCBBHs and ‘‘pairs of
close homologs’’ (PCHs).
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PCBBHs among the four organisms Haemophilus influenzae,
Helicobacter pylori, Methanococcus jannaschii, and Archaeoglo-
bus fulgidus, one sees the following numbers of PCBBHs: 262
PCBBHs between the two archaeal genomes, 329 between the
two bacterial genomes, and 132 between an archaeal and a
bacterial genome. Hence, it seems likely that gene clusters also
play an important role in the Archaea. However, we have far
too little data on the Archaea to make an accurate estimate
that takes into account the size of the genomes and phyloge-
netic distance between the organisms.

Motivating the Definition of a PCBBH. The significance of
the coupling information provided by PCBBHs will be covered
in detail below. First, we motivate the definitions above. The
essential questions are as follows:

1. Is it important that we restrict our attention to genes
clustered on the same strand? We know that occasionally
divergent genes are coregulated (8), that horizontal transfer
may be a dominant theme, and that either of these consid-
erations might lead to a situation in which mere proximity
might convey information relating to functional coupling,
without regard to strand.

2. Assuming that we do restrict our attention to genes clus-
tered on the same strand, what maximum gap size should be
used in the definition of a PCBBH?

To address these questions, we performed a number of
computations. First, we restricted our attention to a set of
ORFs that we have reason to believe are functionally coupled,
and that occur within 10,000 bp of one another. For this set,
we tabulated the number of ORFs that occurred on the same
strand, the number of ORFs on the same strand with no
intervening genes on the opposite strand, the number of ORFs
on opposite strands, and the number on opposite strands that
were immediately adjacent. To estimate the frequency of
occurrence of functionally coupled ORFs in a run as a result
of chance alone, we performed one more experiment. We
repeatedly took the same set of ORFs (along with their
function assignments), randomly shuffled the set of locations,
and recomputed the values above. The results of both com-
putations are shown in Table 2. Table 2 suggests that co-
occurrence of functionally related ORFs on the same strand is
of primary significance. The results also suggest that, although
there appear to be more cases of divergent genes with coupled
functions than expected from chance, their frequency is nearly
two orders of magnitude smaller than that of same-strand

ORFs with coupled functions; hence, we shall not examine
divergent pairs further in this paper.

Having argued that the essence of the phenomenon we are
observing is co-occurrence in runs of genes on the same strand,
we next ask: what is the range of gaps that occur between genes
in such runs? To answer this question, we examined the gaps
for the 10,583 cases used to construct Table 2. The average
maximum gap between pairs of related genes was 94 bp, with
a standard deviation of 194 bp; after we trimmed 50 obvious
outliers, the average reduces to 91 bp, with a standard devi-
ation of 136 bp. As suggested by the fact that the standard
deviation is significantly larger than the mean, the gap distri-
bution is rather skewed; nevertheless, two standard deviations
above the mean still provides a reasonable cutoff for the
maximum allowed gap, showing that our initial assumption of
a 300 bp maximum gap in a ‘‘run’’ used in ref. 6 was not too
far off.

It is important to note that we are dealing with data that
suffer from many sources of error and uncertainty. For exam-
ple, the actual starting positions for ORFs in the collection are
often inaccurate, and, in many cases, short genes were missed
in the initial analysis of each genome. The use of ‘‘partial’’
genomes, having a generally lower quality of sequence data,
numerous frameshifts, and frequent truncated genes, also
makes analysis more difficult—although we emphasize that
our method itself appears to be largely insensitive to these
problems and that we are grateful for the enormous wealth of
data that such partial genomes represent. Taken together,
these figures and observations would perhaps support a slightly
larger threshold than the 300 bp value used in our definition
of a run; however, overall the basic definitions used accurately
capture a useful characterization of the notion ‘‘pair of close
bidirectional best hits.’’

Motivating the Score of a PCBBH. The significance of the
evidence for functional coupling provided by a PCBBH de-
pends on a number of factors, the most important of which is
the phylogenetic distance between the organisms. In phyloge-
netically close organisms, there is a significant probability that
two pairs of nearby genes will form a PCBBH as a result of
chance alone, presumably because whatever processes are
rearranging the gene order have not yet had enough time to
act. By the same token, in phylogenetically distant organisms,
it is rather unlikely that two pairs of genes would form a
PCBBH as a result of chance alone. To reflect the importance
of the phylogenetic distance between the genomes in deciding
whether the observed linkage of their genes is due to chance,
we developed the following simple scoring mechanism: the
score of a PCBBH is given by the phylogenetic distance
between organism Ga and organism Gb in the 16S rRNA tree
(9), regardless of the physical distance between the ORFs in
either run, or the degree of similarity of either BBH. We give
some representative phylogenetic distances in Table 3. A
number of other scoring functions were explored, but none
appeared to display a significant advantage over this simple
scheme.

Table 1. Increase of the number of PCBBHs with the number
of genomes

No. of genomes No. of PCBBHs with scores .0.1

4 998
8 4859

16 12570
24 23144
31 58498

Table 2. Locations of functionally related ORFs on
the chromosome

Strand

Real data ‘‘Shuffled’’ data

Functionally
related
ORFs

Mean no. of
functionally

related ORFs SD

Same strand 10,968 445 23
Same strand, no

intervening genes 10,583 273 24
Opposite strand 349 256 18
Divergent genes 43 19 5

Table 3. PCBBH scores based on phylogenetic distances between
pairs of organisms

Pair of organisms Phylogenetic distance

N. gonorrhoea, N. meningitidis 0.01
M. genitalium, M. pneumoniae 0.01

E. coli, H. influenzae 0.21
M. genitalium, B. subtilis 0.41

M. genitalium, Synechocystis sp. 0.80
M. genitalium, E. coli 0.88

M. genitalium, P. furiosus 1.57

N., Neisseria; M., Mycoplasma; E., Escherichia; H., Haemophilus; P.,
Pyrococcus.
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The rate at which the number of PCBBHs grows as a
function of the number of genomes present in the analysis is
worth considering. Our current data points are shown in Table
1. Because there is large variability between genomes in terms
of size, number of contigs, accuracy with which genes have
been identified, and so forth, one would expect only a rough
correspondence to be evident from these values. Nevertheless,
it does appear that the number of PCBBHs increases as the
square of the number of genomes.

A generalization of PCBBHs was proposed by W. Pearson
(personal communication). There is no need to insist that the
pairs of genes be BBHs. We can also define the concept of
‘‘pairs of close homologs’’ (PCHs) as follows: genes (X9a, Y9a)
from Ga and (X9b, Y9b) from Gb form a PCH if and only if X9a
and Y9a are close, X9b and Y9b are close, X9a and X9b are
recognizably similar, and Y9a and Y9b are recognizably similar.
Here, we will consider two genes to be recognizably similar if
their gene products produce FASTA3 scores lower than 1.0 3
1025. We use a scoring scheme analogous to the one described
for PCBBHs to evaluate the connections between PCHs,
except that if Ga and Gb are the same genome, we assign an
arbitrary ‘‘same-genome score’’ (‘‘same-genome’’ pairs cannot
occur for PCBBHs by definition, but for PCHs they are
possible). Unlike PCBBHs from two very close genomes for
which contiguity is completely uninformative in the vast
majority of cases, PCHs allow recognition of gene clusters that
play similar (but usually not identical) roles (such as two
transport cassettes containing pairs of homologs) in the same
or similar organisms. The arbitrary ‘‘same-genome score’’
should, we believe, have a value that is high enough to rank
such instances as significant. In ref. 6, we found that PCBBHs
with score above 0.1 were significant, and PCBBHs with scores
above 1.0 were highly significant; choosing a ‘‘same genome’’
score of 0.5 seems a reasonable first approximation. With this
choice, we have 103,449 PCHs with scores greater than 0.1, as
compared with 58,498 PCBBHs; of these PCHs, approximately
20% represent ‘‘same-genome’’ pairs. This generalization to
PCHs has allowed us to detect broad categories of functionally
coupled proteins for which BBHs proved to represent a too
restrictive criterion for homology; two examples are transport
cassettes and signal transduction operons.

We end this section with a fact that is relevant to under-
standing the underlying phenomena producing an unexpect-
edly high number of PCBBHs and PCHs: consider all pairs of
runs Ra and Rb from organisms that have a phylogenetic

distance greater than 0.1 in the rRNA tree such that they each
contain at least three bidirectional best hits. Then about 88%
of the time the order of the corresponding genes is exactly
preserved: of the 3,821 such pairs of runs in our data, only 473
contained permutations of the gene order.

Significance of the PCBBH and PCH Scores. At this time,
on the average only half of the gene functions in newly
sequenced genomes can be predicted on the basis of sequence
analysis. Finding new approaches to establish the functions of
such ‘‘hypothetical’’ proteins is one of the major goals of our
current research. We have found hundreds of instances in
which a hypothetical protein is paired with a protein of known
function via one or more PCBBHs or PCHs. The central
question is: how meaningful are such predicted couplings? In
this section, we explore this question by examining predicted
couplings between proteins of known function.

Suppose that two genes X and Y from a single run occur in
one or more PCBBHs. Then, by the ‘‘BBH coupling score,’’ we
mean the sum of the scores of all the PCBBHs containing X
and Y. Similarly, by the ‘‘coupling score’’ we mean the sum of
the scores of the PCHs containing X and Y. In other words, to
gain an estimate of whether two genes in a run are functionally
coupled, we propose simply to add up the scores for the
relevant PCBBHs or PCHs.

Once we have defined the notion of BBH coupling score, it
becomes possible to form clusters of genes that are coupled at
some level exceeding a specified threshold. Basically, one starts
with a gene, finds those genes with which it has high coupling
scores, adds those genes (and the corresponding genes from
related genomes) to the emerging set, and repeats this proce-
dure until no new genes can be added to the set. (Details of this
approach are given as algorithm 1, which is published as
supplemental material on the PNAS web site, www.pnas.org.)

Results

Below, we show the results of applying algorithm 1 to recon-
struct two common metabolic pathways: purine biosynthesis
and glycolysis. (A number of additional examples of recon-
structed metabolic pathways and functional subsystems, as well
as signal-transduction pathways and metabolite transport, are
presented in the supplemental material on the PNAS web site.)
The utility of the algorithm was evaluated by asking three
questions:

Table 4. Functional couplings between the genes of the purine biosynthetic pathway

The colors label genes occuring in corresponding runs in each organism. DR, Deinococcus radiodurans; CY, Synechocystis sp.; ST, Streptococcus
pyogenes; PN, Streptococcus pneumoniae; BS, Bacillus subtilis; CA, Clostridium acetobutylicum; EF, Enterococcus faecalis; ML, Mycobacterium leprae;
MT, Mycobacterium tuberculosis; PA, Pseudomonas aeruginosa; EC, Escherichia coli; HI, Haemophilus influenzae; YP, Yersinia pestis; CJ,
Campylobacter jejuni; AG, Archaeoglobus fulgidus; TH, Methanobacterium thermoautotrophicum; MJ, Methanococcus jannaschii; PF, Pyrococcus
furiosus; PH, Pyrococcus horikoshii.
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1. How much of the functional coupling implied by the
pathway could be determined directly from the PCBBHs?

2. How often could the entire pathway be derived directly
from just the PCBBHs?

3. How many spurious (‘‘false positive’’) functional couplings
were predicted?

To answer these questions, we present our results for the de
novo purine biosynthetic pathway and the glycolytic pathway.
We have tabulated all couplings between genes known to be
related to the particular pathway, as well as to other genes that
have no obvious connections to it. These latter genes are
candidates for ‘‘false positive’’ results, and a detailed analysis
of some of these ‘‘false positive’’ couplings is presented.

De Novo Purine Biosynthesis. Below, we present a recon-
struction of the de novo purine biosynthetic pathway (12–14)
from PCBBHs. Table 4 shows the inferred clustering of genes
from a number of genomes. Each row depicts a set of bidi-
rectional best hits associated with the function defined in the
leftmost column, and each column represents one or more
gene clusters from a single genome (distinct colors indicate
distinct clusters). Dashes represent enzymes that are not
present in PCBBHs in the given organism. So, for example, the
Deinococcus radiodurans (DR) genome has two gene clus-
ters—purEK and purQL—from this pathway.

As one can see in Table 4, there is a substantial difference
in the organization of pur genes in Gram-positive and Gram-
negative bacteria. In the low G 1 C Gram-positive group
(Bacillus subtilis, Enterococcus faecalis, Streptococcus pneu-
moniae, Streptococcus pyogenes, and Clostridium acetobutyli-
cum), pur genes form tight clusters containing most of the
genes related to purine biosynthesis. In Gram-negative organ-
isms belonging to the gamma subdivision of the Proteobacteria
(Pseudomonas aeruginosa, Escherichia coli, Haemophilus influ-
enzae, and Yersinia pestis), pur genes form three highly pre-
served clusters: purEK, described in Escherichia coli (10, 11),
purMN, and purHD. In Deinococcus radiodurans, Mycobacte-
rium leprae, Mycobacterium tuberculosis, and Synechocystis sp.,
as well as in all the archaeobacterial genomes under consid-
eration, pur genes are instead gathered into short clusters
scattered about the genome.

The coupling scores between the distinct functional roles in
the pathway are shown in Table 5. The values represent the
strongest coupling between the designated functions. Almost
all of the enzymes of purine biosynthesis are connected by
PCBBH coupling scores above 0.3.

Our analysis predicted only one connection outside the
known purine biosynthetic pathway that may be interpreted as
a false positive result: a set of seven bidirectional best hits that
were all assigned the function ‘‘hypothetical cytosolic protein’’
(yexA homolog). Homologous proteins were found in Bacillus
subtilis, Synechocystis sp., Enterococcus faecalis, and the ar-

chaeal genomes Archaeoglobus fulgidus, Methanococcus jann-
aschii, Pyrococcus furiosus, and Pyrococcus horikoshii. It has
strong PCBBH scores with the purL, purQ, and purC gene
products. We hope that future laboratory experiments will
confirm or reject the functional connection of this protein to
the purine biosynthetic cluster.

Glycolysis. Our analysis detected two clusters produced by
genes encoding glycolytic enzymes, shown in Fig. 2. Both
clusters were found only in the bacterial genomes. The first
cluster includes tpi (triosephosphate isomerase, EC 5.3.1.1),
gap (glyceraldehyde 3-phosphate dehydrogenase, EC 1.2.1.12),
pgk (phosphoglycerate kinase, EC 2.7.2.3), pgm (2,3-
bisphosphoglycerate-independent phosphoglycerate mutase,
EC 5.4.2.1), eno (enolase, EC 4.2.1.11), and a hypothetical
protein. These results agree well with the limited data on
clustering of glycolytic enzymes (15–17). The hypothetical
protein, which is functionally connected to most of the en-
zymes in this cluster, is most probably a transcriptional regu-
lator. It is highly homologous to a hypothetical transcriptional
regulator from Bacillus megaterium (spuP35168) and contains
a weak signature for the deoR family of transcriptional regu-
lators.

The second glycolytic cluster contains pfk (phosphofruc-
tokinase, EC 2.7.1.11) and pyk (pyruvate kinase, EC
2.7.1.40)—the only two glycolytic enzymes that do not partic-
ipate in gluconeogenesis.

This cluster was previously described in the literature (18–
20), where it was suggested that both genes constitute an

FIG. 2. Functional clusters in the glycolysis pathway; BB, Borrelia
burgdorferi; DR, Deinococcus radiodurans; CA, Clostridium acetobu-
tylicum; BS, Bacillus subtilis; EF, Enterococcus faecalis; MP, Myco-
plasma pneumoniae; MG, Mycoplasma genitalium; ML, Mycobacterium
leprae; MT, Mycobacterium tuberculosis; CJ, Campylobacter jejuni; TP,
Treponema pallidum; HP, Helicobacter pylori; ST, Streptococcus pyo-
genes; PN, Streptococcus pneumoniae.

Table 5. Connection matrix between the genes of the purine biosynthetic pathway

Gene names purF purD purN purQ purL purM purE purC purK purB purH
Unknown

yexA

purF — 0.81 1.82 0.10 0.48 8.72 0.81 1.82 0.10 0 1.33 0.10
purD 0.81 — 0.81 0.10 0.10 0.81 1.33 0.81 0.34 0.20 4.28 0.10
purN 1.82 0.81 — 0.10 0.48 4.26 0.81 1.82 0.10 0 1.77 0.10
purQ 0.10 0.10 0.10 — 3.75 0.10 0.10 3.95 0.10 0 0.10 2.98
purL 0.48 0.10 0.48 3.75 — 0.48 0.10 0.48 0.10 0 1.75 2.56
purM 8.72 0.81 4.26 0.10 0.48 — 0.81 1.82 0.10 0 1.33 0.10
purE 0.81 1.33 0.81 0.10 0.10 0.81 — 0.81 13.3 0.37 0.81 0.10
purC 1.82 0.81 1.82 3.95 0.48 1.82 0.81 — 0.10 0 1.33 1.41
purK 0.10 0.34 0.10 0.10 0.10 0.10 13.3 0.10 — 0 0.10 0.10
purB 0 0.20 0 0 0 0 0.37 0 0 — 0 0
purH 1.33 4.28 1.77 0.10 1.75 1.33 0.81 1.33 0.10 0 — 0.10

Unknown
yexA

0.10 0.10 0.10 2.98 2.56 0.10 0.10 1.41 0.10 0 0.10 —
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operon. Our analysis shows functional relationship between
this cluster and the alpha chain of DNA polymerase III (dnaE).
Although it is possible that there is a connection between
glycolysis and replication, we currently consider the presence
of dnaE (EC 2.7.7.7) in this cluster to be a ‘‘false positive’’
result. Tables 6 and 7 show the connection matrices for both
glycolytic clusters.

A More Systematic Exploration of Functional Couplings.
The simple algorithm alluded to in the preceding section can
be used very effectively to gain insights into the roles of specific
genes. Two questions immediately arise:

1. How much of known metabolism can be deduced from gene
clusters?

2. How many hypothetical proteins can be coupled to func-
tional subsystems?

To explore these questions systematically, we developed the
approach presented in the next section.

Identifying Corresponding Genes from Different Organ-
isms. We begin by forming sets of genes that we call “role
groups.” A role group is a set of genes such that the set contains
at most one gene from an organism, each gene in the set is a
bidirectional best hit with at least two other genes in the set,
the set is ‘‘connected’’ in the sense that one could not split it
without separating two bidirectional best hits, and the set
contains no pair of genes Xa and Xb from organisms Ga and Gb,
respectively, such that Xa is a bidirectional best hit with Yb from
Gb and Yb is not Xb. The last condition is especially important
in cases with a large number of paralogs, where our ability to
accurately identify corresponding genes from distinct organ-
isms is limited. We will call these sets ‘‘role groups,’’ because
we are attempting to isolate genes from different organisms
that play identical roles in each organism (and again, we
emphasize that our ability to accurately compute such group-
ings is limited).

These role groups are related to the much better known
clusters of orthologous genes (COGs) developed by R. L.
Tatusov et al. (21). COGs play an invaluable role in attempting
to characterize families of proteins. They tend to be much
larger groupings than the role groups; that is, COGs are often
the union of a set of role groups. COGs represent an attempt
to group proteins at the level of abstraction appropriate to
assigning function; role groups attempt to identify correspond-
ing genes in distinct organisms. In this sense, COGs have a
much more clearly defensible conceptual basis (and require
more judgment to curate). Both COGs and role groups have
extremely interesting properties and utility. The current WIT
system has over 5,200 identified role groups.

Connecting Role Groups. After computing role groups for
a set of organisms, one can compute connections between
specific groups based on coupling scores (or coupling BBH

scores) as follows. Let X and Y be genes from a single organism
such that the coupling score between X and Y is Sc. Then if X
is from one role group Rx and Y is from another group Ry, (X,
Y) is said to be a connection at score Sc between Rx and Ry. If
Rx and Ry are connected by two or more such connections with
scores greater than or equal to some threshold T, Rx and Ry are
said to be connected at threshold T. That is, one can compute
a set of connections between role groups imposed by the
coupling scores between genes in the groups. Among other
things, these connections between role groups can be used to
infer functional couplings between genes that do not occur in
gene clusters.

Clustering Role Groups. Our first attempt to cluster role
groups was based on the approach we used for algorithm 1. We
then devised a better approach that computes all connections
between role groups at a threshold of 0.1, orders the connec-
tions based on the maximum connection score, and allows a
knowledgeable biologist or biochemist to decide whether to
add a new role group to an existing cluster of connected groups
or to terminate the search; once a group has been added to a
cluster, it is removed from further consideration, ensuring that
each group occurs in one and only one cluster. (For details, see
algorithm 2 in the supplemental material on the PNAS web
site.)

There were 7,464 connections between the role groups
maintained in WIT2; 343 clusters of role groups were pro-
duced. Each such cluster represents a working hypothesis of
the composition of a functional subsystem in some set of
organisms.

Conclusion

The availability of multiple genomes provides an opportunity
to gain new insights into the processes that drive the dispersion
and formation of chromosomal gene clusters. The results
obtained with the method described above confirm that con-
served gene clusters accurately convey functional coupling
between the genes present in them. We have supported this by
anecdotal evidence, with further examples being available in
the supplemental material on the PNAS web site. The impor-
tance of simultaneous analysis of a large number of genomes
for the reconstruction of functional subsystems using func-
tional coupling is illustrated by the following calculation.

Three parameters determine the utility of this class of data:
the percentage of genes that occur within clusters, the average
size of a cluster, and the size of the real subsystems. From the
experiments described in Methodology, we found that the
percentage of genes assigned to a pathway that occur within
the same run with at least one other gene from the same
pathway is approximately 35%. We consider 3 genes to be a
conservative underestimate of the average size of a gene
cluster, because it was the median size of ‘‘same pathway’’
clusters found in the experiments of Methodology.

Consider a subsystem composed of 5 genes. How many
genomes containing this subsystem will be needed before the
coupling between two specific genes Gx and Gy in the sub-
system might be revealed via PCBBHs? Under the assump-
tions that a given gene will occur in a run in 35% of the
genomes and that the average length of a gene cluster is 3
genes, one expects to see 1 co-occurrence of Gx and Gy in a run

Table 6. Connection matrix of the glycolytic enzymes at 0.4 threshold (cluster 1)

EC no. 5.3.1.1 1.2.1.12 2.7.2.3 5.4.2.1 4.2.1.11 Unknown

5.3.1.1 — 2.96 3.38 1.85 0.81 0.42
1.2.1.12 2.96 — 9.30 0.42 0.81
2.7.2.3 3.38 9.30 — 0.38 0.81 0.42
5.4.2.1 1.85 0.38 — 0.38
4.2.1.11 0.81 0.42 0.81 0.38 — 0.42
Unknown 0.42 0.81 0.42 0.42 —

Table 7. Connection matrix of the glycolytic enzymes at 0.4
threshold (cluster 2)

EC no. 2.7.1.11 2.7.1.40 2.7.7.7

2.7.1.11 — 2.79 1.44
2.7.1.40 2.79 — 0.94
2.7.7.7 1.44 0.94 —
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(i.e., a single pair) in 6 genomes, about 2 co-occurrences in 11
genomes (that is, 11 genomes is the smallest number for which
one expects to first see a PCBBH containing Gx and Gy), and
about 3 co-occurrences in 17 genomes.

These simple calculations reveal an important characteristic
of gene clusters: functional clustering could only be detected
once we had access to about 10–15 genomes containing the
functional subsystem of interest. This property has caused the
utility of preserved chromosomal gene clusters to be under-
valued while only a limited number of genomes were se-
quenced. However, given the availability of hundreds of ge-
nomes (which we certainly expect within the next few years),
this class of data may well offer a very precise description of
the functional coupling between genetic subsystems in pro-
karyotic genomes.
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