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Abstract

We introduce a novel form of shape representation based on record-
ing the distribution of pairwise geometric relationships between local
shape features. It is shown that the geometric histograms used to
record these distributions can be easily and robustly acquired from
image data and can support recognition even when the shape ex-
tracted from the image is badly degraded by fragmentation noise and
occlusion. Moreover, the processing involved in establishing correspon-
dences between model and image features is both simple and parallel
and has many advantages over previous search based methods.

1 Introduction
The problem addressed by this paper is the recognition and location of mul-
tiple rigid objects from their 2D projections in grey-level images. Changes
in the lighting of the scene may result in sections of the projected shape be-
ing lost or fragmented. The fact that multiple, possibly overlapping, objects
may be present in the scene implies that parts of their shape may be lost
due to occlusion. In a very general sense we can say that any solution to this
problem must have two components: a representational scheme for model-
ing the objects to be recognised and a matching algorithm for identifying
correspondences between object and image features, fig 1. The possibility
of occlusion effectively rules out representational schemes based on global
characteristics of shape, such as fourier coefficients, [11], or moments, [8]. A
number of researchers have attempted to overcome these difficulties by ex-
ploiting the geometric relationships between pairs of local shape features, [7]
[9] [2]. Common to all these systems is the approach of matching model and
image features on the basis of individual pairwise geometric relationships.
The present approach is novel in that features are matched on the basis of
the distribution of multiple pairwise geometric relationships within a shape.
By correlating the geometric histograms used to record these distributions
we are able to provide a principled metric of shape similarity. Moreover,
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it can be shown that such representations degrade gracefully in conditions
where features are lost through image noise or occlusion, [5]. The use of
such representations as input to an adaptive, view-based 3-D object recog-
nition system has been previously presented in [4]. In the following sections
we introduce the details of the geometric histogramming scheme and de-
scribe a simple, parallel matching strategy for performing 2D recognition
and location.

Feature Matches

Fig 1: A General Recognition System

2 Geometric Histograms
The purpose of the representational scheme is to enable objects to be mod-
eled in such a way that they can be quickly and reliably recognised in
subsequent images. The scheme should therefore be based on some charac-
teristic of shape which is both discriminatory and robust. Given a shape
description in terms of a set of line features, obtained by performing a linear
approximation of the edge strings extracted from the image, one possibility
would be to record the set of pairwise geometric relationships between these
line features.

(a) Relative Angle (b) Perpendicular Distance

s:l*l

Fig 2: The Geometric Features

The geometric relationship between a pair of line segments can be defined
to an arbitrary degree of uniqueness by the use of geometric features [3].
Two such features are used in the present approach. The relative angle
feature is defined simply as the angle, 9, between the direction vectors of
the line segments, fig 2(a). This feature originally formed the basis of
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the representations used in [10]. In order to improve the disambiguation

power of this representation we use a second feature whose value is defined

as the range of perpendicular distances from the endpoints of one line to

the extension of the other. For non-parallel lines this defines a range of

distances over which the second line extends, dmin to dmax, fig 2(b).

FeatureValues The Geometric Histogram

4nin>dma

0 min "max Max Dist

n

Angle

Fig 3: Recording a Geometric Relationship
Distance

The proposed representational scheme is based on recording the distribution
of values of these geometric features in a histogram. The histogram has two
axes; an angle axis, whose values range from 0 -*• TT, and a distance axis,
whose values range from 0 to the maximum allowable distance between a
pair of line segments. Geometric relationships are recorded in the histogram
by making an entry at the measured position on the angle axis and from
the minimum to maximum values on the distance axis, fig 3. In order
to obtain the required statistical properties assumed during the matching
process, the histogram contents should approximate as closely as possible
the likely distribution of entries that would have been obtained if individual
edge elements were considered rather than extended lines. The geometric
histogram, once completed, can thus be considered as an approximation to
the p.d.f for geometric co-occurrences for an edgel based description of the
data. Thus, in order to encode the importance of a pair of line segments in
defining the shape to be represented the value of the entry is made equal to
the product of their lengths. In order to encode uncertainty regarding the
true position and orientation of each line segment the entry is blurred along
each axis. The scale of binning and extent of blurring define the extent of
allowable differences when matching similar shapes.

Complete representations of shape are constructed by first denning a local
coordinate frame around each line feature, fig 4. Geometric relationships,
defined in this local coordinate frame, between the base line and all other
lines are recorded in a histogram associated with the base line. This is done
for each line in the shape, such that the complete shape representation is
composed of n geometric histograms, where the shape is described using n
line features. Restricting the range over which the geometric relationships
in each histogram are measured, for example by denning a circular decision
boundary around each line, fig 4, produces a representation which has
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increased robustness to object occlusion.

Histogram Associated with L

Local Coordinate Frame

Local Region
Fig 4: Level of Representation

Handling Shape Variation
One of the major difficulties in recognising objects consistently across many
images is in dealing with variations in projected shape caused by fragmen-
tation noise and variable line approximation. The more robust the repre-
sentation is to these changes the easier the problem of matching becomes.
Within the geometric histogramming scheme this robustness is achieved by
the use of geometric features that are unaffected by, or change linearly with,
the position at which a line is fragmented. The importance of this prop-
erty can be demonstrated by comparing the additive effect of entries for
multiple line fragments with that for the original, complete line features,
fig 5. The use of appropriate geometric features ensures that the effect of
fragmentation noise is minimised. A similar argument can be given in the
case where line descriptions are changed by variations in the accuracy at
which the approximation of curved shape is performed, [6].

4nir

Original Entry

dmln

Fragmented Entries

Fig 5:
dmax

Assessment
Shape representations in the form of geometric histograms have many ad-
vantageous properties.

Redundant. The fact that geometric relationships are recorded in
more than one histogram means that the representation is quite re-
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dundant. This, together with their distributed nature, implies that
geometric histograms should possess considerable robustness to loss
of data.

• Local. The fact that each geometric histogram is a measure only of
local shape means that the representation is robust to partial occlu-
sion.

• Robust. The use of appropriate geometric features means that rep-
resentation of local shape within a histogram is quite robust to vari-
ations in line description caused by fragmentation noise and variable
line approximation.

• Easy to Match. As we shall see in the next section, geometric
histograms provide a representation of shape which is very easy to
match within a parallel recognition system.

3 Matching Algorithm
The first stage in the recognition process is to construct geometric his-
tograms for each line feature found in the image. As we have said, the
purpose of the matching algorithm is to identify correspondences between
image and object features. Given that stored shape representations are
composed of many geometric histograms, each representing a single model
feature, the degree to which an image feature matches a particular model
feature can be determined by comparing their histograms. If each histogram
is taken to be a vector then the degree of match between model feature Mj
and image feature / is given by a dot product correlation.

This can be related, via the x2 variable, to a maximum likelihood similarity
metric [Appendix A] and can be considered as a general result for comparing
two probability distributions. This statistical measure is defined on the basis
of a model which assumes that each edgel has an equal probability of being
detected, and thus has a simple interpretation in terms of edge detection
efficiency and the possibility of object occlusion. The scale invariance of
this dot product comparison metric provides a degree of invariance to line
fragmentation, while the fact that spurious features will, on average, have
little effect on the value of Dj means that the metric is robust to scene
clutter.

Based on this idea of correlating individual histograms we can construct
the following simple, parallel, competitive matching algorithm, fig 6. Each
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image histogram is correlated with all stored model histograms. A winner-
takes-all competition then takes place between the model histograms, the
model feature with the highest correlation being taken as a match for the
particular image feature. A threshold may be placed on the strength of the
winning match to exclude image features which do not correlate strongly
with any model features. Once matching is complete, each above threshold
image feature is matched against a particular model feature. The set of
hypothesised matches produced by the matching can be used in various
ways to determine the pose of each object in the image. In the present
system we make use of the Generalised Hough Transform, \1).

Image

Histograms

Dot Product

I 1 Correlation

Model

Histograms

W-T-A

Competition

Object 1

Object 2

Fig 6: The Parallel Matching Strategy

This matching strategy has many desirable features. Firstly, not all model
features must be matched; an important consideration given the likelihood
of certain features being lost due to image noise or occlusion. This situa-
tion must be handled explicitly in search based methods, adding consider-
able complexity to an approach which is already computationally expensive.
Secondly, an image feature may be matched by more than one model feature.
This is essential if multiple occurrences of an object are to be recognised
and if fragmented image lines are to be correctly matched. Finally, not all
image features must be matched. If a particular feature is below threshold
then it can be excluded from the segmentation as it most likely belongs to
some unknown object.

Assessment
In addition to the above features there are certain advantages to the nature
of the processing involved in this matching algorithm.

• Principled. The matching criterion is related to a maximum likeli-
hood statistic based on the matching of two statistical distributions.

• Simple. The computation required to determine the degree of match
between two features involves only simple array multiplication.

• Parallel. Histogram correlations may be computed independently,
leading to a simple hardware implementation.
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4 System Demonstration
The performance of the recognition system in three situations is presented:
multiple occurrences of a single object, multiple occluded objects and mul-
tiple objects in scene clutter. In each case two things are shown; the lines
features extracted from the image and the objects located by the system
overlayed onto the image.

Multiple Occurrences of Same Object
This example demonstrates the property of the recognition system whereby
an object feature may be matched by more than one image feature.

Multiple Occluded Objects
The ability of the system to recognise the objects despite this occlusion is
a consequence of the fact that each geometric histogram is a local measure
of shape. The correspondences established in one part of the object are
therefore unaffected by loss of another part due to occlusion.

Unknown Objects
In the previous cases all image features belonged to a known object. Here
we have an image of a scene containing a number of unknown objects,
(humans), that partially occlude the known objects.
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Fragmentation Noise
To simulate the effect of fragmentation noise the lines detected from the
image were corrupted by removing 50% of their length. This situation
is much worse than would be expected due to illumination problems and
reliability of edge detection. As can be seen, in all three cases the system is
still able to recognise the objects.

\

U
- - - , < • r. - - - • '

5 Conclusion
The ease with which a recognition system is able to identify and locate ob-
jects is determined to a large degree by the from of the representations used
to model the objects. A novel method of shape representation has been in-
troduced which is based on recording the distribution of pairwise geometric
relationships within a shape. It has been shown that such representations
can be matched using a principled, statistically based measure of shape sim-
ilarity which ensures that if information is present in the histograms then
matching will be correct. It has been demonstrated that a simple recogni-
tion system based on these representations is capable of establishing shape
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feature correspondences even in the presence of considerable fragmentation
noise, occlusion and scene clutter. These matches can either be used to
segment the objects present in the image or as input to a pose estimation
algorithm, such as the GHT. Moreover, the simple, parallel nature of the
processing involved in recognition means that it lends itself easily to hard-
ware implementation. This is currently the subject of further research.

Appendix A
We will show that the maximum of a dot product metric Dj = J2? y/oly/m~i
is the minimum of a x2 variable comparing two frequency distributions Oj
and TH{.

The maximum likelihood statistic x2 for comparing two distributions o,- and
m,- is denned as

X
2 = £>,- - mi)

2
/mi (1)

t

for small (o,- — m,), the first order Taylor expansion of / at m, can be written
as

/(<*) « /(m.) + (Oi - m , ) ^ (2)

which gives

Substituting (3) in (1) gives

X -
(a/(m.-K2

In the special case of f(x) = y/x we have

X
2
 =

which expanded gives

n

X2 =

which for normalised m gives

X2 = consi — 8

Thus, under these assumptions, taking the maximum of the dot product
metric Dj is the same as taking the minimum of the x2 statistic.
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