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§Institut National de Recherche Agronomique, Avignon, France

(Received 4 May 2006; in final form 19 December 2006 )

A time series of ten high-resolution Landsat TM images, ranging over the crop

season, has been acquired over an irrigated area in central Morocco. From this

time series, a Normalized Difference Vegetation Index (NDVI) profile was

generated for each pixel. In order to get significant profiles, the images were

radiometrically corrected, first, using invariant objects located on the scene,

based on visual observation of the images, and second, using the reflectance of

these objects, estimated from a previously corrected image. In the following step,

these NDVI profiles were used to identify four main crop types—bare soil,

annual crops, trees on bare soil and trees on annual understory—using a decision

tree algorithm. The resulting land cover map and the associated NDVI profiles

were then used for an evapotranspiration estimate over the whole area, using the

FAO model. Daily outputs of the Moroccan meteorological model ALADIN

were used to generate reference evapotranspiration (ET0) maps and Kc estimates

were determined using the NDVI profiles.

1. Introduction

Water management is a major issue in arid lands, especially those ;<having large

irrigated areas. Optimization of irrigation water—using only what is actually needed

by plants—is one of the obvious ways to save water. In order to monitor plant water

requirements over large areas, remote sensing is a very interesting tool that gives

synoptic information about two key parameters for evapotranspiration (ET)

assessment: land cover and crop development. Remote sensing capabilities for

monitoring vegetation and its physical properties have been identified for years now

(Tucker 1979). The interest of image time series for vegetation monitoring has also

been pointed out, mainly with regard to low-resolution images, which have been

available for a long time (Maisongrande et al. 1995, =Moulin et al. 1997, >Duchemin

et al. 1999, ?Gutmann 1999). @Remote sensing potential for monitoring irrigated crops

using high-resolution images was more recently discussed (Allen 2000, Bastiaanssen

et al. 2000, AHunsaker et al. 2003). BRegarding irrigation, two main approaches may

be considered: the first, using optical information to estimate vegetation

development through the computation of vegetation indexes—for example, as in

the FAO Cmodel (Allen et al. 1998); EXthe second, using both optical and thermal bands
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to assess instantaneous energy balance of vegetation and thus its possible stress, as

in the SEBAL EOmodel (Baastianssen 2000). We focus here more specifically on the

potential of high-resolution optical image time series for irrigated vegetation

monitoring. The usefulness of such time series for operational agronomic

applications is currently a subject of investigation (Calera Belmonte et al. 2003), EP
as this type of data is becoming more easily available through new missions like

ROCSAT/FORMOSAT (Chern et al. 2001), or planned ones like RHEA (Dedieu

et al. 2003). The inherent pointing capabilities of these new sensors are similar to

those of SPOT HRV, which enables revisiting, thus making them much more

efficient than Landsat TM for time series acquisition.

The study area is located in the irrigated Haouz plain, around Marrakech,

Morocco. Irrigation management in this area would benefit from better estimates of

actual water consumption, as water is being distributed on a fixed, per-area basis. A

time series of eight Landsat TM images was acquired over the six-month growing

season, from November 2002 to May 2003. This paper presents the full process used

for analysing this time series for ET estimate of the vegetation over the area,

including the three steps of (i) radiometric correction, (ii) land cover characteriza-

tion, and (iii) phenology monitoring. We show here how such image time series,

apart from allowing an accurate monitoring of the crop cycle, may be useful to

simply identify crops, where ordinary classification methods may fail because of the

very important variations of phenology within each crop class.

2. Material and methods

2.1 Study area

The Haouz plain, around Marrakech, is located in central Morocco, to the north of

the High Atlas mountain range (figure 1). The climate of the area is markedly

contrasted over the course of the year: hot and dry in the summer, with almost no

rainfall except for some violent storms in the mountains; from autumn to spring, the

temperature decreases and there is rainfall. Precipitation varies from 240mma21 in

the Haouz plain to about 500mma21 in the mountains located south of the plain,

with great inter- and intra-annual variability. Water descending from the mountains

is stored in some large dams and is mainly used for irrigation of the Haouz plain.

This water is distributed throughout the year, but especially during the rainy

season—from late autumn to spring—to complement insufficient rainfall. The

irrigated area covers approximately 3000 km2. The main crops are tree plantations

(olive, citrus trees and apricot), covering about 38% of the irrigated areas, and very

often combined with understory composed of various annuals, mainly wheat or

grass, which is used as forage. The approximately 60% of the remaining irrigated

area is used for herbaceous crop production (mainly annuals, like wheat and barley,

with some alfalfa). The actual annual crop area is subject to high variations

depending mainly on the water available in the dams at the beginning of the crop

season, as well as the rainfall occurring during autumn, which affects the sowings

date of the farmers. The period of maximum annual crop density therefore occurs

during the winter, while in summer only perennial tree crops remain.

2.2 Data

The eight TM scenes acquired, which range over the six months of vegetation

development, are dated as follows: 7 November 2002, 25 December 2002, 26
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January 2003, 11 February 2003, 27 February 2003, 31 March 2003, 16 April 2003,

18 May 2003. An image dated 8 February 2002, already corrected for reflectance,

was also used as a basis for the radiometric correction of this time series.

To compute the climatic demand ET0 required by the FAO method, we utilized

the daily outputs of the ALADIN EQmodel used by the Moroccan Meteorological

Services (Pailleux et al. 2000). This is a regional model designed for Morocco, which

is constrained by daily outputs of the global model ARPEGE ERdriven by the French

National Meteorological Services. ALADIN produces every day, for a regular

16 km resolution, grid maps of the four variables used for Penmann ET0

computation—temperature, humidity, wind speed and net radiation (all estimated

at the standard height of 2m). The outputs produced every three hours by ALADIN

were averaged for each day and interpolated at the resolution of the satellite images

(i.e. 30m), using a simple bilinear interpolation. This rough interpolation was

acceptable because the Haouz plain is flat and characterized by a homogeneous

climate, although it would not be suitable in the High Atlas mountains, where

climate is very heterogeneous and strongly linked to relief.

2.3 Radiometric correction

A radiometric correction was necessary to apply a deterministic identification

algorithm based on analysis of the Normalized Difference Vegetation Index (NDVI)

profile shape, which requires at least a relative correction of the images. These

NDVI profiles will be used in a next step to estimate the phenology of the crops, in
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Figure 1. Overview of the study area. Colour composition dated 18 May 2003 (Thematic
Mapper bands 7,4,3 respectively in R,G,B). The vegetation appears in green, corresponding
mainly to irrigated crops in the Haouz plain and to natural vegetation in the High Atlas
mountains. Red on the location plan indicates the frame of the full TM scenes processed. In
blue on the image, the location of figure 2 (CROPSCAN); in red the area for which the
cumulated ETc is shown in figure 10.
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order to estimate their water consumption, thus we also need to apply an absolute

calibration to get reflectance images. Despite the increased availability of satellite

images, their use is still impeded by the scarcity of good ground reflectance images,

which are heavily dependent on the quality of the atmospheric parameters’ input—

data which is still infrequently available today—for physical modelling.

This radiometric correction was achieved in two steps. The first step was to find a

set of reliable invariant objects in the raw image series, in order to get linear relation

between the digital numbers (DN) of these images. Indeed, on flat areas, under

reasonable assumptions of spatial homogeneity of the atmosphere, the relation

between the DN of two raw images is linear (Schott et al. 1988). In the second step,

in order to assign reflectance values to the raw images, the reflectance values of the

invariant sites are linearly related to the image’s DN. This simple linear correction

relies on the fact that in a first approximation (for flat areas), the simplification of

the radiative transfer model shows that reflectance is also a linear function of the

DN of the raw image (Schott et al. 1988). The reflectance of the invariants was

obtained using the previously computed reflectance image dated 8 February 2002.

This image was available from a previous work, based on physical modelling

corrections using the SMAC ESalgorithm (Rahman and Dedieu 1994), coupled with a

relative calibration (Simonneaux and François 2003).

Invariant surfaces were identified visually over the scene. The surface of each site

should be at least of about 464 pixels to avoid positioning problems that may arise

when using poorly georeferenced images. In arid zones, bare soils are widespread in

landscapes and few changes occur in land cover over the course of a year. These bare

soils are often good invariants (Séguis and Puech 1997). To help the identification of

those sites, a pair of images was displayed on screen, manually stretched to get

comparable colours. The two images were visually overlapped, making them flicker

when desired, which is an efficient manner to identify candidates to serve as

invariant areas. These areas were sought especially within uncultivated zones, based

on the ground knowledge we have of this region. The radiometry of these areas was

then displayed on the scatterplot of the same band for two dates, to check that it was

on the ‘no-change line’ (Elvidge et al. 1995, Xiaojun and Lo 2000). In arid areas, this

no-change line is quite visible on scatterplots for two dates and contains many pixels

corresponding to bare soils that remain relatively unchanged between the two dates.

This method is, in fact, less usable in temperate areas, where there are more

significant changes between two dates. As precipitation is rare in the Haouz plain,

and because wet soils usually dry within one or two days after an ordinary rain

event, fortunately none of the images comprising the series was affected by a wet soil

problem. Indeed, a wet soil occurrence would have hampered the use of this method

in modifying the signature of many previously invariant objects (e.g. bare soils),

making the no-change line disappear. In this way, more than 20 sites were easily

identified. Such a great number may seem excessive at first glance, but it is in fact

very useful to detect and eliminate outliers, i.e. pixels that may have lost their

invariant property because of surface changes. Invariant corrections based on only

two objects—the traditional ‘dark’ and ‘bright’ targets—may be erroneous if the

observer is not absolutely sure of the quality of these points, which is often difficult

to check.

The accuracy of image reflectance was assessed through a comparison with

spectral measurements done during the season in wheat fields, using a CROPSCAN

field spectrometer including the TM bands. This sensor is handheld, using a 3m-
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long boom leaning at 45u, which results in a patch of about 2m2. Because this

instrument simultaneously measures both incoming solar radiation and reflected

radiation—using upward and downward sensors—it is therefore less susceptible to

variations of illumination during the measurements. The calibration of this

spectrometer consists only of intercalibrating the upward and downward sensors

in order to get correct reflectance readings, without requiring any reference panel.

At the beginning of the season, the CROPSCAN measurements were checked

against data collected using an ASD precision spectroradiometer. Each measure-

ment consisted of 10 points, spaced every 10m along a fixed transect located

accurately using the GPS. The 10 points of each transect were averaged and

compared with the average of the pixels corresponding to the transect line extracted

from the TM image (figure 2). The wheat fields were large enough—100m6400m—

and homogeneous enough to minimize the potential problems of misregistration

when extracting pixels related to each transect. The standard deviation (SD) of the

10 points of each transect ranged from 1 to 35%, with an average of 12%. Additional

details about this measurement campaign may be found in Duchemin et al. (2006). ET

2.4 Land cover characterization

The vegetation development in the area is affected by a great heterogeneity that has

consequences for the choice of a land cover classification method using remote

sensing. For several crop types, especially annuals, the phenological cycles of

different fields may not be synchronous, showing important shifts between fields.
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Figure 2. Location of the CROPSCAN measurements on the Thematic Mapper (TM)
image dated 11 February 2003 (TM bands 7,4,3 respectively in R,G,B). The irrigated wheat
displayed in various green values shows the high heterogeneity of crop development.
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The phenology is indeed very dependent on agricultural practices, which may vary

greatly among farmers. For financial and organizational reasons, people follow

neither the same time schedule nor the same technical itineraries. For example, the

sowing period for wheat ranges from November to January (Duchemin et al. 2006,

Hadria et al. 2006a). One other feature of the land cover is that the cover types

encountered are complex. Among tree plantations for example, there are great

variations of density and age. Tree plantations also often include an understory of

annual crops—wheat, grass, etc.—cultivated as forage. Thus, the land cover classes

usually get very heterogeneous spectral signatures, regardless of the date considered.

Moreover, there are a lot of overlapping signatures between these classes, producing

spectral confusions.

For the above-mentioned reasons, we chose to focus on the analysis of the

temporal behaviour of vegetation, instead of trying to use all of the spectral

information available from the TM sensor through the usual classification methods

such as ‘maximum likelihood’. Because of the time shifts observed in agricultural

practices for any particular crop, explicitly taking into account the temporal

dimension of the spectral signature—for example, through the study of the

vegetation index time profile—may help significantly in discriminating between

classes. The identification of land cover classes based on NDVI profiles—which had

previously been used mainly for low-resolution global land cover characterization

(Lloyd 1990, Friedl and Brodley 1997, Chern et al. 2001), given that only low-

resolution satellite data was readily available—has been utilized in recent years for

high-resolution time series composed of fewer images by Ray and Dadhwal (2001).

Using such time profiles, the identification of distinct classes may either be based on

a parameterization of the NDVI profile—and on subsequent discrimination based

on the estimated parameters (Liang 2001)—or it may be based on the use of simple

phenological criteria, which are taken into account mainly through what are often

called ‘decision trees’ (Lloyd 1990, Chern et al. 2001, Ray and Dadhwal 2001). These

phenological criteria—such as the minimum, the maximum or the range of NDVI—

have the advantage of bearing an ecological signification. Consequently, they are

more robust than statistical criteria, which are more directly linked to the studied

dataset and are therefore more difficult to generalize. The method used in our case

was successfully applied during the previous season (2001/2002), using a time series

of nine SPOT HRV images and a ground truth set of 120 plots that had been

acquired over a smaller area (Simonneaux and François 2003). This method was

adapted for the 2002/2003 season, with the assumption that we had to validate some

parameters, for example the NDVI threshold used to distinguish between bare soil

and vegetation. This validation was achieved based on a set of 187 field observations

made during the 2002/2003 season.

2.5 Evapotranspiration estimate

The FAO model was chosen for the ET estimate (Allen et al. 1998, Allen 2000). This

model is based on the assumption that any crop can be compared to a standard

crop—‘a well-watered grass’—from which it differs by a simple multiplicative

coefficient, the ‘crop coefficient’, which varies over time according to the crop

development.

ETc~ET0Kc ð1Þ

where ETc is the crop evapotranspiration assuming no water stress, ET0 is the
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evapotranspiration of the standard crop and Kc is the crop coefficient of the

vegetation coverage studied.

The ET0 value is computed using the Penman–Monteith equation and the

following climatic parameters: air temperature, air humidity, wind speed and net

radiation. The measurements fixing these parameters may be recorded on the

ground in the usual way, using standard climatologic recording stations. Here we

used instead the daily outputs of the ALADIN model described in §2.2, which offers

a spatialization of these variables over the plain.

The main problem is to estimate the crop coefficients in space and time. For a

given crop, the temporal evolution of this coefficient is modelled according to the

FAO method by a trapeze curve (figure 3), with, successively, (i) a period

corresponding to the seed development without significant vegetation (‘initial

period’); (ii) an ascending stage corresponding to the growing season (‘crop

development’); (iii) a stability stage corresponding to the biomass and ear

development (‘mid-season’); and (iv) a decreasing stage corresponding to maturity

and senescence (‘late season’).

Kc is, in fact, a global coefficient encompassing the soil evaporation fraction of

water fluxes (named Ke) and the transpiration fraction named Kcb for ‘basal’ Kc.

Kc~KezKcb ð2Þ

Without any information about the actual crop development during the season

studied, the Kc profiles used are usually the average ones found in the literature

(Allen et al. 1998), and the beginning point of growth is arbitrarily and equally

chosen for all plots, according to knowledge of the crop calendars for the region. On

the other hand, if remote sensing data is available, it is possible to estimate the Kcb
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Figure 3. The Kc evolution of an annual crop, taken from Allen et al. (1998).
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evolution for each pixel using image time series. The spectral information included

in the images is usually closely related to vegetation phenology, especially when

using vegetation indexes. Many authors have confirmed the fact that NDVI and Kcb

can be related through a linear relation (Bausch and Neale 1987, Ray and Dadhwal

2001, Duchemin et al. 2006, Er-Raki et al. 2006). This empirical observation is easy

to understand, as the Kcb is roughly proportional to the crop fraction cover. After

the coverage reaches 100%, even if the biomass (and thus the LAI) EUcontinues to

increase, the transpiration is limited by the increasing shadow and the roughness of

the surface. In this case, the vegetation indexes obtained from spectral data also

saturate, in correlation with the potential ET of the crop. The NDVI–Kcb relation

was taken from the FAO guidelines (Allen et al. 1998):

Kcb~1:64| NDVI{NDVIminð Þ ð3Þ

with NDVImin50.15.

Although related to wheat, this relation will be used for all annual crops,

considering that wheat is by far the main crop, and that other cereals have very

similar Kcb. Thus, using remote sensing, it is possible to estimate NDVI for the

image dates, then to interpolate a NDVI profile for each day of the vegetation

season and subsequently to compute the Kcb using relation (3). Depending on the

number of NDVI values available (i.e. the number of cloud-free dates of imagery),

the interpolation method may differ. If a lot of points are available (e.g. every week),

then a simple linear interpolation may be suitable. But if only three or four points

are available, the linear interpolation between these sparse points would lead to an

unrealistic shape of the NDVI profile. In this case, it is more reliable to assume a

standard shape for the NDVI profile (i.e. a trapeze), and fit this trapeze to the points

available (Duchemin et al. 2003). This latter method was used here to adjust an

NDVI trapeze for each pixel from the points available from images. A program was

coded in C + + to fit a trapeze to the available points. Seven variables were

considered in adjusting the shape of the trapeze: the minimum NDVI (bare soil), the

maximum NDVI (vegetation max), the sowing date and the length of the four

development periods (figure 4). Theses parameters were tested iteratively using

realistic value ranges and increments. The result of this fitting is—for each pixel—a

specific trapeze profile matching the image points.

Unlike Kcb, no spatiotemporal information was available to estimate Ke.

Although it may vary considerably in space and time, depending on soil water

content, an arbitrary value was assumed over the growing season. However, this

value was modulated for each pixel depending on its vegetation fraction cover, in

order to minimize Ke when vegetation coverage is increasing. As proposed by the

FAO guidelines (Allen et al. 1998), we used the following equation:

Ke~ 1{fcð Þ|Ke, max ð4Þ

where fc is the vegetation fraction cover: fc51.186(NDVI–NDVImin).

Ke,max was approximated depending on the frequency of water inputs, affecting

the proportion of days with wet soil evaporating (Allen et al. 1998). Taking into

consideration the frequency of irrigations (four to five times per season) and the

rainfall events (100–250mm rainfall during the season, very irregular), Ke,max was

fixed to a constant value of 0.3.

Finally, the Kc resulting from combining equations (3) and (4) was multiplied by

the daily estimates of ET0 to get the estimated ETc of the crops.
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3. Results and discussion

3.1 Radiometric calibration and computation of NDVI profiles

To choose invariant areas, two images with very different vegetation development

stages were selected—dated 7 November 2002 and 11 February 2003—in order to

maximize the probability that invariant areas for these two dates would remain

invariant for other dates. We selected 33 invariant sites in the scene, in non-

vegetated areas, as flat as possible, outside the irrigated plain where there is a greater

probability of their remaining stable over the course of the season. We also checked

that these points were spread well over the reflectance range of the image, in order to

obtain reliable regressions. Using these sites, the regression lines were computed—

for each band, between pairs of images—to check for the presumed invariance of the

signatures. We obtained very good determination coefficients (figure 5), usually

above 0.9, showing that the areas selected are actual invariant features. Indeed, the

hypothesis that all these areas might have changed such that their signatures remain

proportional is highly unlikely, the invariant hypothesis being far more probable.

The 2003 images were then compared to the image dated 8 February 2002 for

reflectance correction. The invariants’ quality was again confirmed at this stage by

the very good determination coefficients obtained. These coefficients were in the

range 0.88–0.99, with an average of 0.96 (figure 6). Reflectance images were then

computed using the estimated linear relations. The critical point of this correction

method appears to be the source of ground reflectance information, more than the

assumption of linear relation based on invariants, which appears very robust in our

case.

To validate the reflectances, CROPSCAN spectral measurements were done on

various dates from January to May, in 14 wheat fields in the irrigated area

(Duchemin et al. 2006). We selected only the 69 measurements that were done within

two days of an image date. The comparison with TM reflectance data shows good
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Figure 4. Modelling of the Normalized Difference Vegetation Index (NDVI) profile,
example of a wheat plot with eight NDVI measurements obtained from Landsat TM images.
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agreement (figure 7) despite determination coefficients lower than those resulting

from the image-to-image comparison. This is normal, since it is difficult to make

field measurements comparable with image data because of the very different

processes of data acquisition (Simonneaux et al. 2001). The main differences are the

point of view and atmospheric conditions of the measurement; the time and date of

the measurement; and, especially, the spatial extent of the object being measured.

Image pixels are very large, even compared with transects made by handheld

radiometers. Moreover, neighbouring pixels are never completely independent

because of signal mixing. Thus, it is almost impossible to match the same object

using field measurements, despite collecting many measurements along transects.

Nevertheless, these graphs indicate that, on the whole, the reflectance values

obtained are correct. However, the relations observed show slight biases between the

two data types. These biases may be due either to some problem in the radiometric

correction of images—for example, that the image used as the basis for reflectance

was biased—or from some bias in the spectrometer. Assuming here that
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Figure 5. Comparison of raw image values for the 33 invariants. Example from images of 7
November 2002 and 27 February 2003, TM3 and TM4 bands.

Figure 6. Relation between raw digital number (DN) values and reflectance values from 8
February 2002, for the 33 invariants. Example of 27 February 2003, TM3 and TM4 bands.
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CROPSCAN measurements were more reliable than the image reflectances, an

additional correction was applied using the observed linear relations.

From the corrected image series, an NDVI profile was computed including the

eight dates. Three images of the time series were partly cloudy, for dates that are

very important for monitoring the crop development (27 February 2003, 31 March

2003 and 16 April 2003). Thus, instead of entirely rejecting the cloudy images, we

masked the affected pixels. The clouds were small cumulus clouds, which are cold

objects that are easy to identify using a simple threshold on the Landsat TM thermal

band (re-sampled at 30m). The cloud shadows were also easy to identify because

they had the lowest reflectance in the near infrared (NIR) band. In order to avoid

mixed pixels at the boundary of clouds and shadows, a single-pixel dilatation was

applied to the generated masks. As the clouds were rarely at the same place, at least

two of the three dates were usually usable for computing the NDVI profiles.

3.2 Land cover classification

3.2.1 Method designed using the 2001/2002 dataset. The crop identification method

was designed based on a set of 120 field observations. This field data was made up of

18 thematic classes, including all the species encountered and their combinations

(trees and understory). It seemed obvious that this detailed typology would not be

correctly discriminated based only on the analysis of the NDVI profiles. The visual

examination of the profiles showed that they might allow for a reliable

discrimination of four main classes, taking into account simple phenological criteria

like the minimum and maximum values of the NDVI profile and the range of NDVI

over the season. These classes were bare soils, annual vegetation, trees on bare soil

and trees over annual understory. The typical profiles of these four classes are

shown in figure 8.

The discrimination criteria were established on the basis of three threshold values,

adjusted to obtain a good discrimination of classes. These criteria were (i) the NDVI

value discriminating between bare soil and vegetation (Sn50.18); (ii) the maximum

NDVI for trees on bare soil (Sa50.40), assuming that higher NDVI depicts trees on

annual understory; and (iii) the minimum NDVI range for trees on annual

understory (Sr50.2), considering that the presence of annuals would imply a
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Figure 7. Relation between reflectances (%) from Thematic Mapper (TM) images and
CROPSCAN ground measurements achieved between January and May 2003, for TM3 and
TM4 bands.
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minimum NDVI variation range. The resulting algorithm of classification is

presented in table 1. The total number of only four classes may seem low, but it

nevertheless presents valuable information for water budget assessment.

Bare soils are easy to discriminate, as they show flat and low NDVI profiles,

always below a threshold Sn, estimated to 0.18. Sn may vary according to the soil

properties, but no evidence was shown for that effect here, despite the presence of a

large range of soil properties—texture, roughness and humidity—in the study area.

These bare soils may represent either true bare soils (fallow land with almost no

vegetation), or very poorly developed wheat with low NDVI.

Annual crops are defined by NDVI values rising above Sn, depicting significant

vegetation biomass, combined with some values below Sn, showing non-permanent

vegetation coverage (i.e. a period of bare soil). This non-vegetated period permits

distinguishing them from plantations of evergreen trees, which occur frequently

here. This class includes mainly cereals like wheat and barley, and some vegetables

when the vegetation coverage is sufficient for NDVI rising above Sn.
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Figure 8. Normalized Difference Vegetation Index (NDVI) profiles of the main vegetation
covers of the Haouz plain. Samples were visually selected on the basis of their typical shape.

Table 1. Criteria used for Normalized Difference Vegetation Index (NDVI) profiles
classification. Sn50.18, Sa50.4 and Sr50.2.

Conditions for NDVI values Conditions for NDVI range Class

All NDVI,Sn No Bare soil (SN)
Some NDVI.Sn and some
NDVI,Sn

No Annual crops (H)

All NDVI.Sn Max–Min,Sr AND All
NDVI,Sa

Trees on bare soil (ASN)

max–min.Sr or some
NDVI.Sa

Trees + annual understory
(AH)
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Tree classes are considered as NDVI profiles always above Sn, considering that

the majority of them are evergreen trees (olive and citrus trees). The biomass of

theses trees is relatively constant over time, despite some slight variations due to

growing stages and annual pruning, so their NDVI is therefore also generally

constant.

Trees on bare soil are clearly identified by their having all NDVI values below a

threshold Sa50.45 and limited variations of NDVI (variation range Sr,0.15). All

other tree profiles, having either high NDVI values or high NDVI ranges are

considered to be Trees on annual understory. The distinction of these two classes is

useful for water management.

The Sn value is critical here, because it discriminates very different classes (i.e.

annuals or bare soil), which may have significant consequences when this

information is later used to forecast water needs over the course of the season.

But in our case, the development of the vegetation (related to Kc) is also taken into

account to assess daily water requirements. Thus, the confusion between poorly

developed wheat, which consumes little water, and an actual bare soil is not crucial

in terms of water budgeting. The maximum value of NDVI is higher for irrigated

crops, and lower for rainfall wheat. These two types of crops are usually well

discriminated, but in many cases irrigated wheat that is suffering from a shortage of

water will behave like rainfall wheat.

It appears that the shape of the wheat profiles is rarely a trapeze as modelled by

the FAO method. However, this fact does not preclude using the method because

the algorithm fitting the trapeze also fits the length of the mid-season phase and can

thus fit a shorter one, as can be seen in figure 4.

Confusion may occur with some of the annual crops that show no value below Sn

over the period of observation. This may be the case for cereals with early

development compared to the first date we had available (7 November 2002). It is

also the case for permanent crops like alfalfa, never showing very low NDVI values

even after cutting, but which is hopefully not widespread in the study area. All these

particular herbaceous crops may be confused with the tree classes, which is a more

critical problem for water budgeting because these classes may show different crop

coefficients.

Another problem affects young plantations, which do not show a high NDVI and

are not detected on the image, even though they consume much less water than older

ones. Moreover, these young plantations are usually combined with an understory

of well-developed annual crops, which use most of the irrigation water, and are

classified as annuals, with the related water consumption estimate.

Regarding the 2001/2002 season—for which the method was designed—the

accuracy of the classification was 85% (Simonneaux and François 2003). As a basis

of comparison, maximum likelihood classifications were conducted on the same

dataset, using the 18 detailed classes as primary spectral classes, then combining

them further to obtain the four final classes. Regardless of the number of images

used—whether all of them or only a selection of dates, well-ranged over the

season—the accuracy was never better than 50%. In fact, this poor result was not

really surprising, considering the special features of the land cover in this area: great

variability of profile shapes for some classes, and their shift on the time axis,

especially for the annual covers. From the perspective of cost optimization, the

NDVI profiles method was also tested using fewer images. Five images from the

2001/2002 time series, well-distributed over the season, produced results that were
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equally as good as those obtained by using the full series (85%). When considering

only three images—as long as they were temporally well positioned at the beginning,

peak and end of the season—the accuracy was 83%.

3.2.2 Application to the 2002/2003 time series. Because annual crops change, for

the 2002/2003 season a new validation set was used, based on a QuickBird very high

resolution image from 24 March 2003 over a 9 km2 subset of the area. This image

was enhanced by applying a fusion of the multispectral bands (2.4m resolution) with

the panchromatic one (0.6m resolution), giving a very sharp image on which almost

all trees were visible, except for very young ones. Although the four classes were

easily distinguished on this image, it was representative of a relatively small area in

comparison with the extent of the Landsat images; also, the area was mainly covered

with wheat. Thus, an additional field trip was carried out over the Haouz plain

providing 187 observations. The confusion matrix computed using this data (table 2)

gave a global accuracy of 83.7% (between 77% and 91%, depending on the class),

which is close to the previous year’s assessment. This positive result is not surprising,

considering the simplicity of the typology and the robustness of the algorithm based

on physical criteria, i.e. vegetation index analysis (the criteria were the same for both

years). Unlike the method proposed by Ray and Dadhwal (2001), it is not linked to

particular dates, but can be applied to any time series, assuming a reasonable

distribution over the season. This is an important point from the perspective of

operational application.

Because trees are long-lasting vegetation, it may be planned, in the scope of a

permanent operational tool, to map such vegetation by means other than the NDVI

profile shape, for example using very high resolution satellite images at metric

resolution. Such a data source would produce more accurate tree mapping—

reducing confusion with herbaceous perennial vegetation like alfalfa—and would

improve the detection of very young trees.

3.3 Evapotranspiration estimate

The computation of ETc was carried out only for annual vegetation (considered as

wheat), because no accurate Kc was available for trees. The product of Kc and ET0

was calculated for the whole vegetation cycle (i.e. from the beginning of the initial
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Table 2. Confusion matrix of the 2002/2003 land cover classification (in pixels). EV

Field observations

Trees on
annual

understory
Trees on
bare soil

Annual
crops Bare soil Total

Omission
error (%)

Classification
outputs

Trees on annual
understory

476 73 84 13 646 26.3

Trees on bare soil 44 392 0 12 448 17.7
Annual crops 91 1 504 16 612 12.5
Bare soil 6 3 5 411 425 3.3
Total 617 469 593 452 2131
Omission error
(%)

22.9 15 16.4 9.1

% correctly classified583.7, Kappa50.78
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stage to the end of the senescence stage). The cumulated ETc was computed for the

530 000 pixels of annual crops (48 000 ha) in the Haouz plain, giving an average

value of 446mm. The distribution of the values (figure 9) shows a peak from 220mm

to 550mm, with a mode at 415mm. The upper tail of the histogram spreads up to

1300mm, and probably corresponds to misclassified pixels—actually either trees or

alfalfa, both of which consume much more water. The modal ETc (415mm)

therefore seems to be more representative of the average field of annual crop. These

estimates are consistent with the standard water needs as estimated by the local

agency in charge of irrigation, which are 525mm for wheat and 450mm for barley

(values issued from the application of the FAO method). Since the studied year

cannot be considered as dry—with a total amount of precipitation of 300mm for

that year, compared with the climatic average of 240mm—the difference with our

estimates points to the fact that crop development is rarely optimal, owing to the

aforementioned crop management problems.

For a subset of the area covered mainly with wheat (figure 10), values of

cumulated ETc vary from 200mm to 500mm. This very high variability is, in itself,

an interesting result, which justifies the spatiotemporal approach offered by remote

sensing. This high variability is not surprising; it illustrates the above-mentioned

variability of farming practices—which are often not optimal, for example, with

regard to the sowing or irrigation dates—more than it does the variability of

intrinsic soil conditions. The higher values—around 500mm—are those of well-

conducted wheat plots experiencing almost no stress. The lower values of 200mm

correspond to wheat that is poorly developed because of water shortage or nitrogen

stress that can induce large yield reduction (Hadria et al. 2006b). Considering the

250mm rainfall that occurred that year from November to May, and taking into

account the rainfall efficiency reducing the actual amount available for vegetation,

rainfall wheat might have been able to develop and reach the lower values of ETc

observed here (around 200mm). On the other hand, both because of problems with

the availability of water and because of differences among farming practices, much

of the so-called ‘irrigated wheat’ does not actually reach high values of ETc. Since
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Figure 9. Histogram of cumulated ETc for the pixels of the annual class over the whole
Haouz plain.
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figure 10 depicts an irrigated sector, most of the wheat observed is in fact poorly

developed irrigated wheat.

A first validation of these remote sensing estimates was possible thanks to ET

measurements of three wheat plots, using eddy correlation systems providing

measurements of the actual evapotranspiration (AET) of these plots (Duchemin

et al. 2006, Er-Raki et al. 2006). The daily ETc profiles estimated by remote sensing

were extracted for the three pixels corresponding to the three eddy correlation

systems (see location in figure 2). Figure 11 shows the two types of daily ET values

for the three plots. The eddy correlation measurements show some gaps—especially

the B123 plot—because of technical problems occurring during the experiment. On

the whole, we observe concordance between the ground and remote sensing values.

At the daily time step, however, there may be marked discrepancies. For the whole

measurement set available, the average daily ETc was 3.32mm, with a daily absolute

deviation of 0.89mm (26.9%). We computed an estimate of this absolute deviation

at the weekly time scale, but as there were many gaps in the time series, subsets of

seven days were artificially aggregated in removing the missing days. For the 22

periods of seven days obtained, the mean daily absolute deviation was reduced to

0.61mm (18.25%). Finally, for the whole period of measurement—about 160 days

available, considering the three sites—the average daily estimate of ETc was

3.48mm, which means a difference of only 4.8% compared with the measurements.
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Figure 10. ETc of annual crops cumulated over the season (mm) for an extract of the Haouz
plain (see location on figure 1).
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A bigger discrepancy appears between Julian days 90 and 98 for the three plots,

especially the B27 plot, where the AET decreases whereas the estimated ETc remains

at high values. This discrepancy is due to the quick rise of ET0 during this period,

coupled with a lack of irrigation, inducing stress in the vegetation. As mentioned in

§2.4, the vegetation stress is not accounted for by the methodology used here. Early

AET measurements were only available for plot B123, and show values much higher

than the estimated ETc for Julian days 36 to 43. This high AET corresponds to an

irrigation of the plot applied on day 35, while the vegetation is still relatively

undeveloped, generating a high soil evaporation that is not accounted for by our

method at the daily scale, but only at the seasonal scale.

The discrepancies observed between what remote sensing offers and the AET

measured on the ground mean that whatever the accuracy of NDVI and Kcb

estimates, the ET estimated here is basically not AET. Our ET estimates are based

In
te
rn
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
R
e
m
o
te

S
e
n
s
in
g

re
s
1
1
2
8
1
5
.3
d

6
/3
/0
7

1
7
:1
8
:5
7

T
h
e
C
h
a
rl
e
s
w
o
rt
h
G
ro
u
p
,
W
a
k
e
fi
e
ld

+
4
4
(0
)1
9
2
4
3
6
9
5
9
8
-
R
e
v
7
.5
1
n
/W

(J
a
n
2
0
2
0
0
3
)

2
2
4
9
5
2

Figure 11. Comparison of ETc estimated using FAO EWmethod and Landsat TM data
(TM_6lines) and ground measurements achieved using Eddy Correlation systems
(EC_6lines) for three plots (B27, B123, B130, see figure 2 for location). Julian days starting
1 January 2003. Note that these three plots had a very late development compared with the
rest of the area.
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on NDVI—i.e. on vegetation development—but soil evaporation and vegetation

stress, contributing to AET are not accurately taken into account here. The

evaporation fraction of the soil, related to Ke, is considered constant, and issued

empirically from the observed frequency of irrigations and rainfall events. This

approximation is not satisfactory from the perspective of a spatialized monitoring at

a few days’ time step. The actual values of Ke may vary greatly, depending on

farming practices and water availability. One remote sensing solution to overcome

this problem would be the use of radar images to estimate soil moisture, but this is

another field of research, currently far from being operational. The second process

not being considered here is the stress of the vegetation, occurring when the soil

water content is low. In the case of moderate stress, the vegetation still has the same

NDVI despite a decrease in actual transpiration coefficient (Moran et al. 1994). To

account for this stress, the FAO method introduces the stress coefficient, Ks, to be

multiplied with Kcb. From a remote sensing perspective, this kind of stress may be

monitored using thermal information as the reduction of transpiration makes the

temperature of the plant rise, using, for example, the Water Stress Index proposed

by Jackson et al. (1981). Thus, the ET estimated here from remote sensing is a

‘pseudoevapotranspiration’; it is both overestimated, because of potential vegetation

stress, and underestimated, because of soil evaporation. In fact, the difference with

AET is mainly driven by irrigation practices. For the season studied here, we see

from figure 11 that the two error factors may essentially offset one another.

Additionally, one should point out that the ET estimated using this method is not

the potential ET resulting from ideal growing conditions. Indeed, if the stress is not

considered instantaneously when it occurs, it has subsequent effects on plant

growth, modifying the development of the vegetation and thereby the NDVI. The

pseudoET estimated here is, then, close to the actual ET most of the time, but

usually below the potential ET of optimal conditions (water and nutrients).

Considering the level of complexity of the modelling approach of plant stress and of

soil humidity estimates using remote sensing, one simple alternative approach would

be an empirical estimate of this factor adjusted to this area, as this was done for Ke.

4. Conclusion

Considering the worldwide increase of pressure on water resources, which is mainly

due to its agricultural use, the accurate monitoring of agricultural water

consumption over large areas is critical for planners and decision makers. In this

work, we show how satellite image series may be used to estimate the

evapotranspiration of crops over large areas. The availability of such satellite data

is rather new and still expensive, but this should change in the next years thanks to

planned or recently launched missions, such as SPOT, IRS, FORMOSAT, FXVenus,

etc.

Among the main problems to overcome, the first is the radiometric correction of

satellite data to make them comparable and utilizable for physical modelling.

Despite the progress made in the knowledge of atmospheric parameters, these are

still often lacking or are not known accurately enough. A combined method based

on physical modelling and relative correction based on invariants was proposed,

which proved to be very useful for improving the results of the physical models

considered alone. Regarding the relative accuracy obtained using images taken on

different dates, and for a set of invariant objects, this method gave correlations

between images around 0.98.
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The second phase of the work was to assess land cover—a key input in estimating

water consumption—using most available models, including the FAO model, which

was chosen here for its compliance with and utility for remote sensing applications.

The high spectral confusions between classes were overcome, giving priority to

temporal analysis of the signature instead of focusing on spectral signatures. The

land cover obtained is simple (annual crops, trees, annual crops + trees, bare soils)

but accurate (85% well classified); it is better than the spectral classification, and

relevant for the application of the FAO method. Indeed, the resulting classes match

the main groups that can be distinguished in terms of water management. Problems

still remain with regard to the clear identification of alfalfa, as well as in

distinguishing between different types of trees. Further analysis based on more field

work and using multiyear imagery would probably allow for further refinement of

this first typology, permitting greater discrimination of classes—especially among

trees—through the use of refined criteria.

The ultimate phase of the work was the computation of water consumption for

wheat, using crop coefficients obtained from the image series. We saw that whatever

the accuracy of the input variables—i.e. climatic demand (ET0), and phenology

(crop coefficients)—the main limitation is the lack of account taken of soil water

content. Indeed, soil water is a key variable for water budgeting because it controls

both water evaporation (when there is too much water in top soil) and plant stress

(when water is lacking). The forthcoming availability of passive microwave data

(SMOS FOmission) and the use of thermal data, associated with more complex models,

should help to overcome these problems. For the time being, the simple method

described here gives a first estimate of plant water consumption, assuming that top

soil water evaporation is not too important, and that plant water stress is not too

frequent, or at least that rough estimates of these two factors are available from

empirical ground knowledge. Under this hypothesis, we show that remote sensing

estimates of ET compare very satisfactorily with ground measurements.
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