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This article describes the computation and relative merits of likelihood-based confidence
intervals, compared to other measures of error in parameter estimates. Likelihood-based
confidence intervals have the advantage of being asymmetric, which is often the case
with structural equation madels for genetically informative studies. We show how the
package Mx provides confidencc intervals for parameters and functions of parameters in
the context of a simple additive genetic, common, and specific environment threshold
model for binary data. Previously published contingency tables for major depression in
adult female twins are used for illustration. The support for the model shows a marked
skew as the additive genetic parameter is systematically varied from zero to one. The
impact of allowing different prevalence rates in MZ vs. DZ twins is explored by fitting
a model with separate threshold parameters and comparing the confidence intervals. De-
spite the improvement in fit of the different prevalences model, the confidence intervals
on all parameters broaden, owing to their covariance.
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INTRODUCTION

Researchers in behavior genetics often use struc-
tural equation medels {SEMs) in the analysis of
twin or family data or both. Point estimates of
parameters from these models, such as heritability
estimates, may be reported along with information
about their precision in the form of either confi-
dence intervals (ClIs) or standard ervors (SEs), of
which the latter can be used to produce Cls under
the assumption of normally distributed estimators.
The present paper discusses the merits of several
Cl approaches and focuses primarily on methods
based on likelihood. We show that SEs often pro-
vide very poor approximations to Cls obtained by
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direct analysis of the log-likelihood. We describe
new functionality that has been added to the SEM
package Mx (Neale, 1995) for user-friendly, effi-
cient computation of likelihood-based Cls for
parameters and functions of parameters in a wide
variety of models.

Maximum likelihood (ML) is the dominant
form of estimation in SEM today. It is the default
fit function in almost all the packages [Amos (Ar-
buckle, 1994), CALIS (SAS, 1988), EQS (Bentler,
1989), LISREL (Joreskog and Sérbom, 1989), Mx
(Neale, 1995)]. ML estimates have many desirable
properties (see Silvey, 1975, for a general intro-
duction to ML estimation); in particular, they are

(1) asymptotically unbiased,

(2) asymptotically efficient (uses all the data
to estimate the parameters),

(3) sufficient (describes the likelihood up to
an arbitrary constant), and
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(4) invariant (one-to-one transformations of
parameters can be back transformed to re-
cover the untransformed maximum),

and it can be argued (e.g., Edwards, 1972) that like-
lihood should be the basis for all parametric statis-
tical inference. The general approach to interval
estimation presented in this paper can be applied to
any fit function, but it is most natural in the context
of ML estimation because of its origin in likelihood
theory.

Confidence Intervals

A confidence interval (CI) is determined by
the position of its endpoints, called the upper and
lower limits of the interval. A useful way to inter-
pret Cls is through their relation to hypothesis tests;
a (I — a) CI consists of all those values of the
parameter that cannot be rejected by an a-level hy-
pothesis test. Suppose that the true population value
of a parameter is 8 and that we have collected ap-
propriate data to obtain an estimate of it, 6. If we
wish to test the hypothesis that 8 = a, where a is
a possible value of 6, we can do so if there is an
a-level test of this loss of fit available. We can use
this test to construct a (1 ~ «) CI for 8 by pro-
gressively moving the value of ¢ away from 6 (and
optimizing over the other parameters of the model)
until we’'ve determined the point where the hy-
pothesis 8 = a is rejected. In the case of MLEs
this is straightforward, because the difference in fit
is asymptotically distributed as x? with one degree
of freedom., When exact a-level statistical tests are
not available, approximate tests often can be used
to produce approximate (1 ~ «) Cls.

In statistical terms, we say that data are *‘ran-
dom’’ when they cannot be predetermined because
they are influenced by chance. Almost all data in
behavioral genetic studies are random. Confidence
intervals are determined by the data, so they too
depend on random processes and therefore we refer
to them as ‘‘random intervals.”” This leads to a def-
inition:

A (1 — a) CI for a parameter is a random
interval that covers the frue value of the
parameter with probability greater than or
equal to (1 — ).
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In other words, we require a method for determin-
ing intervals from the data and the intervals so con-
structed must contain the true parameter value with
probability (1 — o), no matter what the true value
of the parameter. An ideal way to establish that a
function is yielding a true (1 — a) CI would be
from the joint distribution of the limits of the in-
terval for every possible value of the parameter.
Unfortunately, in most areas of statistical work, in-
cluding structural equation models, it is not possi-
ble to determine the joint distribution of the limits
of the CI, so approximations must be made.

Standard Errors Based on Derivatives

The conventional approach to estimating stan-
dard errors on parameters relies on the fact that the
inverse of the information matrix (Fisher, 1922)—
which refiects the curvature of the log-likelihood
surface at its maximum—equals, in infinitely large
samples, the variance—covariance matrix of param-
eter estimates. Thus, the square roots of the diag-
onal elements of the matrix inverse approximate
the standard deviations of the parameter estimates.
Conceptually, this is a very simple idea—to make
use of a measure of the variance of the quantity in
which we are interested. In practice, this matrix is
readily available, as its inverse is required in many
optimization methods (Gill er al., 1991). Some op-
timizers use explicit derivatives of the likelihood
function, which are usually accurate but may be
expensive to compute. Other optimizers use nu-
merical estimates of the derivatives, which are
more convenient but less accurate (see Dolan and
Molenaar {1991) for comparison of standard errors
based on numerical vs. explicit derivatives). Nei-
ther method is ideal for the computation of confi-
dence intervals or significance tests on parameters.

Despite its conceptual simplicity and speedy
computation, the information matrix approach has
three significant limitations which are described in
the following paragraphs. All three of these limi-
tations stem from the fact that the information-
matrix method assumes implicitly that the log-
likelihood is exactly quadratic in form. When the
log-likelihood is quadratic, the information-matrix
method and SEs will always give the same results
as the method we advocate. Such perfect conform-
ity of the log-likelihood to a quadratic form is rare
in SEMs. For example, Fig. 2 shows the profile



Likelihood-Based Confidence Intervals in Genetic Models

log-likelihood for the additive-genetic parameter @
in an SEM. The information matrix method would
fit a parabola to the peak of this curve and would
then treat the fitted parabola as if it were the profile
log-likelihood itself. Obviously, the profile log-
likelihood is not well fitted by a parabola and the
results of the information-matrix method are ex-
tremely misleading in this example. Software pro-
grams that use the information matrix to compute
SEs do not test the fit of the quadratic to the profile
log-likelihood and so do not warn the user of even
the most extreme problems.

First, the mean and variance of the statistic,
even if estimated correctly, are not sufficient for
producing confidence intervals. Interval estimation
requires us to make a probability statement. Re-
searchers typically apply an assumption of a nor-
mal distribution to form their interval and
determine coverage probabilities. In large samples
the distribution of an ML estimator tends to nor-
mality (Fisher, 1922) but ‘‘large’” may be quite dif-
ferent from one model to another, as it depends on
the statistical power of the design. When power is
low, the distribution of a statistic may be skewed
or kurtotic, so the mean and variance do not ade-
quately describe the function. As we shall see,
parameter estimates from genetic structural equa-
tion models can have highly asymmetric distribu-
tions, so conventional standard errors, and confi-
dence intervals based upon them, are of limited use,

Second, the commonly used f-statistic to as-
sess significance is not invariant to transformation.
That is, a s-statistic based on parameter @ is not the
same as one based on the parameter g2, even if the
model is in all other respects equivalent (Neale et
al., 1989). This limitation is not restricted to sig-
nificance testing; confidence intervals based on the
standard error from the information matrix would
not be invariant to transformation. Fortunately, the
likelihood interval method described here does not
suffer from these deficiencies. Venzon and Mool-
gavkar (1988) developed a method that is similar
to ours but less flexible. They used the Newton—
Raphson algorithm and analytical first and second
derivatives of the log-likelihood. Their approach al-
lows rapid convergence to the limits of the CI for
any parameter in a model, but it does not allow for
use of functions of parameters without rewriting
the model in a different parameter space. Our
method offers more flexibility because it computes
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the derivatives numerically and allows one to find
Cls for functions of parameters without having to
rewrite the model.

Third, parameters in genetic models often
have bounds, either explicit or implicit. The as-
sumed symmetry of the SE approach is inappro-
priate when parameter estimates are close to their
bounds, which we can illustrate with two cases in
the ACE model. Being a varlance component, e?
has a theoretical lower bound of zero. Howevet, as
e? approaches zero, the MZ twin covariance ap-
proaches the predicted phenotypic variance. A per-
fect covariance like this has likelihood of zero (the
determinant of the predicted covariance matrix is
zero) and log-likelihood of —o. In this case the
confidence interval on &2 does have an appropriate
value near zero, which the likelihood method
should obtain whereas the SE method typically pro-
vides a nonsensical negative lower limit for &%

COMPUTATION OF LIKELIHOOD-BASED
INTERVALS

In an earlier paper, we noted that the likeli-
hood-ratio (LLR) statistic is invariant to the scaling
of a parameter (Neale er al., 1989). For example,
consider the LR test of significance for heritability
when we estimate a in a path model vs. when we
fit a variance components model and estimate a?
(see Fig. 1). The goodness-of-fit x* will change by
exactly the same amount if we fix @ at zero in the
path model or if we fix @? at zero in the variance
components model. This may seem unsurprising,
but Neale ef al. (1989) showed that the information
matrix f-statistic would give different answers for
the two models.

When a parameter is moved away from its ML
estimate, and fixed at another value, we can com-
pare the likelihood under the two models. The
model with the parameter fixed may be regarded as
a submodel of the model in which it is free, so the
usual likelihood ratio test (Bollen, 1989; Neale and
Cardon, 1992) may be used to compare the maodels.
Only one parameter is displaced—the remaining
parameters are free to be reestimated—so the test
has one degree of freedom. Twice the difference in
the log-likelihood of the two models is distributed
as x?, which provides a basis to assess the proba-
bility of finding results within a certain interval in
successive experiments. Often reported are the 95%
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Fig. 1. Two parameterizations of a simple model for twin data.
Additive genetic (A), common environment (C), and specific
environment (E) components cause variation in the phenotypes
of twins (71 and 72). The top figure shows a standard path
diagram; the bottom, a variance components model.

confidence intervals; these would be obtained by
finding the point at which the xj reaches the .05
level of significance (=3.84) in each direction. Al-
though it might be thought that the two 5% tails
(one in each direction) sum to give 10% of the
distribution outside the interval and hence a 90%
confidence interval, this is not the case. The x? test
in each direction is conditional on the value being
on one side of the distribution, so it is still a 95%
interval when both sides are considered jointly.

In practice, it is tedious to fix a parameter at
a variety of locations to establish the confidence
interval. To automate the procedure within Mx, we
use the following procedure: let the ML solution
be F,,, then

(1) find the minimum of F = —2F,,,;

(2) Redefine the fit function to be F, = ((F
+ 3.84) — F,)* + a, where F, is the fit
under the revised model, and « is the
parameter whose lower bound we seek;

(3) find the minimum of F, to find the lower
bound on a;
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(4) reset the function to the solution of step
1

(5) redefine the fit function to be F,, = ((F +
3.84) — F, 2 — a, where F_ is the fit under
the revised model, and a is the parameter
whose upper bound we seek; and

(6) find the minimum of F, to obtain the up-
per bound on a.

At this point, the disadvantage of the interval
approach is clear: it requires two further optimi-
zation steps for each set of confidence intervals on
a parameter. However, computers are approxi-
mately doubling in speed each year and for many
cases are fast enough to perform these steps in a
reasonable amount of time. In addition, by starting
at the solution of step 1, the minimizations in step
3 and 6 are relatively rapid. We agree with statis-
ticians Meeker and Escobar (1995) in their assess-
ment that ‘‘with improvements in computing
technology, [computational cost] is less a problem
today than in the past, and the direction for the
future is clear; lack of appropriate easy-to-use soft-
ware is the main problem’’ (p. 50). The new ver-
sion of Mx includes an Interval option that makes
computation of Cls very easy for the user.

Our algorithm is much faster than a systematic
search. If such a search took only 10 steps to locate
the boundary, it would be 10 optimizations over p
— 1 parameters. Qur method usually requires only
one optimization over p parameters per limit. There
is a problem because the solutions of the fit func-
tion in items 3 and 6 above are not exactly the
boundary we seek but are biased by a constant that
depends on the slope of the function at that point.
At the minimum, the partial derivatives of the func-
tion with respect to the parameters should be zero,
s0 in the case of parameter a, we have

F, F
oy _ —2[(F+3.84)—Fa]a 2+ 1=0
da da
which can be rearranged to give
1
= + 3. —_—_———
F,=(F + 3.84) 2 oF, I oa (1)

For a steep slope the bias is small, but for shallow
slopes there may be inaccurate estimation. To cor-
rect for this, Mx may reoptimize to improve the
estimate. It is tempting to think that the error could
be made arbitrarily small by multiplying the quad-
ratic term ((F + 3.84) ~ Fa)? by a constant, which
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would have the effect of replacing the 2 by 2k in
the denominator of equation 1. Unfortunately this
is not practical when numerical estimates of thc
derivatives are being used. Too large a value of &
will “‘freeze’’ the parameter at its starting point as
the steepness of the quadratic function overpowers
the optimization. Too small a value leads to bias in
estimate of the bound. We can detect the latter con-
dition by comparing the deviation of Fa from F +
3.84, and revising the value k appropriately. Al-
though it is not a perfect algorithm, it is very prac-
tical and it works well in our test cases. Exact
derivatives of the function would provide a better
solution, but they would limit the general useful-
ness of the method.

The value of taking this approach in the Mx
package is that confidence intervals may be com-
puted on both parameters and (possibly nonlinear)
functions of them. The fit function does not need
to depend on the function of parameters in order to
obtain confidence intervals on the functions of
parameters. An example will make this clearer.

ILLUSTRATION: THE ACE MODEL

For illustration we turn to the simple additive
genetic, common, and specific environment (ACE)
model commonly used in the analysis of twin data.
Rather than proceed with covariance matrices, we
use the contingency tables published by Neale and
Cardon (1992) for major depression assessed on a
sample of adult female twins drawn from birth rec-
ords in the state of Virginia, USA (Table I). The
characteristics of the sample, the diagnostic meas-
ures used (DSM-IIIR} and zygosity determination
have been described in detail elsewhere (Kendler
et al., 1992). A threshold model (Falconer, 1965)
was fitted to the contingency table data via maxi-
mum likelihood, using the package Mx (Neale,
1995) and the script shown in the Appendix. The
thresholds were constrained to be equal for twin |
and twin 2 and across MZ and DZ twins. Table Il
shows parameter estimates, their 95% confidence
intervals, and goodness of fit statistics. Table Il also
shows the estimates and confidence intervals for
the parameters a and ¢ for comparison with ¢* and
c2. As expected, the square of the upper limit on
parameter a is equal (within rounding error) to the
upper limit on parameter a2, and the same relation
holds for the other limits.
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Table I. Contingency Tables of Twin Pair Diagnosis of
Lifetime Major Depressive lllness

MZ DZ
Twin 1 Twin 1
Twin 2 Normal Depressed Normal Depressed
Normal 329 83 201 94
Depressed 95 83 82 63

Table II. Maximum-Likelihood Estimates (MLE),
Confidence Intervals, and Goodness-of-Fit Statistics Obtained
by Fitting Threshold Models 1 and 2 to the Data in Table 1

Model 2 x? = 7.07,

Model 1 3 = 1.78,
95% CI

95% CI

Parameter MLE Lower Upper MLE Lower Upper
043 010 053 043 0.12 053

QN

o 000 000 026 000 0.00 025
e 057 047 069 057 046 0.69
a 065 033 073 066 034 073
¢ 000 000 051 000 000 050
iz 0.55 046 063 048 042 054
iz 040 031 049 048 042 054

In Fig. 2, the support for the model is plotted
as a function of a and a%. We define support as the
natural logarithm of the likelihood (Edwards, 1972)
and we have rescaled it to have a maximumn of zero
in this figure. Immediately we see the marked
asymmetry of the curves, which are much steeper
on the right than the left-hand side of Fig. 2. The
asymmetry reflects the fact that models with very
high values of @ are much more strongly rejected
by the data than those with low values of a. High
cortelations have much smaller variances than low
ones, so there is more power to reject the false
model. We see the reflection of this asymmetry in
the confidence intervals in Table II; the lower in-
tervals are much farther from the estimate than the
upper intervals.

The vertical lines in Fig. 2 illustrate the in-
variance to transformation property. A change in
support of 2 units is shown by the horizontal line;
the first place this line intersects the curve for the
support for the model with a? parameterized is a
lower limit on a, which is slightly less than .1 (first
vertical line). The first intersection with the curve
for a is the corresponding iower limit on a, which
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Fig. 2. Plot of support (In(L)) against fixed values of parameter estimates g and @*. The In(L) is maximized with respect to all
other parameters in the model for each value of a and #?. The maximum of @? corresponds to the squarc of the maximum of a,

illustrating the invariance property.

is slightly greater than .3, and is the square root of
the limit on a2

Retumning to Table II, the three right-hand col-
umns show the estimates and confidence intervals
when the thresholds are allowed to differ between
MZ and DZ twins. As expected, the estimates of a,
¢ and e are relatively close in the two models.
However, there is a substantial improvement in fit
when the thresholds are allowed to differ (x2 =
5.28). The threshold for MZ twins is higher than
that of DZ twins, indicating a lower rate of MDD
in MZ twins in this sample. The confidence inter-
vals are slightly broader under the model with dif-
ferent thresholds.

DISCUSSION

There is a general move away from signifi-
cance tests in the social sciences (Savitz, 1993; Co-
hen, 1994). While their value is still a matter of
debate, it is clear that decision making based on an
arbitrary .05 significance level is not wise. Thus
testing for significance of a2 in a genetic model via
a likelihood-ratio test gives only part of the infor-
mation about the precision of this estimate. Confi-
dence intervals give a better representation of what

we have learmned from our data. In this article, we
showed an example of asymmetric confidence in-
tervals on heritability, and illustrated their invari-
ance to transformation. These factors favor the use
of likelihood-based confidence intervals over those
derived from standard errors extracted from the in-
formation matrix.

While likelihood-based confidence intervals
are invariant to the equivalent reparameterization
of a model (e.g., a vs. @%), it is clear that they are
not invariant to substantive changes in the mode!l
itself. If two parameters correlate, then fixing one
of them will reduce the confidence interval on the
other. The researcher must therefore avoid finding
confidence intervals with methods that leave all
other parameters fixed. While reoptimization to
find the lower and upper bounds can be costly in
terms of computer time, this seems a small price to
pay for better information. The Interval feature in
Mx 1.38 (http://griffin.vcu.edu/mx) is simple to use
and minimizes this burden.

Caution is required as to the choice of model
used to calculate confidence intervals. At this time,
there is still debate over how to select a model.
Consider, for example, eliminating the parameter ¢
from the ACE model. Fixing ¢ at zero reduces the
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confidence intervals on correlated parameters such
as a. In our example data, the estimate and confi-
dence intervals of a? change from (.10,.53) to
(31,.53). If the *‘real world’’ or true model in-
volved a small amount of ¢, we would have pre-
sented an unrealistically small confidence interval
for a. Subsequent experimentation might deliver
conflicting results, with a disproportionate number
of parameter estimates outside say the 90% confi-
dence interval. Superficially, it would seem that as-
suming that ¢ = 0 is a foolish thing to do, because
it increases the chances of being wrong. Yet sci-
entific principles might make us take a different
course of action. Falsifiability is a valuable quality
in scientific theories (Popper, 1961). The fact that
our model with no ¢ is more readily falsified should
be viewed as a positive attribute.

Although the preceding argument was posed
in terms of ¢ being zero, it might just have easily
been expressed in terms of a being zero. Two fac-
tors influenced the choice of ¢ = 0: (i) empirically
c often is small (Rowe, 1994), and (ii) we have
reason to expect that ¢ may diminish over time in
adult populations. If effects of the environment de-
cay over time (many plausible differential equation
models would predict this), then adult twins who
no longer share significant shared environmental
effects with their cotwin are likely to grow less
similar (though see Hopper and Culross, 1983). In
the limit, the effect of their shared rearing experi-
ence could be zero. In contrast, genetic effects have
a continuous opportunity to make the twins similar,
regardless of their geographical circumstances (G
X E notwithstanding). Obviously, we would need
to control for adult cohabitation effects (Kendler et
al., 1993) to partition shared rearing experiences
from shared adult environment.

Finally, there are some limitations to consider.
First, minus twice the log-likelihood only ap-
proaches x? asymptotically under certain conditions
(Bollen, 1989). For small sample sizes it may be
appreciably different from the x? distribution, so
confidence intervals based upon it may be inaccu-
rate. In this case we might resort to an alternative
fit function, such as minimum x? (Agresti, 1990).
Second, bounds can present interpretational prob-
lems for the computation of confidence intervals,
when the lower theoretical bound on a parameter
does not yield the given decrease in fit required for
a certain level of confidence (e.g., 3.84 for 95%).

Reporting the lower bound seems appropriate here,
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but it should be noted that this is a boundary value.
Third, it is possible that the log-likelihood is non-~
monotonic such that more than one point on either
side of the optimum will appear to meet criteria for
an upper or lower limit of the CI. For example,
minus the upper confidence interval on a also pro-
duces a lower CI, aithough reasonable models
would constrain a to be nonnegative. Ideally an al-
gorithm should be always give the limits that are
within the parameter space but farthest on either
side of the global optimum. The algorithm we rec-
ommend is not able to solve this problem, but re-
searchers who are concerned about this possibility
can plot the profile log-likelihood function to de-
termine if the problem of local optima exists in
their data. This can be accomplished in Mx by pro-
ducing intervals of varying sizes and plotting the
values of the chi-square statistic on the correspond-
ing values of the upper or lower limit.

APPENDIX

Mx script to fit threshold model to MZ and
DZ twin data and to obtain confidence intervals on
al, 2 &, a, c, and e.

! Script for threshold model

! MDD data, Kendler et al, 1992
!

G1: Model parameters

Calc NGroups=3

Begin Matrices;

IIdent 1 1

X Lower 1 1 Free

Y Lower | 1 Free

W Lower 1 1

T Full 2 1

End Matrices;

! parameters are fixed by default, unless declared
! free

Begin Algebra;

A= X*X';
C= Y*Y
D= W*W',
E= I-A-C-D;
End Algebra;

Specify T 3 3 ! put two new, equated parameters
'inT

End Group;
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G2: Female MZ twin pairs

Data Ninputvars=2

Labels dep tl dep-t2

CTable 2 2

329 83

95 83

Matrices= Group 1

Thresholds T /

Covariances A+C+D+E | A+C+D
A+C+D | A+C+D+E

Options RSidual

End Group;

G3: Female DZ twin pairs

Data NInput vars=2

Labels dep tl dep-t2

CTable 2 2

201 94

82 63

Matrices = Group 1

HFull 11

QFulll1

Thresholds T /

Covariances A+C+D+E | H@A+C+Q@D
H@A+C+Q@D | A+C+D+E/

Matrix H .5

Matrix Q .25

Start .6 All

Bound 001 1 Y11 X 11

Intervals A111C111E111X111Y11i1
End Group;
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