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Loglinear latent class models are used to detect differential item functioning 

(DIF). These models are formulated in such a manner that the attribute to be 

assessed may be continuous, as in a Rasch model, or categorical, as in Latent 

Class Mastery models. Further, an item may exhibit DIF with respect to a 

manifest grouping variable, a latent grouping variable, or both. Likelihood- 

ratio tests for  assessing the presence o f  various types o f  DIF are described, and 

these methods are illustrated through the analysis o f  a "real world" data set. 

Test items exhibit differential item functioning (DIF) if the item scores of 

equally able examinees from different groups (e.g., of different race, sex, or age) 

are systematically different. If several items in a test exhibit DIF in favor of a 

specific group, the test may lead to an unfair advantage for that group with 

regard to the assessed level of performance when its members are compared with 

members of other groups. It is expected that this inequity can be rectified by 

deleting or improving items exhibiting DIF. 

The basic problem in the detection of DIF is to differentiate between discrep- 

ancies in item difficulties across groups that are due to DIF as opposed to 

differences in level on the assessed attribute. Because groups frequently differ on 

the assessed attributes, DIF and ability are often confounded. For this reason it is 

hard to tell whether observed differences in probabilities for positive item 

responses among groups result from DIF or from differences in ability across the 

groups. Linn and Drasgow (1987) have shown that neglecting this confounding 

and deleting items on the basis of differences in group performance can lead to 

removal of valid items and may thus result in poor tests. 

Many DIF detection methods have been proposed. Reviews of this topic are 

provided by Osterlind (1983); Rudner, Getson, and Knight (1980); and Shepard, 

Camilli, and Averiil (1981). In the earlier DIF-detection methods such as the 

analysis-of-variance method (Cardal & Coffman, 1964; Cleary & Hilton, 1968; 

Hoepfner & Strickland, 1972; Jensen, 1980) and the transformed-item-difficulty 

methods (Angoff, 1982; Angoff & Ford, 1973; Thurstone, 1925), there was no 

rigorous control for differences in true ability across groups. In chi-square 

methods (Camilli, 1979; Holland & Thayer, 1986; Mellenbergh, 1982; Nung- 
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ester, 1977; Scheunemann, 1979), ability is controlled by comparing item 

performance for a given total test score. In IRT methods (Lord, 1980; Durovic, 

1975), there is control for ability by means of the person's ability parameter in 

the model. Items exhibit DIF if the item parameters vary across groups. Thissen, 

Steinberg, and Gerrard (1986) discussed the separation of true ability and DIF 

with IRT models, and Thissen, Steinberg, and Wainer (1989) gave a review of 

DIF detection using IRT models. 

Kelderman (1989) proposed the use of a loglinear formulation of the Rasch 

(1980) model (Cressie & Holland, 1983; Duncan, 1984; Kelderman, 1984; Tjur, 

1982) to study DIF. Various aspects of DIF can be modeled by adding parame- 

ters to the loglinear formulation of the Rasch model. In this paper the above- 

mentioned Ioglinear modeling system is extended. Our purposes are threefold: (a) 

Develop procedures for use in assessing DIF that may be used when the grouping 

variable with respect to which DIF may occur is not observed; (b) develop 

DI F-detection procedures that relate to a conceptually different kind of assessed 

trai t--namely,  a categorical attribute; and (c) exemplify the use of these 

developed procedures with real-world data. 

Haberman (1979) developed a theory of loglinear modeling that allows for the 

inclusion of unobserved categorical variables, or latent classes, in loglinear 

models. This theory allows for the study of DIF with respect to unobserved or 

latent grouping variables. With this kind of loglinear latent class model, it is 

possible to extend the loglinear Rasch model to include a latent categorical 

dimension. Using this formulation of the latent trait/latent class model, local 

independence among items, which underlies the model, is conditional on the joint 

levels of both latent variables (i.e., the level of continuous measured trait and the 

level of the latent grouping variable). This extended loglinear Rasch model, 

which incorporates a latent grouping variable, may have different item diffi- 

culties for the various latent groups. If for a certain item the difficulty parameter 

is larger for one latent group than for another, it is concluded that the item 

exhibits DIF with respect to the latent grouping variable. 

DIF-detection procedures are also possible when the latent attribute is categor- 

ical. Then, the relation between latent and manifest variables may be specified 

through the use of latent class models (Lazarsfeld & Henry, 1968). In this paper, 

we will deal only with two-state latent class models; however, the procedures here 

described are directly applicable to other types of latent class models (e.g., 

Dayton & Macready, 1976, 1980; Goodman, 1975). 

The two-state mastery model is particularly appropriate for assessing at- 

tributes whose acquisition is assumed to be an "all or none" process in which 

individuals are of one of two possible latent types: masters (i.e., individuals who 

have the necessary and sufficient skill/ability to correctly respond to all items 

that are used to assess the attribute of interest) and nonmasters (i.e., individuals 

who do not have the skill/ability to respond correctly to any item within the 

content domain of interest). However, under this model it is assumed that 

response "errors" may result in masters missing items (omission errors) or 

nonmasters responding correctly to the items (intrusion errors). 
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DIF may be investigated within a state mastery modeling framework by 

studying differences in omission and intrusion error rates across levels of a 

grouping variable with respect to which DIF is suspected. If  for a certain item the 

omission error rates or the intrusion error rates differ across groups, the item in 

question exhibits DIF with respect to the grouping variable. As in the case of a 

continuous measured variable, DIF may be studied with respect to either 

manifest or latent grouping variables, through the use of loglinear latent class 

models. 

The use of latent grouping variables in the search for DIF has the advantage of 

being applicable even when an observed grouping variable is not available. In 

addition, it allows for the assessment of DIF without tying that DIF to any 

specific variables or set of variables. Thus, it may be possible following the 

investigation of DIF to make a more definitive statement regarding its presence. 

Finally, the use of latent grouping variables allows an investigator to explore how 

various manifest grouping variables may be related to latent grouping variables 

with respect to which DIF occurs. 

In the next section of this paper, the variables that are used in modeling are 

more formally presented and the general loglinear model of interest is defined. By 

considering various restricted forms of this general model it is possible to make 

model comparisons that are useful in assessing DIF. 

An Overall Loglinear Modeling Framework 

Variables That May be Included in Models 

The following types of variables may be included in the models considered in 

this paper. First, the dichotomously scored responses Xj ( j  = 1 . . . . .  k) to each 

of the k test items are included within all models considered. Note that the score 

of any ith individual, X;j = 0, 1, is0 if the j th  item is scored as incorrect and 1 if it 

is scored as correct. In addition to item responses, the models include two other 

kinds of variables: the latent variable being measured (or assessed) and the 

grouping variable with respect to which DIF may occur. 

The measured (or assessed) variable may be either a continuous or a discrete- 

categorical attribute. When the latent variable is continuous, a Rasch model 

(Rasch, 1980) is assumed to specify the relation between item responses and the 

level of the measured variable. Within the framework of loglinear modeling, this 

model must include as an independent variable the total score, T = X 1 + • • • + 

X k (see Kelderman, 1984, for a discussion). In the case of an assessed attribute L 

(1 = 1 . . . . .  q), which is categorical, a latent class model is assumed to specify 

the relations between item responses and the latent categories of mastery (i.e., 

whether an individual is a master or nonmaster) on the assessed attribute. (See 

Macready & Dayton, 1980, and Bergan, 1983, for general reviews of this class of 

models, and van der Linden, 1978, for a discussion of how they relate to IRT 

models.) 

The variables that are used to model DIF can be either observed or unobserved 

grouping variables. Such a variable is designated as G when its levels are actually 

observed (as in the case of studying sex or race as having a possible DIF effect). 

Although more than one such variable may be included in these models, only one 
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will be considered in this paper. If  a grouping variable is not observed, a latent 

grouping variable, U, may be included in the model. In general, the number  of 

levels of U is s and must be specified by the investigator. In this paper we will 

consider U to be dichotomous. 

T h e  G e n e r a l  M o d e l  

Haberman  (1979) presented a general loglinear model that specifies the 

relations among a set of observable and unobservable categorical variables. Such 

models explain the structure of  the contingency table that is formed by cross- 

classifying the set of  variables of interest. This is accomplished by specifying a 

linear decomposition of  the natural log of  expected contingency table frequen- 

cies. The components that define this decomposition may include m a i n  and 

i n t e r a c t i o n  effects corresponding to various margins (or cells) of  the contingency 

table. If  all the types of  variables mentioned above are simultaneously consid- 

ered, we have a Xj x X 2 x • • • x X~ × T x G x U x L contingency table with 

frequencies 

fx,...x,,~t, Xl = 0 , 1 ; . . . ;  xk = 0 , 1 ;  t = x l  + • • • + xk; 

g =  1 , . . . , r ;  u = 1 , . . . , s ;  1 =  l , . . . , q .  

The so-called saturated model that contains all possible main and interaction 

effects among the variables considered above is 

/4*L /~  2 ( k X ~  
l n m  . . . . . . .  ,~ t  13 + 13x x' + • • • + [3x x'  +13rt + 1 3 ~  + 13u + ~,tr, x,~: 

~ G U L  X ~ .  . , X ~  F G U L  ;~x,x,.x~ + + p~,t + " + fix,..  (1) + • • • +13u~ L+~-x, .... • . . . .  
. x ~ t g u l  " 

With the constraints 

) 7  13:,'= o . . . . .  K ~ : :  = o, K 13,~ = o, K ~  = o, y ~ =  o, 
Xl X k  t g U 

Y713~ = o, YT,~,x-" = o, ~ ~ ' ~  = o, ~ ~.%~ = o, ~7 ~.~, ~ o, p ' X l X 2  • • . , ~ =  . • . , r ' X I X  2 
I x l  x 2  u 1 

~ { # X i .  . . X k  T G U L  ~ X i  . . X k  T G U L  ~'~, . . . .  ,,v,t 0, ~ 0, (2) 
= . . . ~ b J X l ,  • . x A l g l ~ l  : =  

x l  I 

where { M x  I . . .  x k t g u l }  are the expected cell frequencies obtained under the 

model and where ¢3x x' is the parameter  designating the main effect of Response x 1 

of  Item 1, a x'x: is the parameter  designating the interaction effect of  the 

combination of Response x~ of Item 1 and Response x2 of  Item 2, etc. 

This general model is an incomplete loglinear latent class model (see Haber-  

man, 1979, p. 554). It is termed incomplete because the contingency table 

contains cells with frequencies that are structurally zero. This occurs as a result 

of the dependence of  the total score on the item responses. The cells (x~ . . .  

x k t g u l )  for which t is not equal to x I + • • . + x k are by definition structurally 

zero. It is a loglinear model because the natural logarithm of the expected cell 

frequencies is specified by a linear model. Finally, it is a latent class model 

because the categorical variables U and L are not observed. 
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All models considered in this paper can be obtained from Model 1 in either of 

two ways. First, one or more of the aforementioned types of variables may not be 

considered. That is, the variables in question are not used to construct the 

contingency table, and the model does not have components related to them. For 

example, if G, U, and L are not considered, we have an X 1 x X 2 x • • • × X k x T 

contingency table, and models related to this table do not contain the components 

in Model 1 that depend on G, U, and L. 

Second, constrained forms of the saturated model defined in (1) may be 

specified by setting one or more of its components to zero. This will always be 

done in a hierarchical fashion. That is, if a component is set equal to zero, all 

higher order interaction components containing that component will also be set to 
• XtX2 zero. For example, if/3x,x2 is set to zero, the term ~-x,x~3t~x'x~x~ must also be set to zero. 

This means that if an interaction term is present in the model, all lower order 

relatives must also be present. Therefore, to indicate a hierarchical model, one 

does not have to explicitly specify the complete model of interest. Only the 

highest order interaction terms found in the model need to be designated 

(Goodman, 1973). Thus a shorthand notation for Model 1 is 

{ X L X 2 .  . . X k  T G U L  }, (3) 

where the set of variables between braces indicates that the model contains all 

possible interaction effects (as well as main effects) among those variables. The 

notation 

{XL}, {Xz} . . . . .  {Xk}, { T G U } ,  { G U L }  (4) 

denotes a model with main effects for Items 1 through k, and all possible 

interaction (and main) effects among 7", G, and U as well as for G, U, and L. In 

the remainder of this paper we will designate models of interest using this 

shorthand notation. 

Maximum likelihood estimates of the parameters defining these models are, in 

general, intractable directly. However, such estimates may be obtained using a 

variety of iterative estimation procedures. This includes the iterative proportional 

fitting (IPF) algorithm (Goodman, 1974a,b; Haberman, 1979) as well as Fisher's 

scoring algorithm (McHugh, 1956; Haberman, 1979). In this paper we use three 

computer programs to obtain parameter estimates: MLLSA (Clogg, 1977), 

LCAG (Hagenaars, 1987), and LOGIMO (Kelderman & Steen, 1988). All 

three implement the IPF algorithm for some situation. Identifiability conditions 

for latent class models have been given by Goodman (1974b) and Clogg and 

Goodman (1984). 

To assess the fit to data provided by a given model, the likelihood-ratio statistic 

G 2 may be used. This statistic is defined as 

Z E E E E (5) 
x, . . .  x, t g u I " \rex,. . .xktgul ] 

The statistic G 2 is asymptotically distributed as chi-square with degrees of 

freedom equal to the difference between the number of structurally nonzero cells 

in the contingency table and the number of independently estimated/9 parame- 
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ters in the model of interest. This test statistic should be used with caution, 

however. If the expected frequencies become too small, the approximation of the 

statistic to the chi-square distribution is known to be bad (Lancaster, 1961). A 

rule of thumb is that the expected frequencies should at least be one (Cochran, 

1952). Therefore, the sample size should well exceed the total number of cells of 

the contingency table. This means that the overall likelihood-ratio statistic is only 

useful if the number of items is relatively small. 

Additionally, it may be possible to assess the relative fit provided by two 

models, given that certain regularity conditions are met. The most important of 

these conditions is that the pair of models be "hierarchically" related (Alvord & 

Macready, 1985). This means that one of the two models, say M, must be able to 

be defined in terms of the second model, say M*, by imposing one or more 

constraints on the parameters defining the second model (i.e., M is a special 

constrained form of M*). Under these circumstances, it is possible to test 

whether M* fits the data significantly better than M. This may be statistically 

tested with the difference of the likelihood-ratio statistics for the two models: 

G~ = G 2 - G~.. (6) 

This statistic is also asymptotically distributed as chi-square with degrees of 

freedom equal to the difference in degrees of freedom for the two models in 

question. 

In what follows, we consider models that may be used to detect DIF when the 

measured latent variable is considered to be either continuous or categorical. 

General Categories of Models to Be Considered for Assessing I)IF 

Models  Where the Measured Trait Is Continuous 

In this paper, the Rasch model is used to specify the relation between items and 

the continuous latent variable being measured. When this model is specified as a 

Ioglinear model as described by Cressie and Holland (1983), Duncan (1984), 

Kelderman (1984), and Tjur (1982), then the model may be designated {Xl}, 

{X 2} . . . . .  {Xk}, {T} for a k-item test (e.g., Model 1 in Table 1), where the 

contingency table for this model has the dimensions X I x X2 x • • • x Xk × T. 

As mentioned above, this table contains structural zeros for the cells where the 

sum of the item responses is not equal to the total score. 

The model is a quasi-independence model (see Goodman, 1968)-- that  is, a 

model where there are no interactions among variables beyond those imposed by 

the incompleteness structure of the table (i.e., the pattern of structurally zero and 

nonstructurally zero cells). Kelderman (1984) has shown that a quasi indepen- 

dence model where there are no interactions among the item responses and the 

total score is equivalent to the Rasch model. By introducing one or more grouping 

variables in the contingency table as well as in the model, it is possible to study 

DIF with respect to that grouping variable. 

Models  Where the Grouping Variable Is Manifest  

When it is of interest to explore the presence of DIF relative to a specified 

manifest grouping variable (e.g., Sex or Race), we may attempt to model the 
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Table 1 
Fit of Models for a Continuous Measured Trait 

Model G 2 df p 

No Grouping Variable 

1. {X1} ..... {X6},{T } 86.23 52 .00 

Manifest Grouping Variable 

2. {X1} ..... {X6},{TG } 159.38 109 .00 
3. {GX1} ..... {GX6},{TG} 124.08 104 .09 
4. {X 1 },{Xz},{X3 },{GX4},{GX5 },[GX6},{TG } 128.23 106 .07 

Latent Grouping Variable 

5. {UX1} ..... {UX6},{TU} 51.63 40 .10 
6. {X1 },{X2},{X3},{UX4},{UX5},{UX6},{TU} 55.55 42 .08 

Manifest and Latent Grouping Variable 

7. {UX l} ..... {UX6},{TGU} 
8. {GUX 1 } ..... {GUX6},{TGU} 
9. {UX1 },{UX2},{UX3}, 

{GUX 4},{GUX5},{GUX6},{TGU} 

frequencies in the observed X 1 x X 2 x • • • x X~ x T x G contingency table. 

Using a loglinear model for this incomplete table we can study the relation of the 

grouping variable G with the other variables. A general review of the procedures 

for assessing DIF in this case is provided by Kelderman (1989). Parameter  

estimates can be obtained with the computer program L O G I M O  (Kelderman & 

Steen, 1988). L O G I M O  is especially written to estimate Ioglinear models that 

include the total score T. 

Models 2, 3, and 4 of Table 1 are Ioglinear Rasch type models that contain a 

manifest grouping variable. In Model 2 there is only one interaction effect, {TG}. 

That is, the grouping variable influences the distribution of the score but not the 

responses to the items. This model is a Rasch model in all subgroups. Because 

there are no interactions between the item responses and the grouping variable, 

the model assumes that items have the same difficulty levels across subgroups. 

Therefore, if this model can effectively account for the contingency table data, it 

is reasonable to conclude that the items do not exhibit DIF. 

For Model 3, which is described in Table 1, there are interaction effects 

between the item responses for each item and the grouping variable. Therefore, 

all items may have different difficulty levels across subgroups. Model 3 may be 

used to study DIF because it may be considered to be a Rasch model where the 

item difficulties may differ across subgroups, and thus Model 3 specifies the 

presence of DI F. The Rasch model with equal item parameters over subgroups 

(Model 2 in Table I ) is a constrained form of the Rasch model with different item 

parameters over subgroups (Model 3 in Table 1). Thus, the relative fit provided 

by these two models may be compared by using the difference likelihood-ratio 

statistic specified in (6). The statistic yields a test for the presence of I tem x 
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Subgroup interactions. If a statistically significant outcome is obtained, it may be 

concluded that the items have different difficulty levels for the different sub- 

groups (i.e., that one or more of the items exhibits DIF). 

If one has concerns about DIF for only some items, it would seem more 

appropriate to incorporate interaction terms, {XjG}, in the model for only those 

items. Following this approach, Model 4 incorporates interaction terms for only 

the last three items. This model also subsumes Model 2 as a constrained form. A 

comparison of the relative fit obtained under Models 2 and 4 may be imple- 

mented to test for the presence of DIF among the last three items. If the value of 

the statistic is found to be significant, there is support for the contention that item 

difficulty levels for the last three items vary across subgroups. 

Since Model 4 is also a constrained form of Model 3, it is possible to test for 

DIF in the first three items. Note that this test, however, is made conditional on 

the last three items exhibiting DIF. 

Models Where the Grouping Variable Is Latent 

When no grouping variables are actually observed, either because (a) grouping 

information is not available for the variable of interest or (b) because one does 

not wish to tie the concept of DIF to any specific manifest variable, the 

assessment of DIF should be based on the unobserved and incomplete X I x X 2 x 

• • • × X k × T × U contingency table. Note that what is actually observed is the 

incomplete Xj x X 2 X • • ° × X k X T contingency table. The categories of the 

latent grouping variable are then latent classes and the appropriate kind of model 

is an incomplete latent class model, as described by Haberman (1979, p. 554). 

The expected counts of t h e X  1 × X2 × • • • × Xk x T ×  U contingency table 

under the model may be estimated using the computer program LCAG 

(Hagenaars,  1987). From these expected counts, the parameter  estimates may be 

calculated using the LOG IMO program (Kelderman & Steen, 1988). 

Models 5 and 6 of Table 1 are identical to Models 3 and 4, respectively, except 

that the manifest grouping variable G is replaced by the latent grouping variable 

U. Model 5 has interaction effects between the latent grouping variable and each 

item, whereas Model 6 has interaction effects only between the latent grouping 

variable and the last three items. 

The appropriate null model (i.e., the model corresponding to absence of DIF) 

to test Models 5 and 6 against is Model I. Model 1 is the same as Model 5 if there 

is only one latent class in Model 5. Thus, Model l is a restricted form of Model 5. 

Similarly, Model 1 is a restricted form of Model 6. Comparing the fit of Models 1 

and 5 provides a test for DIF in all items. Similarly, comparing the fit of Models 1 

and 6 yields a test for DIF in only the last three items. 

Finally, comparing the fit of Models 5 and 6 yields a test for DIF in the first 

three items (conditional on DIF in the last three items) with respect to the latent 

grouping variable. 

Models With Both a Manifest  and a Latent Grouping Variable 

If a grouping variable G is observed, but it is conjectured that the items may 

also exhibit DIF with respect to some unavailable or unknown (i.e., latent) 
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grouping variable U, we have an incomplete loglinear model for the unobserved 

X 1 × X 2 x • • • × X k × T × G × U contingency table. Models 7, 8, and 9, 

described in Table 1, are examples of this kind of model. These models explain 

the same observed X l × X 2 × • • • × X k x T × G contingency table as Models 2, 

3, and 4. Furthermore, Models 7, 8, and 9 may be obtained from Models 2, 3, and 

4, respectively, by simply adding main effects for the latent grouping variable 

plus interaction effects, which are the same as those already present except that 

they also include the latent grouping variable. It is readily seen that hierarchical 

relations exist between models with both manifest and latent grouping variables 

and models with only manifest grouping variables, so that hypotheses can be 

tested with respect to the influence of manifest or latent grouping variables on 

item difficulty. 

Obviously the models in Table i are only a small selected sample of the 

possible models that could have been considered (see Kelderman, 1984, 1989). 

However, these models appear to be some of the more useful for both the 

exploration and detection of DIF. 

M o d e l s  W h e r e  t h e  A s s e s s e d  A t t r i b u t e  I s  D i s c r e t e  

Now consider models where the attribute being assessed is assumed to be 

discrete. We shall restrict our discussion to the case where the assessed attribute 

has only two levels. This class of models may be particularly appropriate when 

the latent variable of interest is narrow in scope (i.e., it is a highly specific skill, 

behavior, or attribute) and may reasonably be assumed to exist at two mutually 

exclusive and exhaustive levels (i.e., mastery vs. nonmastery; pathological vs. 

nonpathological; and dominant vs. recessive). The unconstrained two-state latent 

class model described by Macready and Dayton (1977) may be specified as a 

latent loglinear model, as pointed out by Haberman (1979). The parameter  

estimates of models with discrete latent variables can be obtained with the 

computer program MLLSA (Clogg, 1977). This rather simple model may be 

specified as {LX I} . . . . .  {LX 6} for the unobservedX 1 x X 2 x • • • × X k x L 

contingency table, where L is the two-state latent attribute that is to be assessed. 

This model may be used to explain the structure of the observed X I x X 2 x 

• • • x X k contingency table. Note that the basic underlying assumption for this 

model is local independence, which here means that, within each of the two latent 

classes, items are independent. 

Within the framework of latent structure models, the parameters which may 

alternatively be used to define this model are (a) the conditional probabilities for 

positive item responses given latent class membership and (b) the proportions of 

individuals within each of the latent classes. In mastery modeling, the conditional 

probabilities for correct item responses by individuals in the nonmastery class are 

interpreted as intrusion errors (i.e., errors due to factors such as guessing and 

cheating). Conversely, the conditional probabilities for incorrect item responses 

by individuals in the mastery class are interpreted as omission errors (i.e., errors 

due to such factors as carelessness and fatigue). As was the case for a continuous 

measured variable, the model and table above can be extended to take into 

account the effects of manifest and latent grouping variables. In Table 2, some 
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models are considered where the latent a t t r ibute  being assessed is categorical.  

These models are formulated in an analogous fashion to those for continuous 

measured variables,  and similar comparisons between these models may  be 

considered. It may  also be noted that  models in Table  2 are assigned the same 

number  as the model in Table  1 to which they correspond. This is because these 

pairs of similarly numbered  models contain the same kind of DI F effects (or lack 

thereof).  

The models for assessed categorical  at tr ibutes differ from the models for 

continuous latent traits in that  the relation between the i tem responses Xj and the 

latent assessed a t t r ibute  L appears  explicitly in the model through the interac- 

tions {LXj} (see, for example,  Model 2 in Table  2). For the continuous latent trait  

models, these relations are implicitly specified by the incompleteness structure 

(t = x~ + • • • + x k) found in the models. 

Suggested Strategies for Using the Proposed Modeling System 

An effective, sys temat ic  investigation of the presence of D I F  using the models 

described in Tables  1 and 2 requires some prel iminary decisions. The first issue is 

whether  the a t t r ibute  of interest is more accurately  represented by a continuous 

or a categorical  variable. Models based on a discrete underlying assessed variable 

may  be preferred when it is reasonable to assume that  a finite number  of latent 

acquisition states underlie the a t t r ibute  of interest. This may  be the case, for 

example,  when the a t t r ibute  is narrow in scope. Conversely, when the assessed 

Table 2 
Fit of Models for a Categorical Assessed Attribute 

Model G 2 df p 

No Grouping Variable 

1. {LX 1 } ..... {LX6} 91.17 50 .00 

Manifest Grouping Variable 

2. {LX1} ..... {LX6J,{GL } 177.56 112 .00 
3. {GLX1 } ..... {GLX } 126.34 100 .04 

{LX1 },{LX2},{L~ 134.92 3 },{GLX4},{GLX5 },{GLX6} 106 .03 
~'. {LX 1 },{LX2},{LX3},{GLX4},{GLX5},{GLX6} 96.10 95 .45 

Latent Grouping Variable 

5. {ULX1 } ..... {ULX6 } 41.66 36 .24 
6. {LX 1 },{LX2 },{LX3 } {ULX4},{ULX5},{ULX6} 59.89 42, .04 

Manifest and Latent Grouping Variable 

7. {ULXI } ..... {ULX6],{G} 
8. {GULX1 } ..... {GULX6} 
9. { ULX 1 },{ ULX2 } ,{ ULX3 }, { GULX4 },{ GULX5 }, { GULX 6 } 

* For this model, there are three latent levels of mastery rather than two as was the case 
for all other latent class models considered. 
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attribute may more reasonably be thought of as being gradually acquired, models 

that incorporate a continuous measured underlying variable will be preferred. 

A second issue in choosing models is the availability of blocking variable 

information on variables for which the issue of DIF may be of interest. If no 

grouping variables are available for observation, or if it is not desirable to tie the 

phenomenon of DIF to any specific manifest variable, only Models 1, 5, and 6 

described in Tables 1 and 2 should be considered. If the null Model 1 does not fit 

the data, DIF with respect to a latent grouping variable may be studied by 

considering Models 5 and 6. 

If a grouping variable is observed, the remaining Models 2, 3, and 4, and 7, 8, 

and 9 (in Tables I or 2) may be considered. An investigator may choose to start 

by considering models with only a manifest grouping variable. If none of these 

yields acceptable fit, models with both manifest and latent grouping variables 

may be considered. 

Of the models that incorporate a manifest variable, the null Model 2 should be 

tested for fit. In addition, this null model may be compared with Models 3 and 4 

to see if fit is improved by taking manifest DIF into account. If neither Model 3 

nor Model 4 provides acceptable fit, the best fitting of these three models may be 

compared with Models 8 and 9 to investigate whether the lack of fit can be 

explained by DIF with respect to a latent grouping variable. Alternatively, it may 

sometimes be informative for an investigator to explore the possible presence of 

latent DIF, even when reasonable fit is provided by Models 2, 3, or 4. This may 

provide valuable information regarding the possible presence of DIF that is 

independent of the manifest grouping variable being investigated. 

A third consideration in model selection concerns prior knowledge regarding 

which items may suffer from DIF. If certain items are believed to be subject to 

DIF, first the fit of the model (e.g., Model 4) with only those DIF items is 

considered. Then the fit of this model may be compared to that of a model in 

which all items are hypothesized to exhibit DIF. If no prior knowledge regarding 

possible DIF is available, an investigator may wish to first consider the model in 

which all items are hypothesized to exhibit DIF and proceed in an exploratory 

fashion on the basis of overall model fit and the observed values of parameter 

estimates. This may, in some cases, result in the consideration of models with one 

or more DIF items. 

Example Applications 

Kok (1982) experimentally studied DIF in multiplication items by manipulat- 

ing the test takers' skill on a possible DIF factor. Multiplication items were 

administered to 286 Dutch undergraduates. The items that were administered 

varied in format. For some items the numbers to be multiplied were written in 

Dutch, whereas for others, Roman numerals were used. Knowledge of Roman 

numerals was expected to be a DIF factor, because Dutch undergraduates show 

differences in their ability to decipher Roman numerals. DIF was further related 

to a manifest grouping variable by giving 143 randomly selected undergraduates 

some training regarding Roman numerals. It was of course expected that the 
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Roman numeral items would be more difficult for the untrained group than for 

the trained group. 

Six items were selected from the total set of items administered by Kok (1982). 

This set included three native-language items and three Roman numeral items. 

The item content and proportions of correct answers are presented in Table 3. 

The six chosen items were selected on the basis of the nature of their multiplica- 

tion content. All six items had the following common properties: (a) There is a 

single-digit multiplier that is greater than five; (b) there are three or more digits 

in the multiplicand; (c) there is at least one carry operation involved in correctly 

solving the multiplication item; and (d) the product of the highest-place digit in 

the multiplicand and multiplier is a two-digit number. These criteria were used to 

obtain a reasonably homogeneous item set. From Table 3 it can be seen that the 

Roman numeral items were easier for the trained group than for the untrained 

group. The Roman numeral items were, however, easier than the native-language 

items, even for the untrained students. 

Because the multiplication task differed very little across items, it might 

reasonably be expected that there are two latent ability states, mastery and 

nonmastery. The mastery model therefore seems most applicable in this case. 

The data, however, will be analyzed with both continuous and categorical models 

for the assessed latent attribute. Moreover, the data are analyzed both with and 

without a manifest grouping variable to better exemplify the applications of these 

modeling techniques. 

Because there is apparently only one DIF factor in this data (Roman numerals 

decoding), models with a combination of manifest and latent subgroups are not 

appropriate. Additionally, these models (both for the continuous and discrete 

cases) were not identified. For both reasons, these models will not be further 

addressed in this example. 

First, consider the case of a continuous measured variable and no manifest 

grouping variable. In Table 1, the likelihood-ratio chi-square statistics, degrees 

of freedom, and the corresponding right-tail probability values are presented for 

this case. On the basis of these results, it may be concluded that the Rasch model 

(Model 1 ) does not adequately fit the data. 

Considering a latent grouping variable, we see that Models 5 and 6 marginally 

fit the data. Furthermore, they do not differ significantly (G 2 = 3.92, d f  = 2, 

Table 3 
Homogeneous Multiplication Items Presented in Native-language 

and Roman-numerals Formats 

Item Multiplication Presentation 
Proportion Correct 

Untrained Trained 

1. 6 x 4123 Native language .37 .38 
2. 7 x 974 Native language .33 .22 
3. 7 x 3423 Native language .24 .23 
4. 8 x 214 Roman Numerals .50 .68 
5. 6 x 3107 Roman Numerals .43 .71 
6. 9 x 351 Roman Numerals .48 .66 
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p = . 14), so we choose the more parsimonious Model 6 as the preferred model for 

this pair. Recall that this preferred Model 6 allows only the Roman numeral 

items to exhibit DIF. 

Table 4 presents the Rasch item difficulty parameters that can be calculated 

from the/3 parameters of Model 6. The parameters are calculated by means of 

the following formula: 

i = 1, 2,  3; 

and (7) 

~,u = (/30 x' +/3x,,u) _ (/3x, +/3x,,v) i = 4, 5, 6, 

where ~5,. u is the item difficulty of item i for the uth latent group (Kelderman, 

1989). To fix the scale, the difficulty of the first item is set equal to zero by setting 

the corresponding/3 parameters equal to zero. Looking at Table 4 we see that all 

Roman numeral items are less difficult for the first latent class than for the 

second. This first class corresponds to what we might expect from students who 

have the Roman numeral training or otherwise have acquired a skill in working 

with Roman numerals, whereas the second class appears to contain students who 

do not have this skill. Note that the difference in difficulty between both latent 

classes is considerably larger for the last Roman numeral item than for the other 

Roman numeral items. It therefore seems that the latent class variable is highly 

correlated with the last Roman numeral item. 

Next, consider the case where the grouping variable is manifest. Models 3 and 

4 (Table 1) both marginally fit the data, and their difference is not significant 

(Gg = 4.15, d f  = 2, p = .13). So again (as in the case of the latent grouping 

variable models) we choose the more parsimonious Model 4. 

In Table 5, the Rasch item difficulties for Model 4 are presented. From Table 5 

it may be seen that the Roman numeral items are easier for the trained than for 

the untrained group. Furthermore, the pattern of item difficulties corresponds to 

those obtained with latent subgroups. However, a marked difference between the 

latent subgroups solution and the manifest subgroup solution is found in the last 

Roman numeral item: The difference in item difficulty between the latent 

subgroups is much larger than for the manifest subgroups, whereas for the 

remaining Roman numeral items, the difference in item difficulty between the 

Table 4 
Item Difficulty Estimates of Model {Xll,{X2},{X3},{UX4},{UX5}, 

{UX6},{TU} (Model 6) from Table 1 

Item 

Native Language Roman Numerals 
Latent Subgr. 
Subgr. Prop. 1 2 3 4 5 6 

1. 0.34 0.00 0.77 0.97 -1.58 -1.31 -7.39 
2. 0.66 0.00 0.77 0.97 -0.93 -0.89 0.16 

Difference: -0.65 -0.42 -7.55 
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Table 5 
Item Difficulty Estimates of Model { X 1 }, { X2 }, { X3 }, { GX4 }, 

{GX5},{GX6},{TG} (Model 4) from Table 1 

Item 

Native Language Roman Numerals 

Observed 
Subgroup 1 2 3 4 5 6 

Trained 0.00 0.65 0.93 - 1.80 - 1.97 - 1.67 
Untrained 0.00 0.65 0.93 -0.59 -0.19 -0.47 

Difference: - 1.21 - 1.78 - 1.20 

latent subgroups is smaller than for the manifest subgroups. This suggests that 

the strong relationship between the latent class variable and the last Roman 

numeral item cannot be explained entirely by the effect of Roman numerals 

training alone. The latent class variable seems to pick up an effect that is peculiar 

to Item 6. The marginality of the fit of Models 4 and 6 may very well have 

resulted from inadequate explanation of this effect. 

Consider now the case where the assessed attribute has two states: mastery or 

nonmastery. Table 2 shows that the Two-State Mastery model does not fit the 

data (see Model 1), nor do any of the models with a manifest grouping variable 

(i.e., Models 2, 3, and 4). Of  the models with latent grouping variables, only 

Model 5 has an acceptable fit. 

In Table 6, parameter  estimates for Latent Class Model 5 are presented. These 

estimated values correspond to the model parameters used when the model is 

formulated within a latent structure framework. The defining parameters within 

this framework are the conditional probabilities of positive item responses, given 

the specified latent class (i.e., masters or nonmasters) and the latent class 

proportions. These parameter  estimates can be calculated from the/3 parameters 

by means of the following equations (see Haberman,  1979, p. 551): 

exp + 

exp (Bx, + /3x, u) + exp (Bo x' + ~oX,~ v) 

i = 1 . . . . .  k for the conditional probabilities of having a positive response to item 

i given Latent Class u, and 

f 4X~U t~X*U'~ 5- + .  • 

x l ,  , .xk 

~x,u Rx, u~ 
~-~- ~"  exp (flu + -x, ,  + ' "  "+ ..... 

xl .  • .Xk U 

for the probability of being in Latent Class 1 (i.e., the latent class proportion). 

The estimated conditional probabilities presented in Table 6 are difficult to 

interpret in terms of the latent 2 x 2 joint levels of mastery and grouping. A 
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Table 6 
Parameter Estimates for Model {ULX1 } ..... {ULX6} (Model 5) from Table 2 

Latent Class 

Item Item 1 2 3 4 
No. Format (TM) (TN) (UM) (UN) 

Conditional Probabilities 

1 Native 0.88 0.40 0.26 0.10 
2 Native 0.77 0.21 0.40 0.00 
3 Native 0.77 0.13 0.29 0.00 

Mean 0.81 0.25 0.31 0.03 

4 Roman 0.85 0.81 0.28 0.35 
5 Roman 0.83 0.78 0.00 0.42 
6 Roman 0.71 1.00 0.42 0.18 

Mean 0.80 0.86 0.23 0.32 

Latent Class Proportions 

0.21 0.30 0.12 0.37 

possible interpretation for each latent class is specified between parentheses (see 

the latent class headings in Table 6). Classes 1 and 2 have relatively high 

conditional probabilities for correct item responses for the Roman numeral items, 

whereas Classes 3 and 4 have low corresponding probabilities. It may therefore 

be conjectured that Classes 1 and 2 correspond to latent groups of students who 

have some facility at working with Roman numerals (this, to a large extent, may 

include students in the trained group), whereas students in Classes 3 and 4 do not 

have this facility. Furthermore, the native-language items tend to have higher 

conditional probabilities for Classes I and 3 than for Classes 2 and 4. This 

supports the conjecture that Classes 1 and 3 correspond to masters and Classes 2 

and 4 to nonmasters. The conditional probabilities for the Roman numeral items, 

however, do not conform to the mastery-nonmastery interpretation. In the 

experienced/trained group (i.e., the combined Classes 1 and 2), the conditional 

probability for Item 6 is lower in value for the mastery class (1) than for the 

nonmastery class (2). Moreover, in the inexperienced/untrained group, the 

conditional probabilities for Items 4 and 5 are smaller in the mastery class (3) 

than in the nonmastery class (4). The parameters, therefore, are not fully 

interpretable in terms of a combination of mastery and DIF classes. 

The model with a continuous measured trait and DIF in the Roman numeral 

items with respect to the manifest grouping variable (see Model 4 in Table 1 ) did 

fit the data. Therefore, it may be expected that the corresponding model with a 

categorical assessed trait would better fit the data if the number of levels of 

mastery were increased. Model 4* in Table 2 is the same as Model 4, except that 

there are three rather than two latent levels of mastery. This new model fits the 

data very well. 
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Presented in Table 7 are the conditional probabilities and the latent class 

proportions that correspond to Model 4*. On the basis of the mean values for the 

conditional probabilities on the native-language items for each latent class, we 

might interpret latent Classes 1, 2, and 3, respectively, as corresponding to 

nonmastery (NM);  mixed mastery (MM; i.e., a latent class containing individu- 

als who have mastered or partially mastered some of the items while not 

mastering the remaining items); and mastery (M) states. Because in this model 

there are no interaction effects among training, ability, and the responses to the 

native-language items, the same respective interpretation may be used with 

Classes 4, 5, and 6. In considering the conditional probabilities for the Roman 

numeral items, it may be seen that in the nonmasters class and the masters class, 

the trained subjects have higher conditional probabilities than the untrained 

subjects. However, the mixed-masters conditional probabilities do not seem to be 

affected by Roman numerals training. The conditional probabilities of both 

trained and untrained subjects are about the same. Furthermore, it is noteworthy 

that the conditional probability of the last Roman numerals item is equal to one, 

whereas other conditional probabilities of this item are considerably lower. It 

seems, therefore, that this item is strongly related to the mixed-masters class. As 

was also suggested by the analysis with a continuous latent trait, the last Roman 

numerals item seems to measure an effect that is not adequately explained by 

training or the latent trait. 

Another possible interpretation of the conditional probabilities of the Roman 

numeral items given the mixed-mastery latent class is in terms of Bergan and 

Table 7 
Parameter Estimates of Model { LX 1 }, { LX2 }, { LX3 }, { GLX4 }, { GLX5 }, { GLX6 } with 

Three Mastery States and (Model 4*) Table 2 

Latent Classes 

Trained Group Untrained Group 

Item Item 1 2 3 4 5 6 
No. Format (NM) (MM) (M) (NM) (MM) (M) 

Conditional Probabilities 

1 Native .11 .45 .85 .11 .45 .85 
2 Native .07 .17 .88 .07 .17 .88 
3 Native .03 .21 .71 .03 .21 .71 

Mean .07 .27 .81 .07 .28 .81 

4 Roman .46 .82 .86 .27 .78 .75 
5 Roman .56 .73 1.00 .21 .77 .61 
6 Roman .29 1.00 .71 .20 1.00 .66 

Mean .44 .85 .86 .23 .85 .67 

Latent Class Propo~ions 

.41 .42 .16 .54 .19 .27 
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Stone's (1985) hierarchical ordering of items. The conditional probabilities of the 

Roman numerals items in the mixed-mastery class are about as large as those in 

the mastery class, whereas in the native-language items they are smaller. 

Therefore, Roman numeral items appear to be mastered before native language 

items. 

For the case of a latent grouping variable, a model with three mastery states 

would not be identifiable when only six items are considered. Thus, we do not 

consider a Model 6 with three levels of assessed mastery for these data. 

Discussion 

In this paper, we have shown that it is possible to explain DIF through 

differences in item difficulties or error rates across levels of grouping variables. 

This approach is viable when the assessed attribute of interest is either continu- 

ous or categorical and the grouping variables, with respect to which DIF may 

occur, are manifest, latent, or both. 

The modeling framework that we have presented is quite general and can be 

easily extended to include several observed and unobserved grouping variables. 

Also, this model is capable of incorporating additional interaction effects that we 

have not considered. One should, however, be cautious when considering the 

inclusion of additional effects within models, especially when the grouping 

variable is latent, because many such models will not be identifiable. For 

example, it is easily shown that adding a term {X4XsX 6} for the interaction 

between Roman numeral items to Model 6, which includes interaction effects 

tX4U}, {XsU}, {X6U] between those items and the latent grouping variable U, is not 

an identifiable model. This is because item interactions with U already explain 

the interaction among the observed responses on the Roman numeral items. 

A practical problem that occurs with this general modeling approach when 

latent categorical variables are present is computational infeasibility when more 

than just a few variables are included in a model. This problem occurs because 

the minimum sufficient information for parameter estimation are the contin- 

gency table frequencies. The number of these frequencies increases exponentially 

with the number of variables. Note that for k dichotomous variables, the number 

of cells in the contingency table is 2 k. For example, if k = 20, there are more than 

a million cells in the contingency table. For this reason, it may not be feasible to 

analyze all items on a test simultaneously. Instead the test may need to be 

partitioned into carefully chosen subsets of items, where each subset is analyzed 

separately. The subsets may be chosen on the basis of content so that items 

similar in content are placed within the same subset. This procedure increases the 

likelihood that unknown DIF factors might be found. 

Another practical problem related to estimation is that the number of itera- 

tions required to reach a solution may be quite large, or in some cases it may be 

difficult to reach an acceptable solution. This is especially true when the model 

under consideration is complex or the initial values used in the iterative estima- 

tion process are not themselves reasonably accurate. For example, 449 iterations 

were needed to obtain estimates for the Rasch model with the Roman numeral 

items showing DIF with respect to a latent grouping variable (see Model 6 in 
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Table 1). The starting values used in estimation for this model were arbitrary, 

and the stopping criterion was six decimal places of precision. For the correspond- 

ing mastery model (see Model 6 in Table 2), the number of iterations was 1,501 

to obtain a precision of five decimal places. An advantage of the IPF algorithm, 

however, is that iterations may be very quickly implemented because, relative to 

other procedures, the required operations necessary for completing an iteration 

are relatively simple and small in number. In the case of the mastery Model 6, the 

required CPU time on a VAX8650 computer was less than 15 seconds. Addition- 

ally, it may be noted that estimation with this algorithm is far less sensitive to the 

values selected as initial parameter  estimates than is the case with other 

algorithms. This dramatically reduces the likelihood of the above-mentioned 

problem of not obtaining acceptable convergence. 

In the case of a continuous latent trait, a Rasch model is assumed, which 

implies the assumption that the nonbiased items all have the same discrimination 

parameter.  This may be felt as a limitation of this item-bias detection method. 

For the case of a manifest grouping variable, Kelderman (1989) performed a 

sensitivity analysis focusing on this feature. His simulation results showed that 

the test for one biased item is rather robust for deviations of the equal- 

discrimination assumption in the remaining items. For the case of a latent 

grouping variable, the inclusion of discrimination parameters gives rise to 

near-identification problems leading to estimation problems, unless parameters 

are fixed in advance to a certain value. 

Models where more complicated IRT models are combined with latent sub- 

groups and where model parameters are fixed have been described by several 

authors. Mislevy and Verhelst (1987) chose a linear-logistic test model and 

Yamamoto (1987, 1988) a two-parameter-logistic model. These models have the 

same basic philosophy: an IRT model combined with latent classes. 
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