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Abstract

There is a growing concern about chronic diseases and other health problems related to diet including

obesity and cancer. The need to accurately measure diet (what foods a person consumes) becomes

imperative. Dietary intake provides valuable insights for mounting intervention programs for

prevention of chronic diseases. Measuring accurate dietary intake is considered to be an open research

problem in the nutrition and health fields. In this paper, we describe a novel mobile telephone food

record that will provide an accurate account of daily food and nutrient intake. Our approach includes

the use of image analysis tools for identification and quantification of food that is consumed at a

meal. Images obtained before and after foods are eaten are used to estimate the amount and type of

food consumed. The mobile device provides a unique vehicle for collecting dietary information that

reduces the burden on respondents that are obtained using more classical approaches for dietary

assessment. We describe our approach to image analysis that includes the segmentation of food items,

features used to identify foods, a method for automatic portion estimation, and our overall system

architecture for collecting the food intake information.
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Index Terms
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I. Introduction

There is a growing concern about chronic diseases and other health problems related to diet

including obesity and cancer. Dietary intake, the process of determining what someone eats

during the course of a day, provides valuable insights for mounting intervention programs for

prevention of many chronic diseases. Measuring accurate dietary intake is considered to be an

open research problem in the nutrition and health fields. The increasing prevalence of obesity

among the youth is of great concern [1] and has been linked to an increase in type 2 diabetes

mellitus [2]. Accurate methods and tools to assess food and nutrient intake are essential in

monitoring the nutritional status of this age group for epidemiological and clinical research on

the association between diet and health.

The collection of food intake and dietary information provides some of the most valuable

insights into the occurrence of disease and subsequent approaches for mounting intervention

programs for prevention. The assessment of food intake in adolescents has been evaluated in

the past by a food record (FR), the 24-hour dietary recall (24 HR), and a food frequency

questionnaire (FFQ) with external validation by doubly-labeled water (DLW) and urinary

nitrogen [3]–[7]. Currently, there are too few validation studies in children to justify one

particular method over another for any given study design.

The accurate assessment of diet is problematic, especially in adolescents [3]. The availability

of “smart” mobile telephones with higher resolution imaging capability, improved memory

capacity, network connectivity, and faster processors allow these devices to be used in health

care applications. Mobile telephones can provide a unique mechanism for collecting dietary

information that reduces burden on record keepers. A dietary assessment application for a

mobile telephone would be of value to practicing dietitians and researchers [8]. Previous results

among adolescents showed that dietary assessment methods using a technology-based

approach, e.g., a personal digital assistant with or without a camera or a disposable camera,

were preferred over the traditional paper food record [9]. This suggests that for adolescents,

dietary methods that incorporate new mobile technology may improve cooperation and

accuracy. To adequately address these challenges, we describe a mobile telephone food record

[10] that we have developed using a mobile device (e.g., a mobile telephone or PDA-like

device) to provide an accurate account of daily food and nutrient intake. Fig. 1 shows the overall

architecture of our proposed system, which we describe in detail in Section V. Our goal is to

use a mobile device with a built-in camera, network connectivity, integrated image analysis

and visualization tools with a nutrient database, to allow a user to discretely record foods eaten.

Images acquired before and after foods are eaten can be used to estimate the amount of food

and nutrients consumed [11], [12]. We have deployed a prototype system on an iPhone. This

prototype system is available only for testing, not for commercial distribution, and it is currently

being tested by dietitians and nutritionists in the Department of Foods and Nutrition at Purdue

University for various adolescent and adult controlled diet studies.

The paper is organized as follows. Section II reviews current dietary assessment methods.

Section III describes the image analysis methods used for our system. Section IV illustrates

methods for automatic portion estimation and visual refinement. Section V describes the

deployment of our dietary assessment system on a mobile device. In Section VI, we present
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experimental results. We conclude with the discussion of our system, and future work in

Section VII.

II. Review of Current Dietary Assessment Methods

A review of some of the most popular dietary assessment methods is provided in this section.

The objective here is to analyze the advantages and major drawbacks of these methods. This

will demonstrate the significance of our mobile telephone food record which can be used for

population and clinical based studies to improve the understanding of diet among adolescents.

A. 24-Hour Dietary Recall

The 24-hour dietary recall (24 HR) consists of a listing of foods and beverages consumed the

previous day or the 24 hours prior to the recall interview. Foods and amounts are recalled from

memory with the aid of an interviewer who has been trained in methods for soliciting dietary

information. A brief activity history may be incorporated into the interview to facilitate probing

(i.e., asking questions) for foods and beverages consumed. The Food Surveys Research Group

(FSRG) of the United States Department of Agriculture (USDA) has devoted considerable

effort to improving the accuracy of this method.

The major drawback of the 24 HR is the issue of underreporting of the food consumed [13].

Factors such as obesity, gender, social desirability, restrained eating and hunger, education,

literacy, perceived health status, age, and race/ethnicity have been shown to be related to under-

reporting [14]–[17]. Youth, in particular, are limited in their abilities to estimate portion sizes

accurately [3]. The most common method of evaluating the accuracy of the 24 HR with children

is through observation of school lunch and/or school breakfast [18] and comparing foods

recalled with foods either observed as eaten or foods actually weighed. These recalls have

demonstrated both under-reporting and over-reporting, and incorrect identification of foods.

B. Food Record

The 24 HR is useful in population based studies; however, the preferred dietary assessment

method for clinical studies is the food record. Depending on the primary nutrient or nutrients

or foods of interest, the minimum number of food records needed is rarely less than two days.

Training the subjects, telephoning with reminders for recording, reviewing the records for

discrepancies, and entering the dietary information into a nutrient database can take a large

amount of time and requires trained individuals [19].

The food record is especially vulnerable to under-reporting due to the complexity of recording

food [20], [21]. A study among 10–12 year old children found significant under-reporting of

total energy intake (TEI) when the intake was compared against an external marker, doubly-

labeled water (DLW) [22]. As adolescents snack frequently, have unstructured eating patterns,

and consume greater amounts of food away from the home, their burden of recording is much

greater compared to adults. It has been suggested that these factors, along with a combination

of forgetfulness and irritation and boredom caused by having to record intake frequently may

be contributing to the under-reporting in this age group [23]. Dietary assessment methods

perceived as less burdensome and time-consuming may improve compliance [23].

C. Portion Size Estimation

Portion size estimation may be one contributor to under-reporting. In [24], it was found that

45 minutes of training in portion-size estimation among 9–10 year olds significantly improved

estimates for solid foods which were measured by dimensions or cups, and liquids estimated

by cups. Amorphous foods were estimated least accurately even after training and some foods
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still exhibited an error rate of over 100%. Thus, training can improve portion size estimation;

however, more than one session may be needed and accuracy may be unattainable.

D. Evaluation of Dietary Assessment Methods

The number of days needed to estimate a particular nutrient depends on the variability of the

nutrient being assessed and the degree of accuracy desired for the research question [25]–

[28]. Most nutrients require more than four days for a reliable estimate [26], [28]. However,

most individuals weary of keeping records beyond four days which may decrease the quality

of the records [20].

Another challenge in evaluating dietary assessment methods is comparing the results of the

dietary assessment method to some measure of “truth.” This is best achieved by identifying a

biomarker of a nutrient or dietary factor [21], [29]. The underlying assumption of a biomarker

is that it responds to intake in a dose-dependent relationship [27]. The two methods that have

widest consensus as valid biomarkers are DLW for energy [21], [30] and 24-hour urinary

nitrogen for protein intake [6], [31], [32]. A biomarker does not rely on a self-report of food

intake; thus, theoretically the measurement errors of the biomarker are not likely to be

correlated with those of the dietary assessment method. Other biomarkers collected from urine

samples include potassium and sodium [31]. Plasma or serum biomarkers that have been

explored are levels of ascorbic acid for vitamin C intake [31], [33], β-carotene for fruits and

vegetables or antioxidants [33]–[35]. These latter markers are widely influenced by factors

such as other metabolic pathways, smoking status and supplement use; thus, their interpretation

to absolute intake is limited.

As one can see from the above discussion, measuring accurate dietary intake is considered to

be an open research problem in the nutrition and health fields. There is a tremendous need for

new methods for collecting dietary information. Preliminary studies have indicated that the

use of a mobile device using a camera to obtain images of the food consumed may provide a

more accurate method for dietary assessment. This is the goal of the mobile telephone food

record described in the next sections.

III. Image Analysis System

There has been previous work reported for automatic recognition of some types of food items.

Jimenez et al. [36] described an automatic fruit recognition system, which recognized spherical

fruits in different situations such as shadows, bright areas, occlusions, and overlapping fruits.

A three-dimensional scanner was used to scan the scene and generate five images to represent

the azimuth and elevation angles, range, attenuation, and reflectance. The position of the fruits

obtained by thresholding and clustering and the Circular Hough Transform was used to identify

the center and radius of the fruits. A robust method to segment the food items from the

background of color images was proposed in [37]. A color image was converted to a high-

contrast grayscale image from an optimal linear combination of the RGB color components.

The image is then segmented using a global threshold estimated by a statistical approach to

minimize the intraclass variance. The segmented regions were subjected to a morphological

process to remove small objects, to close the binary image by dilation followed by erosion and

to fill the holes in the segmented regions.

We have developed methods to automatically estimate the food consumed at a meal from

images acquired using a mobile device. Our goal is to identify food items using a single image

acquired from the mobile device. The system must be easy to use and not place a burden on

the user by having to take multiple images, carry another device, or attaching other sensors to

their mobile device. Our approach is shown in Fig. 2. Each food item is segmented, identified,

and its volume is estimated. “Before” meal and “after” meal images can be used to estimate
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the food intake. From this information, the energy and nutrients consumed can be determined.

In this section, we describe our methods some of which were presented earlier in [10], [11].

Our goal is to automatically determine the regions in an image where a particular food is located

(segmentation) and correctly identify the food type based on its features (classification or food

labeling). Automatic identification of food items in an image is not an easy problem. We fully

understand that we will not be able to recognize every food. Some food items look very similar,

e.g., margarine and butter. In other cases, the packaging or the way the food is served will

present problems for automatic recognition. For example, if the food is in an opaque container

then the we will not be able to identify it.

In some cases, if a food is not correctly identified or its volume is incorrect it may not make

much difference with respect to the energy or nutrients consumed. For example, if our system

identifies a “brownie” as “chocolate cake” there is not a significant amount of differences in

the energy or nutrient content. Similarly, if we incorrectly estimate the amount of lettuce

consumed this will also have little impact on the estimate of the energy or nutrients consumed

in the meal due to the low energy content of lettuce [8], [9]. Again, we emphasize that our goal

is to provide a tool for better assessment of dietary intake to professional dietitians and

researchers that is currently available using existing methods.

A. Image Segmentation

Our system uses various approaches to segment the food items in the image. In particular, we

use connected component analysis, active contours, and normalized cuts. Since we are

interested in measuring the amount of food in the image, we have developed a very simple

protocol for users of our system [8], [9]. This protocol involves the use of a calibrated fiducial

marker consisting of a checkerboard (color checkerboard) that is placed in the field of view of

the camera. This allow us to do geometric and color correction to the images so that the amount

of food present can be estimated.

Connected Component Labeling—We have investigated a two step approach to segment

food items using connected components [11]. In the first step, the color image is converted to

grayscale and thresholded to form a binary image. Our goal here is to separate the plate from

the tablecloth. The plate was empirically found assuming it was brighter than the table cloth

(similar process can be used if the plate is darker than the tablecloth). For segmenting the food

items on the plate, the binary image is searched in eight-point connected neighbors for the low

intensity value (i.e., 0) in the thresholded image. Since we used a fixed threshold, pixels

corresponding to the food items might be labeled as the plate. As a result, we need to refine

the estimates of the food locations. Next, the RGB image is converted to the YCbCr color

space. Using the chrominance components, Cb and Cr, the mean value of the histogram

corresponding to the plate was found. Pixel locations which were not segmented during the

first step were compared with the mean value of the color space histogram of the plate to

identify potential food items. These pixels were given a different label from that of the plate,

then eight-point connected neighbors for the labeled pixels were searched to segment the food

items.

Active Contours—Active contours are used to detect objects in an image using techniques

of curve evolution. The basic idea is to deform an initial curve to the boundary of the object,

under some constraints from the image. The use of active contours to segment food images is

described in [38] where a snake model, a controlled continuity spline, is described. Energy

functionals are needed to make snakes useful for image analysis problems. Three different

energy functionals are used to detect features such as lines, edges and terminations. The edge

functional is used in [38] to segment food items such as a pear and a potato. Similar approaches
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described in [39] and [40] also use the gradients of the image to locate edges. These methods

are suitable for images with strong object boundaries, but are generally sensitive to the

initialization of the active contour. Therefore, we prefer the region-base models [41]–[43]

which identify each region of interest by using a region descriptor to guide the motion of the

active contour. These methods are less sensitive to the initialization of the active contour, but

tend to rely on intensity homogeneity in each of the regions to be segmented. In particular, we

employed the approach described in [44] to partition an image into foreground and background

regions. Let ui,0 be the ith channel of an image with i = 1,…, N and C the evolving curve. Let

 and  be two unknown constant vectors. The goal is to minimize

the following energy function

(1)

where μ > 0 and  are parameters for each channel. In our implementation, we used the

RGB color components of the image.

The active contours model works well when the food items are separated from each other;

however, it sometimes fails to distinguish multiple food items that are connected. We use this

approach in some of the controlled diet studies done by the nutritionist where simple types of

food are given to test subjects for evaluation.

Normalized Cut—Normalized cut is a graph partition method first proposed by Shi and Malik

[45]. This method treats an image pixel as a node of a graph and considers segmentation as a

graph partitioning problem. In this method, the image is modeled as a weighted, undirected

graph. Each pixel is a node in the graph, and an edge is formed between every pair of pixels.

The weight of an edge is a measure of the similarity between the pixels. The image is partitioned

into disjoint sets (segments) by removing the edges connecting the segments. The optimal

partitioning of the graph is the one that minimizes the weights of the edges that were removed

(the cut). Shi's technique seeks to minimize the normalized cut, which is the ratio of the cut to

all of the edges in the set. The technique uses a graph-theoretic criterion for measuring the

“goodness” of an image partition, where both the total dissimilarity between the different

groups as well as the total similarity within the groups are measured. The minimization of this

criterion can be formulated as a generalized eigenvalue problem.

Various image features such as intensity, color, texture, contour continuity, motion are treated

in one uniform framework. Let X(i) be the spatial location of node i, i.e., the coordinates in the

original image I, and F(i) be a feature vector, we can define the graph edge weight connecting

the two nodes i and j as

(2)

We used intensity and color as the image features for using normalized cut on food images.
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B. Food Features

Two types of features are extracted/measured for each segmented food region, color features

and texture features. As noted above, as part of the protocol for obtaining food images the

subjects are asked to take images with a calibrated fiducial marker consisting of a color

checkerboard that is placed in the field of view of the camera. This allows us to correct for

color imbalance in the mobile device's camera. For color features, the average value of the

pixel intensity (i.e., the gray scale) along with two color components are used. The color

components are obtained by first converting the image to the CIELAB color space. The L*

component is known as the luminance and the a* and b* are the two chrominance components.

For texture features, we use Gabor filters to measure local texture properties in the frequency

domain. Gabor filters describe properties related to the local power spectrum of a signal and

have been used for texture analysis [46]. A Gabor impulse response in the spatial domain

consists of a sinusoidal plane wave of some orientation and frequency, modulated by a two-

dimensional Gaussian envelope and is given by

(3)

In our work, we use the Gabor filter-bank proposed in [47]. It is highly suitable for our use

where the texture features are obtained by subjecting each image (or in our case each block)

to a Gabor filtering operation in a window around each pixel and then estimating the mean and

the standard deviation of the energy of the filtered image. A Gabor filter-bank consists of Gabor

filters with Gaussians of several sizes modulated by sinusoidal plane waves of different

orientations from the same Gabor-root filter as defined in (3), it can be represented as

(4)

where x̃ = a−m(x cosθ + y sinθ),ỹ = a−m(−x sinθ + y cosθ), θ = nπ/K (K = total orientation, n =

0,1,…, K − 1, and m = 0,1,…,S − 1), and h(·,·) is defined in (3). Given an image IE(r, c) of size

H × W, the discrete Gabor filtered output is given by a 2-D convolution

(5)

As a result of this convolution, the energy of the filtered image is obtained and then the mean

and standard deviation are estimated and used as features. In our implementation, we divide

each segmented food item into N × N non-overlapped blocks and use Gabor filters on each

block. We use the following Gabor parameters: four scales (S = 4), and six orientations K =

6).

C. Classification

Once the food items are segmented and their features are extracted, the next step is to identify

the food items using statistical pattern recognition techniques [48], [49]. For classification of

the food item, we use a support vector machine (SVM) [50]–[52]. A classification task usually

involves training and testing data. Each element in the training set contains one class label and

several “attributes” (features). The feature vectors used for our system contain 51 values, 48
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texture features and three color features. The feature vectors for the training images (which

contain only one food item in the image) are extracted and a training model is generated using

the SVM. We use LIBSVM [53], a library for support vector machines.

The labeled food type along with the segmented image are sent to the automatic portion

estimation module where camera parameter estimation and model reconstruction are utilized

to determine the volume of food.

IV. Volume Estimation

One of the challenging problems of image-based dietary assessment is the accurate estimation

of food portion size from a single image. As we have indicated above, this is done to minimize

the burden on the user. We have developed a method to automatically estimate portion size of

a variety of foods through volume estimation. These “portion volumes” utilize camera

parameter estimation and model reconstruction to determine the volume of food items, from

which nutritional content is then determined.

Our volume estimation consists of camera calibration and 3-D volume reconstruction. Fig. 3

illustrates this process. Two images are used as inputs, one is the food image taken by the user,

the other image is the segmented image described in the previous section. The camera

calibration step estimates camera parameters, comprised of intrinsic parameters (distortion, the

principal point, and focal length) and extrinsic parameters (camera translation and orientation).

We use the fiducial marker discussed above as a reference for the scale and pose of the food

item identified. The fiducial marker is detected in the image and the pose is estimated. The

system for volume estimation partitions the space of objects into “geometric classes,” each

with their own set of parameters. Feature points are extracted from the segmented region image

and unprojected into the 3-D space. A 3-D volume is reconstructed by the unprojected points

based on the parameters of the geometric class. Once the volume estimate for a food item is

obtained, the nutrient intake consumed is derived from the estimate based on the USDA Food

and Nutrient Database for Dietary Studies (FNDDS) [54]. Next, we summarize the methods

we have developed. A complete description of our volume estimation methods is presented in

[12].

A. Spherical and Prismatic Approximation Model

Both a spherical approximation model and a prismatic approximation model have been used

to perform 3-D volume reconstruction in our work. Our spherical approximation model is

inspired by Dandelin spheres to recover the radius and position of a sphere from a single view

[55]. One key to recovering sphere parameters is that the sphere is tangent to the ground plane.

The method for fixing the position makes use of a particular arrangement of two spheres, a

cone, and a plane, known as Dandelin spheres [55]. The intersection of a plane and a cone

forms an elliptical conic section. To estimate the sphere position, feature points from the

elliptical region in the screen space are projected onto the table plane. We reorient the resulting

points on to a two-dimensional plane to find ellipse parameters. This is achieved by first using

the translation vector, followed by the inverse of the rotation matrix, which yields coordinate

triples with negligible z-values. The ellipse of the shadow area is usually more elongated than

that of the apparent contour. The ellipse parameters for the shadow area are recovered by

estimating the ellipse that best fits in a least square sense to the contour points. Under

perspective projection, the circumference of the apparent contour of a sphere is smaller than

that of the sphere's great circle—the circle that cuts the sphere into two equal halves and shares

its center. Thus, it is somewhat more difficult to estimate a radius with a perspective camera

than under orthogonal projection. We use the method proposed by Heron [56] which describes

the area of a triangle given the length of each side and the semiperimeter of the triangle to

obtain the radius of a circle inscribed in this triangle.
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To support general shapes of food items, we also developed a prismatic approximation model.

We assume that the segmented region representing the food item corresponds exactly to the

physical area upon which the food contacts the plate surface. This assumption is valid when

the image is taken at a high angle, such that there are no self-occluding boundaries.

Alternatively, the assumption is preserved for images acquired at a shallow (oblique) angle by

manually supplying surface contact information, or automatic computation by symmetry cues.

For each pixel on the boundary of a given segmented region, a vertex in the world space may

be calculated as the intersection of back-projected screen rays with the table surface. Fig. 4

illustrates the 3-D volume construction of scrambled eggs using our prismatic approximation

model. We obtain feature points on the boundary of a segmented region obtained from image

segmentation. Fig. 4(b) shows extracted feature points on the boundary of scrambled eggs.

Since the planar shape constructed with the extracted points is not always convex, we

triangulate the planar polygon using Delaunay triangulation [57] and sum all the areas of the

triangles to obtain the area of the planar polygon. Finally, this area is extruded towards the

tangential direction of the table surface to produce the volume of the food item.

B. Visual Refinement

Interactive parameter adjustment enables the user to supply information that may be absent

from the two-dimensional scene image with the implicit knowledge that they possess of the

scene, as well as correct estimation errors in our reconstruction algorithm. Our visual

refinement allows the user to reposition the spherical estimator volume at any point tangent to

the table surface and adjust the radius, as shown in Fig. 5. The height of the prismatic estimator

can be interactively adjusted with real-time feedback (this will be described in more detail in

the next section).

V. System Architecture

We have developed two different configurations for our dietary assessment system: a

standalone configuration and a client-server configuration. Each approach has potential

benefits depending on the operational scenario.

A. Client–Server Configuration

The Client–Server configuration is shown in Fig. 1. In most applications this will be the default

mode of operation. The process starts with the user sending the image and metadata (e.g., date,

time, and perhaps GPS location information) to the server over the network (step 1) for food

identification and volume estimation (step 2 and 3), the results of step 2 and 3 are sent back to

the client where the user can confirm and/or adjust this information if necessary (step 4). Once

the server obtains the user confirmation, food consumption information is stored in another

database at the server, and is used for finding the nutrient information using the FNDDS

database [54] (step 6), the FNDDS database contains the most common foods consumed in the

U.S., their nutrient values, and weights for typical food portions. Finally, these results can be

sent to dietitians and nutritionists in the research community or the user for further analysis

(step 7). We have implemented our system on the Apple iPhone as the client. A prototype

system has been deployed on the Apple iPhone as the client and we have verified its

functionality with various combination of foods. A prototype of the client software has also

been deployed on the Nokia N810 Internet Tablet.

It is important to note that our system has two modes for user input. In the “automatic mode,”

the label of the food item, the segmented image, and the volume estimation can be adjusted/

resized after automatic analysis by the user using the touch screen on the mobile device. These

corrections will then be used for nutrient estimation using the FNDDS.
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The other mode addresses the problem when no image is available. For some scenarios, it might

be impossible for users to take meal images. For example, the user may not have their mobile

telephone with them or may have forgotten to take meal images. To address these situations,

we developed an Alternative Method in our system that is based on user interaction and food

search using the FNDDS database [54]. With the help of experts from the Foods and Nutrition

Department at Purdue University, the Alternative Method captures sufficient information for

a dietitian to perform food and nutrient analysis, including date and time, food name, measure

description, and the amount of intake. For a more detailed description of the Alternative

Method, please refer to [58].

B. Standalone Configuration

The idea here is to perform all the image analysis and volume estimation on the mobile device.

By doing the image analysis on the device, the user does not need to rely on network

connectivity. One of the main disadvantages of this approach is the higher battery consumption

on the mobile device. Optimization of the image analysis techniques is one of our priorities

when designing our system. We are also exploring strategies to perform some parts of the image

analysis on the mobile device and others on the server. Having a standalone configuration

allows us to determine how each part of the process affects power consumption, processor

utilization, and device memory. It also helps us detect what are the most resource demanding

tasks so we can implement these tasks on the server.

VI. Experimental Results

Several controlled diet studies were conducted by the Department of Foods and Nutrition at

Purdue University whereby participants were asked to take pictures of their food before and

after meals [8]. These meal images were used for our experiments. Currently, we have collected

more than 3000 food images. To assess the accuracy of our various methods, it is important to

develop groundtruth data for the images. For each image, we manually extracted each food

item in the scene using a Cintiq Interactive Pen LCD Display and Adobe Photoshop. Given a

meal image, we traced the contour of each food item and generated corresponding mask images

along with the correct food labels. As a control, different individuals were asked to ground

truth the same images and the results were shown to graduate students in the Department of

Foods and Nutrition at Purdue University for evaluation. Since these were controlled studies

the correct nutrient information was also available.

Figs. 6–8 show sample results from the use of connected component labeling, active contours,

and normalized cut segmentation, respectively.

For our classification tests we considered 19 food items from three different meal events (a

total of 63 images). All images were acquired in the same room with the same lighting

conditions. Three experiments were conducted depending on the number of images used for

training and the number of images used for testing. For these experiments, we used the

groundtruth segmentation data described above to evaluate the performance of the

classification. First, we considered 10% of images for training and the rest, 90%, for testing.

In the second experiment we used 25% of images for training and 75% for testing. We then

considered 50% of images for training and for testing in the third experiment. Table I presents

results from the three experiments in terms of average correct classifications for all food items.

A tenfold cross-validation is performed to include the mean and variance of the classification

results.

Examples of correctly classified objects and misclassified objects are shown in Fig. 9. We

randomly select training and testing data; therefore, when we consider only 10% of the data

for training purposes, each data item has a large influence on the classifier's performance. Some
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foods are inherently difficult to classify due to their similarity in the feature space we use.

Examples of such errors are scrambled eggs misclassified as margarine and Catalina dressing

misclassified as ketchup. We also have shown from our experiments that the performance of

the image segmentation plays a crucial role in achieving correct classification results.

To measure the accuracy of our volume estimation for both spherical and prismatic objects,

we used seven food items (five spherical and two prismatic objects) for the experiment. No

manual refinement for the spherical objects was performed in this experiment. The average

error rates are summarized in Table II. Estimated radii had good agreement with measured

radii in the spherical trials, falling within 0.07 inches for every fruit but one (the nectarine

(considered the least spherical of the fruits) was overestimated by 0.14 inches). Nectarine radii

derived from cross-sectional areas were within 0.01 inches of the direct radius measurement,

the estimation error may be due partly to the choice of the cross-section used. The average

volume error in the nectarine, by the use of a water displacement ground truth method (0.51%),

was the smallest of all the fruits. However, by the radius method (7.17%), it was surpassed

only by that of the plum (14.6%), for which there was fairly high disagreement between the

two ground truth methods of obtaining volume estimates. The average error rate of volume

estimates for oranges was smaller than those of the other spherical fruits as oranges were almost

spherical objects. As shown in the experiment, it is often the case that the fruit deviates from

the ideal spherical object. Hence, ellipsoid based approximation methods would be a better

estimation. However, it is very challenging to extract the major diameter and minor diameter

of a spherical object from a single view image in perspective projection. Whereas, volume

estimation results on synthetic spheres were highly accurate, as ground truth values for volume

are known exactly.

For prismatic objects, as shown in Table II, prismatic area and height were not as accurate with

10% volume error in the worst trial although the Jell-O estimation fared well. The brownie

volume errors ranged from 6% to 14% as compared to the nominal volume. The error rates of

the brownies were higher than those of the Jell-Os. This was attributed from the image

segmentation since the boundary of the segmented regions for the brownies were not smooth.

We also performed an experiment for analyzing the accuracy of gram weights estimated from

the volume estimates, produced from our volume estimation process. We chose two food items,

a garlic bread and a yellow cake. Table III shows the error rates between estimated and

measured gram weights.

Nutrient information and meal images were collected from the controlled studies where a total

of 78 participants (26 males, 52 females) ages 11 to 18 years used our system. The energy

intake measured from the known food items for each meal was used to validate the performance

of our system. Based on the number of images used for training, we estimated the mean

percentage error of our automatic methods compared to nutrient data collected from the studies.

With 10% training data, the automatic method reported within 10% margin of the correct

nutrient information. With 25% training data, the automatic method improved to within 3%

margin of the correct nutrient information. With 50% training data, the improvement was

within 1% margin of the correct nutrient information. Our experimental results indicated that

the use of a mobile device using a camera to obtain images of the food consumed is a valid

and accurate tool for dietary assessment.

VII. Conclusion and Discussion

In this paper, we described the development of a dietary assessment system using mobile

devices. As we indicated, measuring accurate dietary intake is considered to be an open research

problem in the nutrition and health fields. We feel we have developed a tool that will be useful
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for replacing the traditional food record methods currently used. We are continuing to refine

and develop the system to increase its accuracy and usability.
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Fig. 1.

Overall system architecture for dietary assessment.
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Fig. 2.

Ideal food image analysis system.
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Fig. 3.

Food portion estimation process
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Fig. 4.

Volume reconstruction of scrambled eggs using our prismatic approximation model. (a) An

input food image, (b) feature points, (c) a base plane constructed using the feature points, and

(d) the food volume shape for the scrambled eggs.
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Fig. 5.

User refinement. More accurate estimate is produced by translating and scaling the spherical

volume. (a) shows the initial reconstructed sphere for the orange and (b) and (c) show the

translated and scaled estimates, respectively. The initial estimated radius is 1.649 inches

(original: 1.45) and the final estimate is 1.5 inches.
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Fig. 6.

Sample results of connect component labeling. (a) A typical image of a meal, (b) food item

segmented using a fix threshold (T=127), and (c) additional food item segmented using color

information.
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Fig. 7.

Sample results of active contours. (a) and (b) each contains the original image (upper left),

initial contour (upper right), segmented object boundary (lower left), and binary mask (lower

right).
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Fig. 8.

Sample results of normalized cut. (a) and (c) are the original images, (b) and (d) show the

segmented object boundary, and (e)–(h) are the extracted objects, respectively.
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Fig. 9.

Examples of classified food items, each item label is shown for corresponding food mask. (a)

All food items are successfully classified using SVM. (b) Some food items are misclassified

by SVM, i.e., scrambled eggs is misclassified as margarine.
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TABLE I

Classification Accuracy of Food Items Using Various Number of Training Images

Percentage of Training Data Correct Classification Percentage (Mean) Correct Classification Percentage (Variance)

10% training data 84.2% 7.4%

25% training data 91.7% 4.3%

50% training data 95.8% 1.8%

IEEE J Sel Top Signal Process. Author manuscript; available in PMC 2010 September 20.
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