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In the coming decade, the ability to sense and detect the 

state of biological systems and living organisms optically,

electrically and magnetically will be radically transformed 

by developments in materials physics and chemistry. The

emerging ability to control the patterns of matter on the

nanometer length scale can be expected to lead to entirely new

types of biological sensors. These new systems will be capable

of sensing at the single-molecule level in living cells, and

capable of parallel integration for detection of multiple signals,

enabling a diversity of simultaneous experiments, as well as

better crosschecks and controls.

There are many points of intersection between nanoscience and nan-

otechnology and the biological sciences. Indeed, the elementary func-

tional units of biological systems—enzymes, motors, membranes,

nucleic acids, etc.—all comprise complex nanoscale components. In this

article, I focus on new means of sensing that arise when inorganic mate-

rials, mainly semiconductors and metals, are patterned on the

nanoscale. The fact that solid-state materials, metals, semiconductors

and magnets, from which we make everyday macroscopic optical and

electrical sensors, can now be made on the size scale of individual bio-

logical macromolecules will have great impact.

Comparably important advances in the preparation of polymers,

dendrimers1, and other artificial organic nanostructures, as well as top-

ics at the intersection between scanning probe techniques2 and

microfluidics3 with biotechnology, are not covered here. Although bio-

logical macromolecules can be used to great effect to influence the

growth of artificial nanoscale materials, this article focuses solely on the

uses of inorganic nanostructures in biological detection4,5. For a careful

consideration of the impact of nanomaterials on human health and the

environment, the reader is referred elsewhere6.

Quantum wells, wires and dots

Many of the developments in artificial inorganic nanostructures are

based on a few fundamental concepts in condensed matter physics. In

1973, Leo Esaki was awarded the Nobel Prize in Physics for the develop-

ment of novel semiconductor quantum devices, in which the tunneling

of electrons could be systematically controlled, and for his early espousal

of the concept of the ‘artificial solid’7,8. The electronic and optical prop-

erties of a semiconductor arise primarily through the quantum mechan-

ical scattering of the valence electrons by the atomic cores. In the first

artificial solids, semiconductor atoms of differing composition were laid

down sequentially in layers only a few atoms thick, so that electrons were

forced to move through an artificial potential, scattering now in a way

that the scientist could design. In such ‘quantum wells,’ it is possible to

systematically control the electronic energy level spacings by adjusting

the length scale over which the potential varies, compared to the elec-

tron wavelength. In such systems, for example, the wavelength of light

emission can be directly controlled.

The early experiments in such ‘quantum-confined’ systems (Fig. 1)

were extended from layers of atoms in sheets (quantum wells) to lines of

atoms (‘quantum wires’), and ultimately to ‘quantum dots’9, small

three-dimensional groupings of atoms (perhaps a few hundred or as

many as 10,000) in which the electron motion is ‘confined’ by potential

barriers in all three dimensions.

In a quantum dot, often called an artificial atom, there are discrete

electronic energy levels, much as in an atom or molecule, but in this

case, the spacing of the electronic energy levels can be very precisely cho-

sen by the experimenter through variation of the size. Such quantum

dots are a fascinating subject for investigation in the physics laboratory

(quantum dots even have a periodic table, which has many similarities

to the real periodic table, but also its own distinct characteristics10). The

development of ways to produce colloidal quantum dots in solution led

to an explosive growth in research on these materials, because now the

new concepts of artificial solid could find use in a much wider range of

applications11.

This was followed closely by the realization that colloidal quantum

dots are the size of a typical protein, and that thus it should be possible to

introduce colloidal quantum dots into cells. In 1998, both my group12

and that of Nie13 reported the first use of colloidal quantum dots for

biological labeling and suggested that the photochemical stability and

the ability to tune broad wavelength of the quantum dots may make

these materials extremely useful for biolabeling.

Recently, this area of investigation has developed significantly.

Colloidal quantum dots are robust and very stable light emitters and

they can be broadly tuned simply through size variation. In the past two

years, we have seen the development of a wide range of methods for 

bio-conjugating colloidal quantum dots14–18 in diverse areas of applica-

tion: cell labeling19, cell tracking20, in vivo imaging21, DNA detec-

tion22,23 and multiplexed beads24. It has been demonstrated that

colloidal quantum dots can have a significantly larger linear absorption

cross section for excitation compared with phycoerithrin25, and orders

of magnitude larger cross section for two-photon excitation compared

with conventional organic chromophores26. Colloidal quantum dots

with a wide range of bio-conjugation and with high quantum yields are

now available commercially, so that it is no longer necessary for each

experimenter to grow their own (which takes quite a bit of practice) or

to become lost in the myriad discussions concerning the best way to 

render colloidal dots water soluble and bio-compatible. The range of
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biological experiments that these materials are employed in is growing

rapidly, and this is one of the first commercial applications of modern

nanotechnology.

Photonic crystals

In quantum dots, the potential in which electrons move is controlled so

as to make a three-dimensional ‘box.’ In the 1980s, Eli Yablonovitch first

proposed that by analogy with the control of the density of electron

states in semiconductor quantum wells, wires, and dots, it should be

possible to also control the density of photon states by creating a

medium with artificially designed regions of varying index of refraction.

Yablonovitch27 has called these materials “photonic crystals,” or semi-

conductors for light. The goal in research into photonic crystals is to

control the patterns of materials on a length scale comparable with the

wavelength of light, in one, two, and three dimensions, thus creating

materials with designed optical characteristics. Here, nature is way

ahead of us because such variations already result in the beautiful color-

ings of butterfly wings28 and are a common feature of opals. If scientists

could artificially control photonic crystals at will, it would be useful for

much more than making beautiful colors. Consider that for an electron-

ically excited atom or molecule to radiate, there must be a state for the

outgoing photon. Indeed, the Fermi’s golden rule expression for the

quantum mechanical radiative rate of a molecule is directly propor-

tional to the photon density of states of the medium surrounding the

atom or molecule. By embedding a molecule in a photonic crystal, it is

possible to control the rates and directions in which molecules emit

light29; this is complementary to systems where electrons are confined,

and in which the energy of the emission can be controlled.

Many photonic band-gap materials can now be prepared by a variety

of means, some of which are potentially compatible with the incorpora-

tion of biological molecules30–33 (a true three-dimensional photonic

gap crystal remains elusive and the subject of a great hunt). Nonetheless,

the existing materials already show promise in biological detection.

Consider photonic crystals consisting of an array of silica or polymer

beads of a few hundred nanometer in size. The voids are large enough to

directly incorporate a variety of biological macromolecules. Further-

more, a binding event within these macromolecules can produce a

change in the spacing of the beads or in the index of refraction of the

surrounding medium. The Asher group34–36 has demonstrated the use

of this scheme for detection of lead ions and carbohydrates in blood

(Fig. 2).

Metallic nanoparticles

In the luminescent materials we have discussed thus far, the optical

response is due to the excitation of single electron-hole pairs. Some of

the most promising avenues for enhanced optical detection schemes

arise through the use of noble metal nanocrystals. In a metallic nanopar-

ticle, incident light can couple to the plasmon excitation of the metal,

which involves the light-induced motion of all the valence electrons37.
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Figure 1 Quantum confinement in semiconductors and new biological

labels. (a) Cell labeling with quantum dots and illustration of quantum dot

photostability, compared with the dye Alexa 488. In the upper panels, the

nucleus is stained red with quantum dots and the actin fibers are stained

green with the dye. In the lower panel, the labeling is reversed. (Reprinted

from ref. 19.) (b) Transmission electron micrographs of quantum rods—a

new nanostructure that may have uses as a biological label with polarized

emission, reduced blinking and faster radiative rates than dots. The time

course is the bleaching of the dye fluorescence as a function of laser

irradiation time. (Reprinted by permission of the American Chemical 

Society from ref. 97.)
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Figure 2  Photonic band gap materials for biological sensing. (a) A colloidal

crystal impregnated with a polymer hydrogel diffracts light. The hydrogel

specifically adsorbs glucose, swelling the gel and changing the colloidal crystal

diffraction. (Reprinted by permission of the American Chemical Society from

ref. 36.) (b) Light emission from a polymer bead microcavity with a single

colloidal quantum dot attached and calculation of the electric field in the

vicinity of the structure. Such structures represent a new wave of emerging

materials that combine quantum confined structures with photonic structures.

(Reprinted by permission of the American Chemical Society from ref. 94.)
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Thus, the cross section for elastic light scattering from a 50-nm gold

nanocrystal can be a million-fold larger than the cross section for

absorption or emission of electromagnetic radiation from any molecule

or even quantum dot chromophore. Although these objects are some-

what large for use inside cells, they nonetheless provide a powerful and

evolving toolkit for biological detection38,39. For example, it has been

shown that the plasmon resonance is strongly dependent on shape and

size40–43, so that it is possible to make a wide range of light scatterers that

can be detected at different wavelengths. Such nanoparticles are readily

bio-conjugated and are commercially available. Using specific organic

molecules44 or DNA45–47, it appears possible to make designed, discrete

aggregates of nanoparticles, in which the spectra will depend sensitively

on the particle arrangement, providing a rich system for detection.

The electromagnetic field in the near-field region around a metallic

nanoparticle is greatly enhanced, providing important new mechanisms

for detection. In the most famous example, when many gold nanoparti-

cles are located nearby each other, their plasmon resonances couple to

each other via the near field, shifting the plasmon resonance to higher

energy. Mirkin and colleagues48 showed how this change in the optical

response from isolated to aggregated metallic nanocrystals can be used

to sensitively detect nucleic acids, using gold nanocrystals coated with a

high density of oligonucleotides on the surface (Fig. 3a). Interestingly,

one practical difficulty of working with metallic nanocrystals—over-

coming their tendency to aggregate under conditions of high ionic

strength—is removed by the addition of a dense layer of oligonu-

cleotides. Such detection schemes have progressed rapidly and are now

under development commercially.

It is extremely desirable to be able to optically detect a ‘fingerprint’

spectrum, but ordinarily this is only possible with vibrational (infrared

and Raman) or magnetic resonance spectroscopies, and none of these

has sensitivity anywhere close to what is possi-

ble with luminescence. The large field enhance-

ment in the vicinity of gold nanocrystals is well

known to lead to the surface enhanced Raman

scattering (SERS) effect, and developments in

this area may well change the picture49. Mirkin

and colleagues50 have shown that it is possible

to detect a wide range of biological macromol-

ecules through binding events involving gold

nanocrystals that have been coated with spe-

cific molecules that offer a distinct Raman sig-

nature (Fig. 3b). Although the SERS effect has

been known for some time to provide an en-

hancement of as great as 105 in Raman cross

section for molecules on a rough gold surface,

it was not until the advent of single molecule

studies that it was discovered that in fact only a

very small number of molecules on the surface

(one in 105) actually provide for the enhanced

signal51,52.These few molecules are now thought

to be located at special sites in the gap between

two nearly touching gold nanocrystals53.

Perhaps it will be possible to prepare biolog-

ical sensors consisting of a biological macro-

molecule with specific affinity, and located in

the gap between two 50-nm gold nanocrystals.

Such a system would be extremely specific and

sensitive. Halas and colleagues54,55 have shown

that it is possible to alternately pattern metal

and dielectric materials radially in shells, pro-

viding a high degree of control over plasmon

resonances and the Raman scattering process54 and providing an

important tool for biological detection55.

Detection systems

Molecular events can be sensed and detected in biology using three main

formats: optical detection, electrical detection, and magnetic detection.

Optical detection. Optical detection remains the most widely used

mechanism for detecting biological binding events and for imaging in

biological systems. In the future, the goal will surely be to enable single

molecule detection in vivo, despite the large background present in a liv-

ing system. Combinations of quantum-confined systems, plasmon exci-

tations in metal nanoparticles, and manipulation of the local fields in

their environment, with control over the photon density of states, could

in fact yield such systems in the coming years.

Electrical detection. Even though optical techniques continue to

evolve, the fact is that electrical detection remains extremely desirable.

Electrical systems can be miniaturized and integrated into systems,

offering many advantages over optical detection schemes. Here, nan-

otechnology has a great deal to offer.

Pseudo-one dimensional nanostructures, such as semiconductor

nanowires56,57 and carbon nanotubes58 offer the greatest chance yet for

creating robust, sensitive, and selective electrical detectors of biological

binding events. Current flow in any ‘one-dimensional’ system is

extremely sensitive to minor perturbations, and in nanowires and nan-

otubes, the current flows extremely close to the surface. Biological

macromolecules bound to the surface of a nanowire and undergoing a

binding event with conformational change or change of charge state,

may thus perturb the current flow in the nanowire. Thus, it is possible in

principle that these materials will form the basis of new electrical bio-

sensing systems, and important strides in this direction have been made.
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Figure 3  Noble metal nanocrystal based biosensors. (a) The DNA-induced aggregation of gold

nanocrystals leads to a shift in the plasmon resonance. This has been developed as a sensitive probe 

for oligonucleotides. (Reprinted by permission of the American Association for the Advancement of

Science from ref. 48.) (b) Surface-enhanced Raman effect for gold nanocrystals designed to create a

large number of specific biological labels. Dye molecules attached to specific oligonucleotides can be

detected by their characteristic Raman spectra; these Raman spectra are detectable because of the

large enhancement of the radiation field in the vicinity of the metal nanocrystals. (Reprinted by

permission of the American Association for the Advancement of Science from ref. 50.)
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For example, in a breakthrough series of experiments, Lieber and col-

leagues59 have shown that semiconductor nanowires can be functional-

ized with biological macromolecules and incorporated into electrical

circuits, and that in this configuration, the current that flows in the

nanowire is very sensitive to binding events of the macromolecule 

(Fig. 4). The precise sensing mechanism is not fully established. To see

one possibility, consider the example of a silicon nanowire coated with a

thin layer of silica, and immersed in a buffer. The wire is surrounded by a

double layer of ions, and any perturbation to this ionic environment,

such as may occur when a protein on the wire surface undergoes a bind-

ing event, may alter the field experienced by the wire. Similar experi-

ments may be possible with nanotubes, although in this case care must

be taken to separate the complex mixture of metallic and semiconduct-

ing nanotubes that are created in the nanotubes generation process. For

instance, Zettl and colleagues60 and Dai and colleagues61 have shown

that carbon nanotubes can be extremely sensitive detectors for a variety

of gases. In this case, the transduction mechanism can be more readily

understood as involving direct adsorption of the gas on the tube, leading

to a change in the electronic structure that can be detected electrically.

However, similar efforts to bioconjugate nanotubes and to use them in

biological detection schemes are in progress in many laboratories58,62,63.

Nanomaterials that transport ions rather than electrons may also

form extremely interesting artificial electrical biodetectors. Here,

physical scientists are learning first from nature, where transport

through gated nanopores in membrane proteins are used to sense and

transmit signals. Bayley and colleagues64,65 have beautifully demon-

strated the kinetics of transport thorough individual protein pores

and have shown how these can used in biosensors. The shape in the

nanopores is just the inverse of the nanowire and nanotube described

above because the ions now move through a one-dimensional chan-

nel, and therefore again, sensitivity and control can be maximized,

and of course selectivity can be achieved via the protein. This has

sparked the nanoscience community to further consider ways in

which nanopores can be created and used for biological sensing and

detection66. Perhaps the most well known proposal is to rapidly

sequence a single DNA molecule by electrically sensing the base pairs

as they pass by electrodes that are embedded around a nanopore in a

semiconductor material67. Different polynucleotides can be distin-

guished from each other as they pass through an alpha hemolysin

channel68, and entirely artificial nanopore/detector schemes are

under active investigation69.

Magnetic detection. More complex physical behavior, beyond 

quantum-confined semiconductor systems (single-electron-like

behavior), metals (with collective plasmon excitations), or even ordi-

nary electrical devices, arises in systems with correlated electron

behavior, including nanoscale magnetic systems and superconductors.

The physics of small magnetic systems was first discussed decades

ago70, and is undergoing a renaissance as it becomes possible to study

magnetic phenomena in individual nanoparticles71 and even individ-

ual molecules72. Magnetic crystals behave as a single magnetic

domain, with all the spins in a crystal coupled together to create a giant

magnetic moment. In a very small crystal, and at a high enough tem-

perature, this moment wanders randomly (superparamagnetic);

above a critical size, this moment becomes locked in a fixed direction

(ferromagnetic). The critical size is about 25 nm for iron oxide, and

about 11 nm for cobalt nanocrystals. Magnetic nanocrystals 25 nm in

size appear in magnetotactic bacteria, which contain a chain of such

particles that acts as a compass73. Magnetic nanocrystals are also

widely employed in artificial biological detection and separation sys-

tems, serving important roles as magnetic resonance contrast

enhancement agents74–76, and as the basis for a wide range of magne-

tophoresis experiments77–79.

Superconductors already play an important role in biomedicine, as

they form the basis for the magnets used in magnetic resonance imag-
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Figure 4 Nanowire- and nanotube-based electrical biosensors. (a) Scheme showing silicon nanowires functionalized with biotin. (b) On exposure to

streptavidin, the nanowires show changes in conductivity.  Plot of conductance versus time for a biotin-modified SiNW, where region 1 corresponds to 

buffer solution, region 2 corresponds to the addition of 250 nM streptavidin, and region 3 corresponds to pure buffer solution. (c) A nanowire that is not

functionalized with biotin shows no response. Conductance versus time for an unmodified SiNW; regions 1 and 2 are the same as in b. (a–c, Reprinted by

permission of the American Association for the Advancement of Science from ref. 59.) (d) Scheme showing nanotubes functionalized with biotin shows

similar changes. (e,f) Quartz-based microbalance signal (e) and electrical signal of nanotubes after addition of different concentrations of streptavidin (f).

(d–f, Reprinted by permission of the National Academy of Sciences, USA, from ref. 98.)
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ing. Will such materials also play an important role on the nanoscale?

Two trends are very encouraging in this respect. The first is the

emergence of new detection schemes based on magnetic nanoparticles

and superconducting quantum interference device (SQUID) magne-

tometers. In a SQUID, matter must be patterned to create regions where

two halves of a superconducting loop are separated by insulating gaps.

The resulting device is very sensitive to magnetic fields, and SQUIDs can

detect the change when ferromagnetic nanoparticles stop rotating freely

in solution, owing to a biological binding event80. The detection limits

may eventually be pushed down to the single molecule level81.

The exquisite sensitivity that arises in a system with quantum interfer-

ence is more clearly brought home by another stunning development:

the remarkable feat of magnetic resonance imaging using microtesla

fields (the Earth’s magnetic field is 100 times greater) rather than a large

external magnet. This new advance is only possible due to the control 

of correlated electron behavior and quantum effects in the SQUID,

and also points out that beyond the question of detecting biological

macromolecules, imaging at the nanoscale remains a major goal, and

advances in nanomaterials are sure to drive this further. (A trend in this

area is the development of scanning probe techniques82, including the

proposed scanned probe magnetic resonance imaging83, which are not

reviewed here.)

Perspectives

There is much to be done with respect to materials development for

nanocrystals. For example, one negative feature of colloidal quantum

dots is the fact that they ‘blink’ or emit light intermittently when excited

with high intensity84. This arises not only as a by-product of multiple-

charge nonradiative inelastic scattering (which is enhanced in quantum

dots where the charge carriers are tightly confined and the overlap of

charges is large85), but also from the difficulties of growing a thick 

surrounding shell of high band-gap material to fully ‘confine’ the

photo-generated charges. It is important to note that embedded dots,

grown by molecular beam epitaxy, do not show this feature86, and

therefore it is surely possible to make colloidal quantum dots that do

not blink. It is very likely that this may occur through the study of col-

loidal quantum rods87, which in addition to showing highly polarized

light emission88, may well also show reduced blinking effects owing to

their greater volume.

Another key feature of interest is the radiative rate. Quantum dots

emit with a lifetime of a few tens of nanoseconds, which is very good for

gated detection to suppress background from biological systems89, but

definitely limiting for applications in which it is necessary to cycle the

chromophore from excited to ground state rapidly in a short period of

time (e.g., in flow cytometry). Rods are likely to have highly enhanced

radiative rates compared with dots (A.L. Efros, Naval Research

Laboratory, Washington DC, USA, personal communication).

Furthermore, it may be possible to control the radiative rates of dots

by embedding them in an environment that enhances the local electro-

magnetic field in their vicinity90. In any case, in the next few years, it is

likely that a quantum-confined system for biological detection with a

sub-nanosecond radiative rate will be developed.

As this article has outlined, both the electron density of states and the

photon density of states can be used to alter fundamental materials

properties. In the next decade, these two areas of research will merge.

Physical scientists are increasingly looking into ways to simultaneously

control the electronic energy levels and the photon density of states91,92.

There have been studies recently of single quantum dots embedded in

microscopic cavities that can control the allowed modes of light emis-

sion93,94. Much of this research is directed more towards sophisticated

techniques of manipulating information optically95; however, if such

systems can be further developed and coupled to biological macromole-

cules, they may provide narrow band, efficient, directional light emis-

sion, coupled with highly specific and very high gain detection of

binding events.

Concurrent with advances in the nanomaterials themselves, progress

is rapid particularly in electrical and magnetical systems used for their

detection in biosensors. The case of superconductivity is only one in

which we see that the ability to control a quantum system can yield

entirely new ways of detecting and imaging. Current research on highly

correlated electron systems and on controlled quantum systems, such as

solid state qubits96, may seem very remote from new biotechnologies

today, but will surely form the basis of future technologies, much as

quantum confined systems emerged as a biotechnology over the past

decade.
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