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Abstract 7 

Brown seaweeds are the most studied and exploited algae type for ruminant nutrition due to their 8 

biomass availability, ease of harvest and content of bioactive compounds. Infrared spectroscopy 9 

represents a rapid, non-invasive and chemical-free technique that is widely applied for the chemical 10 

characterization and digestible quality of many terrestrial forages. However, there is limited 11 

information regarding its application to seaweeds. This study compared the effectiveness of Near-12 

Infrared (NIR: 9000-4000 cm-1) and Mid-Infrared (MIR: 4000-400 cm-1) spectroscopy to measure the 13 

nutritional value and in vitro dry matter rumen digestibility of brown seaweeds. Due to the small 14 

number of seaweed samples available, 40 samples were analysed in triplicate with a total dataset of 15 

120 samples. For partial least-squares regression model development and evaluation purposes, the 16 

dataset (n = 120) was divided into two subsets, the first one for training and model development 17 

purposes (70% of data, n = 84), and the second one for model testing and evaluation (internal 18 

evaluation) purposes (30% of data, n = 36).Partial least-squares regression was employed to develop 19 

multivariate calibration models which were internally and externally validated. The samples were 20 

analysed using established wet chemistry methods which were regarded as the reference methods. 21 

NIR showed high accuracy for the quantitative prediction of crude protein (R2P = 0.99; RMSEP = 0.51; 22 

RER = 26.9; RPD = 6.9) and total polyphenolic content (R2P = 0.94; RMSEP = 0.20; RER= 10; RPD= 3.2), 23 

whereas MIR could only accurately predict crude protein (R2P = 0.96; RMSEP = 1.12; RER = 11.64; 24 

RPD = 3.14). Ash, neutral and acid detergent fibre, lignin (sa) and in vitro dry matter rumen 25 

digestibility models showed limited applicability for quantitative measurements (R2P < 0.85; RPD < 26 
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2). Overall, NIR and MIR could be used to rapidly evaluate the nutritional composition and 27 

digestibility of brown seaweeds in their dried form but further evaluation on an external database 28 

would be required to assess the robustness of these models on unrelated data. Furthermore, the use 29 

of these spectroscopic methods showed lower accuracy and precision compared to wet chemistry 30 

methods, which better qualifies them for screening rather than confirmatory analysis.  31 

Keywords: Brown Seaweed, Ruminant feed; In vitro; Near-Infrared; Mid-Infrared; Spectroscopy; 32 

Chemometrics  33 

Abbreviations:  NIR: Near-Infrared spectroscopy; MIR: Mid-Infrared spectroscopy; SD: standard de-34 

viation; Min: minimum; Max: maximum; SE: Standard Error; TPC: total polyphenolic content; CP: 35 

crude protein; aNDF: neutral detergent fibre assayed with a heat stable amylase and expressed in-36 

clusive of residual ash; ADF: Acid Detergent Fibre; Lignin (sa): Lignin determined by solubilization of 37 

cellulose with sulphuric acid; IVTDMD: in vitro true dry matter digestibility; LV: Latent Variables; 38 

RMSEC: root mean square error of calibration; R²C: coefficients of calibration; RMSEP: root mean 39 

square error of prediction; R²P: coefficients of prediction; RMSECV: root mean square error of cross-40 

calibration; RER: Range Error Ratio; RPD: Residual Predictive Performance; SEL: Standard Error of 41 

reference method  42 
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1. Introduction  43 

Brown seaweeds are ubiquitous to the temperate waters of North-Western Europe, where coastal 44 

farming communities have traditionally used them as a valuable feed resource for cattle, horse and 45 

sheep for centuries (Evans and Critchley, 2014). In recent years, research has sparked renewed 46 

interest in the value of feeding seaweed to ruminant livestock which is underpinned by their unique 47 

chemical profile (Maia et al., 2019). Seaweeds are rich in complex carbohydrates and organic 48 

minerals and contain an array of bioactive metabolites, including polyphenolic compounds, which 49 

have demonstrated various antimicrobial, anti-inflammatory and antioxidant properties (Holdt and 50 

Kraan, 2011). Previous authors have discussed the advantages of feeding seaweeds as a functional 51 

feed source to improve animal health as an immunostimulant (Wang and McAllister, 2011), and to 52 

reduce ruminal methane emissions (Bikker et al., 2020; Molina-Alcaide et al., 2017).  53 

Understanding the chemical profile of seaweeds is key to recognising their value as a feed 54 

ingredient. Recent studies revealed the chemical composition of seaweeds using established wet 55 

chemistry methods (Bikker et al., 2020; Maia et al., 2019; Molina-Alcaide et al., 2017). These 56 

methods provide reliable measurements of various chemical parameters used in diet formulations, 57 

but the requirements for skilled technicians, laborious protocols and destructive sampling 58 

techniques limit their use for routine feed analysis. Furthermore, in vitro models, which are widely 59 

used as a screening tool to determine the digestibility of different feeds, require the use of digesta 60 

from rumen cannulated animals to replicate rumen conditions in the laboratory. These requirements 61 

exacerbate the cost of resources necessary for accurate and reliable feed analysis (Yáñez-Ruiz et al., 62 

2016). Infrared spectroscopy can provide a more rapid, non-invasive and chemical-free technique for 63 

animal feed analysis (Manley, 2014). Once calibrations are developed, spectroscopic techniques are 64 

easy to use and offer a more cost and time-effective decision-making tool for farmers and livestock 65 

nutritionists when formulating diets. Furthermore, given the wide variability in the chemical 66 

composition of seaweeds, the potential to use portable, handheld infrared technologies, such as 67 
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those currently used in food and feed production (Ellis et al., 2015; Haughey et al., 2015), would 68 

provide a rapid, point-of-source evaluation tool. 69 

The analysis of feeds by infrared spectroscopy combines rapid vibrational spectroscopic techniques 70 

with mathematical modelling to provide chemo-structural information on feed components. 71 

However, few studies have applied these techniques to seaweeds. Near-Infrared (NIR) and Mid-72 

Infrared (MIR) spectroscopy provide information on the feed molecular constructs, which are 73 

directly related to the nutritional composition (Bai et al., 2016). For decades, NIR has been an 74 

invaluable tool in animal feed analysis to determine the chemical composition of a range of feeds 75 

including forages, grains, by-products and silages (Foskolos et al., 2015; McDonald et al., 2011). The 76 

NIR portion of the electromagnetic spectrum provides structural information on overtones and 77 

combination bands representative of C–H, N–H, O–H and C=O bonds of feed constituents (e.g. 78 

proteins and carbohydrates) (Manley, 2014). Less is known about the application of the MIR region 79 

for feed analysis; however, the development of Fourier-transform MIR spectrometers combined 80 

with attenuated total reflectance has facilitated research on the application of MIR for a range of 81 

purposes, including animal feed analysis (Theodoridou and Yu, 2013). Concerning seaweeds, MIR 82 

spectroscopy was previously utilised to examine their polysaccharide content (Gómez-Ordóñez and 83 

Rupérez, 2011; Pereira et al., 2013; Sakugawa et al., 2004), whilst studies on the use of MIR to 84 

describe the nutritive value of ruminant feeds are few and limited to terrestrial plants and animal 85 

by-products (Bai et al., 2016; Belanche et al., 2014, 2013; Shi et al., 2019). Considering the rapidly 86 

growing interest in the use of seaweed as a feed ingredient in ruminant diets, the aim of this study 87 

was to investigate the use of IR spectroscopy coupled with chemometric modelling to evaluate the 88 

nutritive value and rumen digestibility of brown seaweeds. Furthermore, it is currently unknown 89 

whether MIR spectroscopy can predict feed composition with a greater accuracy than is achieved 90 

with NIR spectroscopy (Belanche et al., 2014), thus, another objective of the study was to compare 91 

the application of MIR and NIR as a novel tool for seaweed feed analysis. 92 

 93 
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2 Material and methods 94 

2.1 Seaweed sampling 95 

The seaweeds (n=40) were collected over one year (March 2017 to February 2018) in Bangor, 96 

County Down, Northern Ireland (54°39′58.6″N 5°39′53.4″W). Four species of brown seaweed, 97 

namely Ascophyllum nodosum (ASC), Fucus vesiculosus (FVS), Saccharina latissima (SAC) and 98 

Laminaria digitata (LAM), were collected from the seashore during low tide. The seaweed species 99 

were confirmed by a marine biologist at Queen's University Belfast Marine Laboratory, Portaferry. 100 

The seaweeds were washed with cold tap water, cut in <5 cm sections and frozen immediately at -101 

20°C. All samples were then lyophilised using a Christ Alpha 1-4 LD Plus freeze dryer (Christ, 102 

Osterode, Germany) and ground using a Polymix PX-MFC 90D mechanical grinder to pass through a 1 103 

mm sieve for further analysis. For spectroscopic analysis, the seaweeds were finely ground using a fit 104 

with a 0.5 mm screen. 105 

 106 

2.2 Reference method analysis 107 

Ground seaweeds were analysed for residual Dry Matter (DM) (AOAC 930.15; 2000), ash (AOAC 108 

942.05; 2000), Neutral Detergent Fibre (aNDF; 1 hour boiling in neutral detergent (ND) solution, with 109 

amylase and sodium sulphite) and Acid Detergent Fibre (ADF; 1 hour boiling in acid detergent 110 

solution) as described by Van Soest et al. (1991), and lignin (sa) (3 hours in 72% sulphuric acid 111 

solution) (Robertson and Van Soest, 1981). The results of the fibre analysis were expressed inclusive 112 

of residual ash. Nitrogen (N) content was analysed using Leco Protein/N Analyser (FP-528, Leco 113 

Corp., St Joseph, MI, USA) and crude protein (CP) was calculated using N x 5.0, as suggested by 114 

Angell et al. (2016). Total Polyphenolic Content (TPC) was determined using the Folin–Ciocalteu (FC) 115 

method, adapted from Li et al. (2017). Briefly, seaweed samples were extracted using 0.2 ± 0.05 g of 116 

lyophilised seaweed in an acetone-water mix (70:30; solid to liquid ratio 1:20). The mixture was 117 

ultra-sonicated in a water bath (VWR, Model USC600TH) for 30 mins at 20°C and centrifuged for 2 118 

mins at 2200 x g (Sorvall Legend RT, Germany). Following the addition of Folin- Ciocalteu (1N) 119 
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reagent and aqueous sodium carbonate (20% w/v), the solution was stored in the dark for 60 mins in 120 

transparent cuvettes, and the absorbance was read at 725 nm (Jenway 6305, Barloworld Scientific 121 

Ltd., Dunmow, Essex, UK). Phloroglucinol (Sigma-Aldrich, Dorset, UK) was used as an external 122 

standard (1.0 to 50 µg/ml), and results were expressed as g phloroglucinol equivalents per kg DM (g 123 

PGE/kg DM). All chemical analyses were carried out in triplicate and reported as % DM. 124 

In vitro dry matter digestibility was determined using the DaisyII incubation method followed by 125 

aNDF digestion in an ANKOM 200 Fibre Analyzer (Ankom Technology Corp., Macedon, NY), as 126 

described previously (Holden, 1999). Rumen contents were collected from three post-slaughter 127 

bovine rumens from an abattoir in Northern Ireland. The rumen contents were then isothermally 128 

transported to the laboratory, filtered through four layers of cheesecloth, mixed and purged with 129 

CO2. The rumen fluid was added to the digestion jar containing the pre-warmed (39°C) buffer 130 

solution (v/v 1:5). After a 48-hour incubation period, the bags were rinsed four times with distilled 131 

water, and the residues were added in a neutral detergent solution, for 60 mins, to remove rumen 132 

microbial debris and determine the true dry matter digestibility. The residues were subsequently 133 

dried in a convection oven at 60˚C for 48 hours. The in vitro true dry matter digestibility (IVTDMD) 134 

was calculated as the difference between the dry matter incubated and the residue after neutral 135 

detergent treatment divided by the dry matter incubated. A total of two in vitro incubation runs 136 

were carried out, and each sample was incubated in triplicate. 137 

 138 

2.3 Spectral acquisition 139 

The samples were analysed at room temperature using the Antaris II FT-NIR (Thermo Fisher 140 

Scientific, Dublin, Ireland). Approximately 10 g of lyophilised seaweed sample was poured into the 141 

sample cup (3.2 x 1.5 cm) and analysed at a resolution of 8 cm−1. The samples were scanned 32 142 

times, following a background scan. Three replicates were individually prepared and scanned per 143 

sample. After collection, OMNIC 7.2 software (Spectra Tech, Madison, WI, USA) was used to process 144 

the data. 145 
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Attenuated Total Reflectance-Fourier-Transformed Mid-Infrared vibration spectroscopy (MIR) was 146 

performed using a Thermo Nicolet iS5 Spectrometer (Thermo Fisher Scientific, Dublin, Ireland). A 147 

small amount (<0.1 g) of lyophilised seaweed was placed on the diamond crystal sample area; equal 148 

pressure was applied by the slip clutch pressure tower to ensure the sample completely covered the 149 

sample area. Prior to each scanning, the spectra were corrected by subtracting background scans of 150 

the clean diamond crystal. The spectral data were obtained using 32 scans per run, at room 151 

temperature and a spectral resolution of 4 cm-1. Each sample was analysed in triplicate and the 152 

results were processed using the OMNIC 7.2 software. 153 

2.4 Multivariate Model Development 154 

Various spectral pre-processing techniques including Standard Normal Variate (SNV), Derivatisation 155 

and Savitzky–Golay smoothing were applied individually and in combination. Mean centering was 156 

applied to all data before calibration. This technique subtracts the average values from each variable 157 

and can be used to enhance spectral response (Ferreira et al., 2014; Manley, 2014). SNV is 158 

commonly applied to reduce light scattering whilst derivatisation can reduce problems associated 159 

with overlapping peaks and thereby help extract information on subtle spectral characteristics. Pre-160 

processing treatments were optimised for each chemical parameter. The goodness of model fit was 161 

assessed based on maximising coefficients of determination (R2), which describe the percentage of 162 

variability in the chemical components as explained by the regression equation, and minimising root 163 

mean standard errors (RMSE). 164 

Principal component analysis (PCA) is an unsupervised multivariate technique used to convert X 165 

variables (absorbance values) into new orthogonal variables (principal components) thus eliminating 166 

collinearity, or redundant information (Martens and Naes, 1989). PCA was used to identify 167 

underlying compositional differences between the samples, examine sample clustering and to 168 

identify potential spectral outliers in the dataset. PCA analysis was performed using SIMCA 15.0.2 169 

(Sartorius Stedim Biotech, Göttingen, Germany). Hotelling's T-test was used to calculate the H 170 

distances between sample spectra with respect to the mean spectrum; H distances > 3 were 171 
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categorised as atypical spectra (Shenk and Westerhaus, 1991) and possible reasons for the sample to 172 

be an outlier were explored prior to possible elimination.  173 

Partial least squares regression (PLS-R) is a supervised multivariate method used to establish a linear 174 

model which enables the prediction of Y variables from the measured spectrum. In the current 175 

study, PLS-R was applied to develop the calibration equations using TQ Analyst software (version 176 

8.3.125; Thermo Fisher Scientific Inc.). The final number of samples selected was 120 and spectra 177 

remained unaveraged for the analysis; no outliers were excluded from the datasets since there was 178 

no reason to do so from an analytical point of view. The datasets were constructed by assigning each 179 

sample a random number using the RANDOM function in MS Excel. The calibration set was 180 

composed of 84 samples (70% of total samples) and the remaining 36 samples were used to 181 

evaluate the predictive power of the model (validation set). Whole spectrum and targeted 182 

wavelength region selection criteria were also applied. Wavelengths relevant to each of the chemical 183 

parameters were determined using Regression Coefficient (RC) analysis. This analysis was applied as 184 

an objective region selection technique to eliminate information redundancy and identify regions of 185 

the infrared spectrum which were sensitive to the prediction of Y variables (de Oliveira et al., 2014). 186 

RCs between -0.5 to 0.5 and -0.1 to 0.1, for NIR and MIR, respectively, were used to identify spectral 187 

regions correlated to the respective parameter. RC analysis was performed by SIMCA 15.0.2 188 

(Sartorius Stedim Biotech, Göttingen, Germany). 189 

Calibration performance was assessed using cross-validation. The process calculates the optimal 190 

number of terms in the regression model by dividing the dataset into cross-validation groups (n= 7) 191 

and simulating the algorithm so that all subsets are used once for validation purposes; the optimal 192 

number of terms included in the model were chosen to minimise the error and avoid over-fitting the 193 

model (Shenk and Westerhaus, 1991). The root mean square error of calibration (RMSEC), the 194 

coefficient of determination in calibration (R2C) and the root mean square error of cross-validation 195 

(RMSECV), were calculated to evaluate the predictive ability of the models. The residual predictive 196 

deviation (RPD) – defined as the ratio between the standard deviation of the reference population 197 
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and the RMSECV – and the range error ratio (RER) – defined as the ratio between the range of the 198 

validation set and the root mean square error of the prediction set (RMSEP) – were used to assess 199 

the accuracy of the models (Fearn, 2002; Williams, 2004).  Moreover, the RMSEP and the coefficient 200 

of determination in prediction (R2P) were calculated based on external validation to evaluate model 201 

performance. The best regression models were selected by optimising the following combinations: 202 

minimise RMSECV and RMSEP, and maximise coefficients of determination, RPD and RER values. 203 

Finally, the RMSEP was compared with the laboratory (or reference) error (SEL), as this statistic 204 

allows the spectroscopic error to be put in perspective of the error in the reference method (Pojić et 205 

al., 2010).   206 

3. Results 207 

3.1 Reference method analysis 208 

A descriptive summary of the reference method statistics is presented in Table 1. The calibration and 209 

validation datasets were split at a ratio of 70:30 and showed comparable descriptive statistics for all 210 

tested parameters. Therefore, it was considered that randomisation generated an appropriate level 211 

of variation, which was representative of the whole dataset. 212 

Table 1. Descriptive summary of the chemical parameters of brown seaweeds according to the 213 
reference methods (%DM, unless stated otherwise).  214 

Descriptor  Ash TPC CP aNDF ADF Lignin (sa) IVTDMD  

Mean 21.42 0.74 8.81 36.61 15.4 6.73 0.768 

SD 6.15 0.67 3.72 8.53 3.11 3.34 0.157 

Min 11.44 0.06 4.31 18.25 8.62 1.11 0.509 

Max 37.66 2.14 17.74 53.14 23.63 14.14 0.978 

SE 0.73 0.12 0.42 0.92 0.33 0.42 0.017 

        

Mean 23.35 0.62 10.14 37.23 16.13 6.12 0.805 

SD 7.56 0.67 4.51 9.41 3.51 3.63 0.150 

Min 10.01 0.03 4.25 17.76 9.21 1.31 0.557 

Max 38.56 2.15 17.82 54.63 23.84 14.04 0.964 
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SE 1.30 0.12 0.83 1.62 0.69 0.62 0.025 

        

Mean 21.72 0.65 9.21 36.82 15.60 6.35 0.790 

SD 6.53 0.61 4.12 8.31 3.43 3.44 0.155 

Min 11.26 0.03 4.10 18.27 8.62 1.14 0.509 

Max 37.61 2.14 17.82 51.83 23.81 14.13 0.978 

SE 0.77 0.16 0.47 0.95 0.46 0.44 0.018 

        

Mean 22.74 0.73 9.24 36.71 15.90 7.12 0.754 

SD 6.84 0.64 3.81 9.81 2.71 3.40 0.156 

Min 10.01 0.02 4.12 17.74 9.93 1.14 0.527 

Max 38.63 1.77 17.16 54.63 20.82 20.83 0.964 

SE 1.19 0.18 0.68 1.69 0.58 0.64 0.027 

NIR: Near-Infrared spectroscopy; MIR: Mid-Infrared spectroscopy; SD: Standard Deviation: Min: 215 

Minimum; Max: Maximum; SE; Standard Error; TPC: Total Polyphenolic Content; CP: Crude protein; 216 

aNDF: Neutral Detergent Fibre; ADF: Acid Detergent Fibre; Lignin (sa): Lignin determined by 217 

solubilization of cellulose with sulphuric acid; IVTDMD: in vitro True Dry Matter Digestibility. 218 

3.2 Characteristics of NIR and MIR spectra  219 

The NIR and MIR spectral features of the brown seaweeds are shown in Figure 1. The bands in the 220 

NIR region contain information on the hydrogen-containing organic constituents (e.g. N-H, C-H, O-H) 221 

present in the sample. The broad absorption regions were observed in the raw spectra at 222 

approximately 8400-8200 cm-1, 6800-6200 cm-1, 5800-5600 cm-1, 5200-5100 cm-1 and 5000-4500 cm-223 

1. The typical MIR spectrum (Figure. 1) can be divided into two general regions: the functional group 224 

region (4000-1800 cm-1) which includes hydroxyl and alkyl stretching behaviours, and the fingerprint 225 

region (1500-600 cm-1).  226 

  227 

 228 
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 241 
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 243 

 244 

Figure 1. Raw spectra of brown seaweeds (n= 120) obtained by NIR and MIR 245 

Principal Component Analysis (PCA) was used before the application of PLS-R to independently 246 

examine the potential clustering of samples and to detect spectral outliers. The PCA results were 247 

plotted based on the two highest principal components (PC) scores, as illustrated in Figure 2. The 248 

first two PCs explained 89 and 6.7% of MIR data variation, respectively. NIR showed better 249 
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separations compared to MIR; the first two PCs explained 94 and 4.8% of the variation in the 250 

spectral data, respectively. Generally, both techniques achieved separation between Fucus 251 

vesiculosus (FVS) / Ascophyllum nodosum (ASC), and Saccharina latissima (SAC) / Laminaria digitata 252 

(LAM), which reflects taxonomic classifications of the seaweeds: FVS and ASC belong to the order 253 

Fucales whilst LAM and SAC are categorised within the order Laminariales. 254 

 255 
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Figure 2. Principal component analysis of NIR and MIR spectral data (n=120) of brown seaweeds 256 

(Ascophyllum nodosum (ASC); Fucus vesiculosus (FVS); Laminaria digitata (LAM); Saccharina 257 

latissima (SAC). Circles represent 95% confidence interval.  258 

 259 

3.3 PLS-R model development 260 

Given the small dataset available, the spectra were not averaged before building the PLS-R models. 261 

Therefore, smoothing techniques were tested to mitigate spectral noise contributions. Compared to 262 

the raw spectra, pre-processing improved model performance for both spectroscopic techniques 263 

and all chemical parameters tested (Supplementary Table S1). The optimal pre-processing 264 

techniques for each parameter were selected based on minimising SE and maximising R2. Both 265 

positive and negative regression coefficient values were obtained, as shown in the RC plots in Figure 266 

3. Alongside this, models based on the whole spectrum (i.e. containing the full set of wavenumbers 267 

as variables) were developed to compare and optimise the calibration procedure.  268 

There was high sensitivity in the fingerprint region of the MIR spectra (Figure 3. B1-B5) for all 269 

chemical parameters. Therefore, the fingerprint region was included in all region selection criteria 270 

used in MIR regression model development. High RC values were obtained for CP in the MIR regions 271 

of 1700-1400 and 3800-3300 cm-1 (Figure 3. B3), the former of which included the protein region 272 

(1620-1550 cm-1). Compared to the use of the whole spectra, region selection did not improve CP 273 

models, but notably reduced R2P from 0.97 to 0.92, respectively, and increased RMSEP from 0.99 to 274 

1.59. NIR spectroscopy showed an excellent CP predictive ability, with an RER > 25 and RPD ≥ 7. As 275 

expected, the RC plot (Figure 3. A3) showed high sensitivity in the protein band, 5000 - 4500 cm-1, 276 

corresponding to N-H and C=O stretching although region selection did not have an impact on model 277 

outputs (Table 2).  278 

 279 
Table 2. The output parameters of the PLS-R models to evaluate the nutritive value and in vitro true 280 

dry matter rumen digestibility of brown seaweeds. 281 
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LV, Latent Variables; RMSEC, root mean square error of calibration; R²C, coefficients of calibration; 282 

RMSEP, root mean square error of prediction; R²P, coefficients of prediction; RMSECV, root mean 283 

square error of cross-calibration; RER, Range Error Ratio; RPD, Residual Predictive Performance; SEL, 284 

Standard Error of reference method.  285 

Both spectroscopic techniques also accurately predicted the TPC content of brown seaweeds (R2P= 286 

0.94; RER > 10; RPD > 3). The FC method was used as the reference method, which provides an 287 

indirect measurement of total polyphenolic content. The sensitive MIR region of 3700-3400 cm-1 288 

(Figure 3. B2) corresponds to O-H stretching, which is characteristic of polyphenolic compounds. The 289 

 NIR/MIR LV RMSEC R² C RMSEP R² P RMSECV RER RPD SEL 
Ash NIR 5 4.36 0.79 5.03 0.79 5.08 5.69 1.47 

0.61 
 MIR 4 4.83 0.79 4.18 0.82 5.65 6.84 1.20 

           

TPC NIR 9 0.15 0.96 0.20 0.94 0.21 10.14 3.19 
0.06 

 MIR 6 0.19 0.95 0.23 0.92 0.31 7.54 2.08 

           

CP NIR 10 0.43 0.99 0.51 0.99 0.65 26.93 6.92 
0.36 

 MIR 6 1.10 0.96 1.12 0.96 1.27 11.64 3.14 

           

aNDF NIR 9 2.55 0.95 5.58 0.81 6.50 6.61 1.44 
0.78 

 MIR 8 3.08 0.93 7.01 0.72 7.07 5.26 1.39 

           

ADF NIR 7 1.07 0.93 1.87 0.85 2.20 7.80 1.58 
0.29 

 MIR 9 1.04 0.95 2.29 0.64 2.25 4.76 1.20 

           

Lignin (sa) NIR 5 1.46 0.89 1.90 0.85 1.89 6.78 1.90 
0.31 

 MIR 8 2.12 0.78 2.06 0.81 2.47 9.27 1.38 

           

IVTDMD NIR 4 8.65 0.87 11.70 0.81 9.68 3.47 1.54 
1.43 

 MIR 7 9.06 0.86 13.60 0.72 10.60 3.21 1.47 
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results obtained indicate the potential of NIR and MIR to quantitatively assess the TPC content with 290 

R2 ranging from 0.86 to 0.96 and RER > 9 and > 5 for NIR and MIR based models, respectively. 291 

According to Figure 3. B2, the region 1800-900 cm-1 showed the highest sensitivity to the prediction 292 

of TPC. However, it is noteworthy that other functional groups are also described in this region. A 293 

similar peak at 1025 cm-1 was found to be positively correlated with aNDF and ADF (Figure. 3. B4). 294 

Furthermore, the region 3800-2800 cm-1, commonly known as the X-H region due to C-H, CH2 and O-295 

H fingerprints, was found to be associated with quantitative measurements of the structural fibre 296 

components in seaweeds. The RMSEP, which ranged between 1.70 and 1.90, indicated that the 297 

difference between the NIR predicted and measured Lignin (sa) values, i.e. using the reference 298 

method (SEL= 0.31), was relatively high (Table 2). aNDF and ADF were poorly predicted by selecting 299 

sensitive MIR regions (R2 <0.5) compared to the whole spectra (R2 >0.6) which suggests that basic 300 

information of the fibre characteristics of the seaweeds was lost via region selection.  301 

In the current study, the models developed to assess the ash content of seaweeds achieved 302 

moderate-quality predictions (R2: 0.76 – 0.82), but the low RPD (1.5 and 1.2, respectively) suggests 303 

that the models may have limited application as a quantitative tool for ash analysis. Although the RC 304 

plots (Figures 3. A1 and B1) identified several regions correlated with the ash Y variables, region 305 

selection had a limited effect on improving the NIR and MIR model outputs (Table 2). The prediction 306 

of IVTDMD using MIR spectroscopy slightly improved from the whole model to region selection 307 

(2200-550 and 3750-3450 cm-1), where R2P increased from 0.66 to 0.72, and the RMSEP decreased 308 

from 15.3 to 13.6, respectively. This indicates that these specific regions were prosperous at 309 

enhancing useful molecular information in the spectra, which correlated with the digestibility of the 310 

seaweeds.  311 

 312 

313 
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 314 

Figure 3. Regression coefficients plots for PLS models based on (A) NIR and (B) MIR spectroscopy, to 315 

predict the ash (1), TPC (2), CP (3), Fibre (aNDF/ADF/Lignin (sa)) (4) and IVTDMD (5) of brown 316 

seaweeds 317 

 318 

 319 

320 
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4. Discussion 321 

The reference methods descriptive statistics for the calibration and validation data sets showed 322 

considerable variability, probably derived from the seasonal- and species-related differences 323 

amongst the studied seaweeds. Nevertheless, they were within the normal ranges for brown 324 

seaweeds, as reported previously (Makkar et al., 2016; Ometto et al., 2018). With regards to the NIR 325 

spectra, the molecular characteristics of the organic constituents of the raw material are often 326 

overlapped, which make quantitative estimations problematic (Manley, 2014); however, 327 

chemometric techniques can be applied to extract useful information and conduct predictions based 328 

on NIR spectral analysis (Stuart, 2012). The peak at 8400-8200 cm-1 corresponds with second and 329 

third C-H overtone regions, and the 6800-6200 and 5800-5600 cm-1 peaks overlap with the first C-H 330 

overtone region. The peaks at 5200-5100 cm-1 and 5000-4500 cm-1 fall within the region associated 331 

with C-H and O-H combinations. The latter region was also previously associated with protein bands 332 

in wheat samples comprising of N-H bending and C-H/C-O stretching (Manley, 2014). 333 

MIR spectra provide information on fundamental molecular vibrations of the functional groups, 334 

which are more specific compared to the harmonic vibrations and overtone absorptions observed in 335 

the NIR spectrum. As expected, a large variability was observed in the fingerprint region which 336 

represents a heterogeneous group of molecular characteristics (Belanche et al., 2014). Based on the 337 

literature, the peak at 1025 cm-1 may be assigned to the C-O and C-C stretching vibrations of 338 

pyranose rings which are ubiquitous amongst polysaccharides in seaweeds (Pereira et al., 2013). 339 

Likewise, this region of the MIR spectra of brown seaweeds has also been attributed to O-H bending 340 

of guluronic acid, a copolymer of alginate, the main structural polysaccharide (Sakugawa et al., 341 

2004). The peaks in the MIR spectrum in the region 1660-1550 cm-1 have been previously assigned 342 

to the molecular characteristics of proteins in terrestrial forages, primarily due to absorption peaks 343 

relating to Amide I (C=O stretching vibration) and Amide II (N-H bending vibration) primary protein 344 

features. 345 
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The PLS-R models developed based on the NIR spectroscopy information showed an excellent CP 346 

predictive ability, with an RER> 25 and RPD≥ 7. This result is comparable to Foskolos et al. (2015), 347 

who found that NIR spectroscopy accurately predicted (R2P= 0.94-0.99) the CP of a range of 348 

feedstuffs (RER = 39; RPD = 7). As expected, the RC plot showed high sensitivity in the protein band, 349 

5000-4500 cm-1, corresponding to N-H and C=O stretching, although region selection did not have a 350 

significant impact on model outputs. Similarly, Brás et al. (2005) claimed that developing PLS models 351 

based on specific NIR regions did not improve the ability of the model to predict the protein content 352 

of soybean flour. However, the authors found that excluding the MIR region 2295-1750 cm-1 353 

improved prediction efficiency. 354 

Regarding TPC, the region 1800-900 cm-1 showed the highest sensitivity for the prediction of TPC. 355 

This finding was expected due to the contribution of this region to the description of the ring 356 

structure of polyphenolic compounds (Ricci et al., 2015). However, it is noteworthy that other 357 

functional groups are also described in this region. Previous studies have also found specific regions 358 

of the infrared spectrum related to the fibre fractions of various terrestrial forages. In the current 359 

study, the MIR regions identified as sensitive to aNDF, ADF and Lignin (sa) were in the ranges 2200-360 

550 and 3800-2800 cm-1 which agrees with the findings of Pereira et al. (2013) and Belanche et al. 361 

(Belanche et al., 2014). The latter mainly focused their analysis in the 1500-600 cm-1 spectral range 362 

and attributed the peak at 1032 cm-1 to the content of cellulose (C-O stretching). Therefore, the 363 

authors concluded that this region was important for the measurement of aNDF. Furthermore, the 364 

region 3800-2800 cm-1, commonly known as the X-H region due to C-H, CH2 and O-H fingerprints, 365 

was found to be associated with quantitative measurements of the structural fibre components in 366 

seaweeds. Similarly, the region of 8000-6000 cm-1 of the NIR spectrum, which corresponds to C-H 367 

overtone regions, was associated with the prediction of fibre components. This finding is supported 368 

by Obregón-Cano et al. (2019). They also found that C-H and CH2 groups of structural carbohydrates 369 

significantly contributed to the prediction of ADF fractions of Brassicas using NIR spectroscopy, 370 

whilst Huang et al. (2011) applied the entire NIR spectrum to quantitatively measure the cellulose, 371 
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hemicellulose, and Lignin (sa) contents in rice straw. The NIR model quality for predicting the Lignin 372 

(sa) content of brown seaweeds (R2P of > 0.8 and RPD = 1.9) in this study was comparable to that 373 

developed by Huang et al. (2011) (R2P = 0.78 and RPD = 2.25). Belanche et al. (2014) applied MIR to 374 

predict the aNDFom content of various forage-based feeds. The authors employed a larger dataset 375 

(n = 150) and achieved slightly more accurate models (RPD = 2.66) compared to the use of MIR 376 

models to predict the aNDF content of brown seaweeds in this study (RPD= 1.39). Foskolos et al. 377 

(2015) found better NIR performance for predicting the aNDFom content of a more extensive 378 

database of various feedstuffs (n= 809) with R2 ranging from 0.94-0.98 and RER and RPD up to 27 379 

and 6, respectively. In the current study, a relatively smaller dataset was employed (n= 120). These 380 

comparisons suggest that a larger dataset would improve the robustness of MIR and NIR model 381 

performance for determining the fibre content of brown seaweeds. Although the models achieved a 382 

moderate predictive ability, the speed of analysis, minimal preparation, and lower cost are 383 

advantageous compared to the reference method. The prediction of ash obtained by NIR in the 384 

present study were less accurate than those found by Pojić et al. (2010) in legumes (R2: 0.89 - 0.97; 385 

RPD: 2.7 - 4.2).   386 

Aufrere and Michalet-Doreau (1988) observed that NIR could be used to predict the IVTDMD of 387 

forages, which can be used as an indirect predictor of animal performance. However, studies relating 388 

to the use of MIR to predict the digestibility of livestock feeds are limited (Shi et al., 2019). The 389 

models developed in the present study showed a modest predictive ability, which was improved 390 

when specific regions were selected. No apparent reason can be related to this improvement. At this 391 

stage, no speculations can be made given the complexity of the biochemical (fibre digestibility, CP 392 

digestibility, antinutritional factors) and experimental factors (source of rumen digesta, experimental 393 

conditions) which contribute to determining the IVTDMD of ruminant feeds (Yáñez-Ruiz et al., 2016). 394 

Lundberg et al. (2004) applied NIR to predict the in vitro dry matter digestibility of legume-grass 395 

forages, achieving similar results to the current study (R2P = 0.82 vs > 80, respectively). Overall, the 396 
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optimised IVTDMD models showed weak predictive performances; therefore, their use would be 397 

limited to qualitative analysis given the low RER (< 4) and RPD (< 1.6) values. 398 

Overall, NIR outperformed the predictive ability of MIR models for most of the tested parameters. 399 

This agrees with Shi et al. (2019) and Brás et al. (2005) who found superior predictive modelling 400 

using NIR over MIR to estimate the CP of wheat and soybean flour, respectively. Ferreira et al. (2014) 401 

determined that NIR and MIR showed comparable abilities to measure soybean quality (protein, 402 

lipid and ash content) but identified that NIR could be more applicable for the measurement of 403 

protein, whilst MIR was more successful for accurately determining the ash content. A similar 404 

comparison could be drawn from the results of the current study. MIR techniques could be used to 405 

accurately predict the ash content of brown seaweeds, whilst NIR has a better predictive power for 406 

assessing the CP and TPC content. A possible explanation for the superiority of NIR over MIR 407 

techniques might be related to differences in the sensitivity of the techniques to sample 408 

heterogeneity and particle size (Hell et al., 2016). Advantages might be gained by combining MIR and 409 

NIR spectra in PLS-R model development, a technique called "data fusion", which could serve as a 410 

potentially more robust method (Brás et al., 2005) compared to single technique approaches 411 

explored here. However, this approach must demonstrate a superior predictive accuracy than is 412 

achieved with the sum of both techniques when conducted separately, a result which few studies 413 

have achieved.  414 

The ultimate objective of the application of infrared spectroscopy techniques is to replace wet 415 

analytical methods. However, it needs to be considered that, as a secondary feed analysis method, 416 

the accuracy of these techniques is fundamentally dependent on the accuracy of the reference 417 

methods. According to the results, and as outlined previously (Manley, 2014), infrared spectroscopy 418 

can enable several predictions (protein, fibre, polyphenolic compounds) from a single spectrum, 419 

provided that the conditions were the same as when the calibration models were developed. Based 420 

on current models, the evaluations of CP and TPC using both infrared spectroscopic techniques were 421 

considered to have good prediction capabilities, whilst models for predicting ash, aNDF, ADF, Lignin 422 
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(sa) and IVTDMD were less successful. Therefore, the potential to extract nutritional information 423 

from a single spectrum, based on these reference methods, has variable predictive ability. 424 

Furthermore, when compared to the SEL (i.e. error of the reference method), the root mean square 425 

errors of the models were relatively high. Taking into consideration the challenges of conventional 426 

laboratory methods, including the limited ability to measure more than one chemical parameter at a 427 

time, infrared spectroscopy methods can provide an alternative method which offers real-time, 428 

multiple parameter analysis. The development of more globular equations would increase their 429 

robustness and precision of the models, but this would require the addition of seaweed samples 430 

collected across multiple years and various environments; this would increase the spectral and 431 

chemical diversity of the samples compared to those presented in the current study. 432 

5. Conclusions 433 

The calibration and validation statistics obtained in this study clearly showed the potential of 434 

infrared spectroscopy techniques to assess the nutritive value of seaweeds. The results illustrate the 435 

ability of the regression models to accurately predict the CP content and TPC of brown seaweeds. 436 

The models created to measure ash, fibre and IVTDMD showed moderate predictive performance 437 

and could be used as a rapid screening tool for qualitative analysis. Further development of the 438 

models using larger and more chemically diverse sample datasets would improve model robustness 439 

and accuracy. In summary, vibrational spectroscopy-based techniques could be applied to seaweed 440 

to rapidly predict the nutritive value of this emerging feed ingredient in the ruminant diet. This 441 

should allow stakeholders to integrate these techniques to supplement, but not replace, 442 

conventional wet chemistry methods when determining the value of seaweeds as a feed ingredient 443 

in ruminant diets. 444 
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Supplementary material 572 

Table S.1. Optimisation of pre-processing treatments during PLS-R model development. Optimal pre-573 
treatments are shown in bold. 574 

   NIR  MIR  
Chemical 
parameter  

Pre-processing  LV RMSEC R²C RMSEP R²P RMSECV  LV RMSEC R²C RMSEP R²P RMSECV  

Ash: Raw spectra  5 5.25 0.68 4.36 0.85 5.64  3 5.12 0.76 4.74 0.74 5.60  
 SNV  3 5.24 0.68 4.42 0.85 5.60  4 4.99 0.77 4.19 0.82 5.54  
 FD  4 4.97 0.72 4.58 0.83 5.43  3 5.32 0.73 4.75 0.75 7.17  
 SD  5 4.36 0.79 5.03 0.79 5.08  2 5.49 0.71 5.37 0.68 6.43  
 SNV + FD  4 4.96 0.72 4.57 0.83 5.55  4 4.78 0.79 4.22 0.81 5.65  
 SNV + SD  4 4.55 0.77 5.04 0.79 5.24  3 4.55 0.81 4.87 0.74 6.14  
 SNV + FD + SG  4 4.97 0.72 4.58 0.83 5.56  4 4.83 0.79 4.18 0.82 5.65  
 SNV + SD + SG  4 4.78 0.74 4.78 0.81 5.26  4 4.79 0.79 4.16 0.82 5.91  
TPC: Raw spectra  10 0.19 0.95 0.24 0.93 0.23  5 0.29 0.89 0.29 0.87 0.34  
 SNV  9 0.17 0.96 0.22 0.94 0.21  7 0.22 0.94 0.22 0.93 0.27  
 FD  7 0.20 0.94 0.25 0.93 0.24  8 0.15 0.97 0.31 0.86 0.30  
 SD  6 0.18 0.96 0.26 0.92 0.25  5 0.22 0.94 0.35 0.82 0.34  
 SNV + FD  9 0.15 0.97 0.21 0.95 0.21  5 0.20 0.95 0.27 0.89 0.26  
 SNV + SD  7 0.14 0.97 0.23 0.94 0.24  6 0.19 0.95 0.23 0.92 0.31  
 SNV + FD + SG  9 0.16 0.97 0.21 0.95 0.21  5 0.20 0.95 0.27 0.89 0.26  
 SNV + SD + SG  7 0.17 0.96 0.23 0.94 0.23  6 0.18 0.96 0.28 0.88 0.26  
CP: Raw spectra  10 0.55 0.99 0.75 0.99 0.74  3 1.47 0.93 2.03 0.85 1.58  
 SNV  10 0.50 0.99 0.58 0.99 0.65  6 1.11 0.96 1.11 0.96 1.27  
 FD  10 0.43 0.99 0.51 0.99 0.65  8 0.83 0.98 1.53 0.92 1.56  
 SD  9 0.38 0.99 0.74 0.99 0.91  9 0.40 0.99 1.87 0.89 1.87  
 SNV + FD  8 0.56 0.99 0.77 0.99 0.76  9 0.37 0.99 0.99 0.97 1.08  
 SNV + SD  8 0.53 0.99 0.92 0.98 1.11  10 0.27 0.99 1.49 0.92 1.73  
 SNV + FD + SG  8 0.56 0.99 0.77 0.99 0.75  10 0.36 0.99 0.99 0.97 1.10  
 SNV + SD + SG  8 0.70 0.98 0.88 0.98 0.91  10 0.38 0.99 1.23 0.95 1.27  
aNDF: Raw spectra  10 4.38 0.86 6.79 0.71 5.96  4 7.07 0.52 7.77 0.63 7.66  
 SNV  6 5.40 0.77 7.85 0.57 6.08  5 6.22 0.66 7.36 0.66 7.33  
 FD  10 3.94 0.89 6.27 0.76 5.55  5 5.71 0.72 7.90 0.58 7.45  
 SD  9 2.55 0.95 5.58 0.82 6.50  1 7.91 0.29 8.93 0.52 8.63  
 SNV + FD  8 4.59 0.84 6.48 0.73 5.85  4 5.23 0.77 7.45 0.64 7.29  
 SNV + SD  5 4.58 0.84 7.02 0.66 6.68  3 5.89 0.70 8.49 0.48 8.60  
 SNV + FD + SG  8 4.62 0.84 6.50 0.73 5.85  4 5.27 0.77 7.45 0.64 7.21  
 SNV + SD + SG  6 5.24 0.79 5.97 0.77 6.31  8 3.08 0.93 7.01 0.72 7.07  
ADF: Raw spectra  10 1.56 0.86 2.37 0.74 2.02  4 2.84 0.55 2.54 0.40 3.15  
 SNV  8 1.67 0.83 2.39 0.73 2.04  5 2.45 0.69 2.38 0.55 2.90  
 FD  9 1.31 0.90 1.88 0.84 1.81  9 1.15 0.94 2.82 0.50 2.62  
 SD  7 1.09 0.93 1.70 0.89 2.30  5 1.82 0.85 2.79 0.18 3.28  
 SNV + FD  8 1.44 0.88 1.75 0.86 1.86  8 1.15 0.94 2.45 0.56 2.31  
 SNV + SD  7 1.07 0.94 1.87 0.86 2.21  3 2.45 0.69 3.04 0.04 3.12  
 SNV + FD + SG  8 1.44 0.88 1.74 0.86 1.85  9 1.04 0.95 2.29 0.64 2.25  
 SNV + SD + SG  5 1.70 0.83 1.88 0.85 2.09  8 1.15 0.94 2.28 0.57 2.53  
Lignin (sa): Raw spectra  9 1.52 0.89 1.83 0.86 1.81  3 2.35 0.72 2.23 0.78 2.60  
 SNV  7 1.55 0.88 1.89 0.85 1.76  7 1.60 0.88 1.68 0.88 2.10  
 FD  7 1.48 0.89 1.70 0.88 1.83  10 0.80 0.97 1.92 0.84 2.33  
 SD  4 1.61 0.87 1.89 0.85 1.88  2 2.58 0.64 2.68 0.61 2.96  
 SNV + FD  4 1.67 0.86 1.84 0.86 1.86  8 0.92 0.96 1.79 0.86 1.87  
 SNV + SD  5 1.46 0.90 1.90 0.85 1.89  7 0.88 0.97 1.87 0.84 2.49  
 SNV + FD + SG  4 1.67 0.86 1.84 0.86 1.86  8 0.96 0.96 1.82 0.85 1.86  
 SNV + SD + SG  4 1.66 0.86 1.87 0.86 1.85  8 0.91 0.96 1.62 0.88 2.10  
IVTDMD: Raw spectra  6 9.39 0.85 11.80 0.81 10.30  5 10.50 0.80 15.80 0.61 11.74  
 SNV  5 9.28 0.85 12.10 0.80 10.10  3 9.33 0.85 14.40 0.68 10.00  
 FD  4 9.25 0.85 11.80 0.81 10.10  4 10.70 0.79 15.00 0.65 12.27  
 SD  4 8.65 0.87 11.70 0.81 9.68  2 12.20 0.72 16.70 0.54 13.91  
 SNV + FD  2 9.75 0.83 12.60 0.78 10.40  3 9.42 0.84 13.60 0.72 10.35  
 SNV + SD  4 8.59 0.87 12.10 0.80 10.10  5 7.71 0.90 14.00 0.70 11.67  
 SNV + FD + SG  2 9.76 0.83 12.60 0.78 10.40  7 5.73 0.95 15.30 0.66 9.52  
 SNV + SD + SG  3 0.83 0.85 11.80 0.81 10.20  3 9.96 0.82 14.00 0.70 10.94  

SNV, standard normal variate; FD, first derivative; SD, second derivative; SG, Savitzky–Golay 575 
smoothing; LV, Latent Variables; RMSEC, root mean square error of calibration; R²C, coefficients of 576 
calibration; RMSEP, root mean square error of prediction; R²P, coefficients of prediction; RMSECV, 577 
root mean square error of cross-calibration  578 
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