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Abstract This study deals with development of two dif-

ferent artificial neural network (ANN) models: one for

predicting cone penetration resistance and the other for

predicting liquefaction resistance. For this purpose, cone

penetration numerical simulations and cyclic triaxial tests

conducted on Ottawa sand–silt mixes at different fines

content were used. Results obtained from ANN models

were compared with simulation and experimental results

and found close to them. In addition, the performance

indices such as coefficient of determination, root mean

square error, mean absolute error, and variance were used

to check the prediction capacity of the ANN models

developed. Both ANN models have shown a high predic-

tion performance based on the performance indices. It has

been demonstrated that the ANN models developed in this

study can be employed for predicting cone penetration and

liquefaction resistances of sand–silt mixes quite efficiently.

Keywords Artificial neural networks � Cone penetration

resistance � Liquefaction resistance � Ottowa sand

Introduction

An earthquake is a kind of natural disaster that occurs

frequently around the world (Venkatesh et al. 2013).

Liquefaction is one of the most destructive phenomena

caused by earthquakes, and often occurs in loose, saturated

soil deposits (Lee and Chern 2013). Liquefaction is

defined as the transformation of a granular material from a

solid to a liquefied state as a consequence of increased

pore-water pressure and reduced effective stress (Marcu-

son 1978; Pathak and Dalvi 2011). Examples of lique-

faction include the earthquakes in Niigata, 1964; Alaska,

1995; Loma Prieta, 1989; Kobe, 1995; Turkey, 1999; Chi–

Chi, Twain, 1999; and Honshu, Japan, 2011. Liquefaction

is observed to cause building settlement or tipping, land-

slides, dam instability, highway embankment failures, or

other hazards (Pathak and Dalvi 2011). Such damages are

generally of great concern to public safety and are of

economic significance (Pathak and Dalvi 2011). In view of

these serious damages caused by earthquake induced liq-

uefaction, geotechnical engineers are actively engaged in

the study of the soil liquefaction caused by earthquakes

(Lee and Chern 2013). Thus, the assessment of the liq-

uefaction potential due to an earthquake at a site is the first

necessary step in liquefaction studies (Pathak and Dalvi

2011).

Geotechnical engineers have developed many assess-

ment methods for evaluating soil liquefaction (Chern et al.

2008). Many of existing assessment methods was devel-

oped from the observations of the behavior of sites during

earthquakes. Geotechnical engineers have often used the

simple liquefaction analytical model developed by standard

penetration test (SPT), due to its computational speed and

analytical ability. Based on recent developments in data

processing and analytical ability, the cone penetration test

(CPT) offers the advantages of fast, continuous, and

accurate soil parameter measurements. At the same time,

the related testing data continued to accumulate. Thus, the

potential of applying CPT to liquefaction research has

grown significantly.
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A number of CPT-based liquefaction triggering resis-

tance curves have been suggested by previous studies (e.g.,

Robertson and Campanella 1985; Seed and De Alba 1986;

Shibata and Teparaska 1988; Andrus and Youd 1989; Stark

and Olson 1995; Robertson and Wride 1998; Juang et al.

2003; Idriss and Boulanger 2004; Kokusho et al. 2005).

The final accepted liquefaction screening method based on

CPT has been developed by Robertson and Wride (1998).

This method have been documented in the form of nor-

malized cone penetration resistance (qc1N) versus cyclic

resistance ratio (CRR) induced by the earthquakes, cor-

rected for 7.5 magnitude (Mw = 7.5), for many sites where

liquefaction problem has been observed or not observed

during the earthquakes (Fig. 1). Liquefaction resistance

determined in this way depends only to the fines content

(FC) of the soil for a known qc1N. The clean sand boundary

curve is adjusted for fines based on soil behavior type

index, Ic. Figure 1 shows the resulting equivalent CRR

curves for Ic values of 1.64, 2.07 and 2.59 which represent

approximate apparent FC of 5, 15 and 35 %, respectively.

Lately, it has been observed that a unique correlation

between liquefaction resistance and penetration resistance

is not possible to justify without considering the effects of

hydraulic conductivity, k, compressibility, mv, and coeffi-

cient of consolidation, ch on penetration resistance (The-

vanayagam and Ecemis 2008). The combined effect of the

rate of penetration, v, geometry of the cone, d, and coef-

ficient of consolidation, ch also influence cone penetration

resistance. Recently studied CPT numerical simulations

(Thevanayagam and Ecemis 2008) and cyclic triaxial test

results on Ottawa sand–silt mix (Thevanayagam et al.

2003) explored a unique correlation between liquefaction

resistance and penetration resistance by considering the

effects of the non-dimensional parameter T(=vd/ch) on

cone penetration resistance.

Artificial Neural Networks (ANNs) offer an interesting

approach for modeling soil behavior (Shahin et al. 2001).

ANN is an oversimplified simulation of the human brain

(Banimahd et al. 2005) and is accepted as a reliable data-

modelling tool to capture and represent complex relation-

ships between inputs and outputs (Caglar and Arman

2007). This is in contrast to most traditional empirical and

statistical methods, which need prior knowledge about the

nature of relationships among the data (Shahin et al. 2008).

Thus, ANNs are well suited to modeling the complex

behavior of most geotechnical engineering materials

which, by their very nature, exhibit extreme variability

(Shahin et al. 2008). This modeling capability, as well as

the ability to learn from experience, have given ANNs

superiority over most traditional methods since there is no

need for making assumptions about what the underlying

rules that govern the problem in hand could be (Shahain

et al. 2008). Since the early 1990s, ANNs have been

effectively applied to almost every problem in geotechnical

engineering (Shahain et al. 2008), including constitutive

modeling (Najjar and Ali 1999; Penumadu and Zhao

1999); geo-material properties (Ozer et al. 2008; Erzin

et al. 2009; Park and Kim 2010); bearing capacity of pile

(Das and Basudhar 2006; Park and Cho 2010); slope sta-

bility (Zhao 2008; Cho 2009; Erzin and Cetin 2012, 2013,

2014), shallow foundations (Shahin et al. 2005; Erzin and

Gul 2012, 2013), and tunnels and underground openings

(Shi 2000; Yoo and Kim 2007). The ANN approach was

also found to be suitable in the field of liquefaction

potential assessment by various researchers such as Goh

(1994, 1996, 2002), Juang and Chen (1999), Juang et al.

(1999), Wang and Rahman (1999), Barai and Agarwal

(2002), Baziar and Nilipour (2003), Neaupane and Achet

(2004), Baziar and Ghorbani (2005), Das and Basudhar

(2006), Young-Su and Byung-Tak (2006), Hanna et al.

(2007a, b), Rao and Satyam (2007), Ramakrishnan et al.

(2008), Farrokhzad et al. (2010), Pathak and Dalvi (2011),

Moradi et al. (2011), Kumar et al. (2012), Venkatesh et al.

(2013).

In this study, ANNs, with respect to the above advan-

tages, were utilized both to investigate the influence of soil

properties, namely, equivalent relative density [(Drc)eq],

hydraulic conductivity (k) and compressibility (mv) on

normalized cone penetration resistance (qc1N) and to

investigate the unique correlation between cyclic resistance

ratio (CRR) and qc1N by considering the effects of non-

dimensional parameter T(=vd/ch) on cone penetration

resistance. For this purpose, two different ANN models

were developed: one for the prediction of qc1N (designated

as ANN-1) and the other for the prediction of CRR (ANN-

2). To achieve this, the results of CPT numerical simula-

tions conducted using finite element code ABAQUS (2000)

were used in the ANN-1 model while undrained cyclic
Fig. 1 Field liquefaction screening chart—CPT (Robertson and

Wride 1998)
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triaxial tests on Ottawa sand–silt mixes were used in the

ANN-2 model. The results obtained from ANN-1 and

ANN-2 models were compared with the results from

numerical simulations and experimental investigations,

respectively, and found to be close to them. Moreover, the

determination coefficient (R2), the values of variance

account for (VAF), the mean absolute error (MAE) and

root mean square error (RMSE) indices were calculated to

check the prediction performance of the ANN-1 and ANN-

2 models developed. Both ANN models have shown high

prediction performance according to the performance

indices.

Artificial neural networks

Artificial neural networks (ANNs) are computational

models, which are based on the information processing

system of the human brain (Banimahd et al. 2005). The

current interest in ANNs is largely due to their ability to

mimic natural intelligence in its learning from experience

(Zurada 1992; Fausett 1994). Many authors have described

the structure and operation of ANNs (e.g., Hecht-Nielsen

1990; Maren et al. 1990; Zurada 1992; Fausett 1994;

Ripley 1996). ANNs architectures are formed by three or

more layers, which consist of an input layer, one or more

hidden layers, and an output layer. Each layer consists of a

number of interconnected processing elements (PEs),

commonly referred to as neurons. The neurons interact

with each other via weighted connections. Each neuron is

connected to all the neurons in the next layer. In the input

layer, data are presented to the network. The output layer

holds the response of the network to the input. The hidden

layers enable these networks to represent and compute

complicated associations between inputs and outputs. This

ANN architecture is commonly referred to as a fully

interconnected feed-forward multi-layer perceptron (MLP).

In addition, there is also a bias, which is only connected to

the neurons in the hidden and output layers, with modifi-

able weighted corrections.

The number of hidden layers used depends on the degree

of the complexity of the problem. ANNs with one or two

hidden layers and adequate number of hidden neurons are

found to be quite useful for most problems (Orbanić and

Fajdiga 2003; Goh 1994; Sonmez et al. 2005). The number

of neurons in the hidden layers depends on the nature of the

problem. There are various methods to determine the

number of neurons in the hidden layer (Hecht-Nielsen

1987; Hush 1989; Kaastra and Boyd 1996; Kanellopoulas

and Wilkinson 1997; Grima and Babuska 1999; Haque and

Sudhakar 2002). However, these methods present general

guidelines only for selection of an adequate number of

neurons.

The neural network ‘‘learns’’ by modifying the weights

of the neurons in response to the errors between the actual

output values and the target output values. Several learning

algorithms have been developed. The back-propagation

learning algorithm is the most commonly used neural

network algorithm (Rumelhart et al. 1986; Goh 1994;

Najjar et al. 1996; Kim et al. 2004; Singh et al. 2006; Erzin

et al. 2008). The back-propagation neural network has been

applied with great success to model many phenomena in

the field of geotechnical engineering (Goh 1995a, b; Shahin

et al. 2002, 2001). In the back-propagation neural network,

learning is carried out through gradient descent on the sum

of the squares of the errors for all the training patterns

(Rumelhart et al. 1986; Goh 1995a). Each neuron in a layer

receives and processes weighted inputs from neurons in the

previous layer and transmits its output to neurons in the

following layer through links. Each link is assigned a

weight which is a numerical estimate of the connection

strength. The weighted summation of inputs to a neuron is

converted to an output according to a nonlinear transfer

function. The common transfer function widely used in the

literature is the sigmoid function. The changes in the

weights are proportional to the negative of the derivative of

the error term. One pass through the set of training patterns,

together with the associated updating of the weights, is

called a cycle or an epoch. Training is carried out by

repeatedly presenting the entire set of training patterns

(updating the weights at the end of the each epoch) until

the average sum squared error over all the training patterns

is minimal and within the tolerance specified for the

problem.

At the end of the training phase, the neural network

should correctly reproduce the target output values for the

training data; provided errors are minimal (i.e., conver-

gence occurs). The associated trained weights of the neu-

rons are then stored in the neural network memory. In the

next phase, the trained neural network is fed a separate set

of data. In this testing phase, the neural network predictions

using the trained weights are compared to the target output

values. The performance of the overall ANN model can be

assessed by several criteria (Shi 2000; Shahin et al. 2004;

Banimahd et al. 2005; Shahin and Jaksa 2005). These

criteria include coefficient of determination R2, mean

squared error, mean absolute error, minimal absolute error,

and maximum absolute error. A well-trained model should

result in an R2 close to 1 and small values of error terms.

In this study, determination of cone penetration and

liquefaction resistances has been modeled using the ANN

in which network training was accomplished with the

neural network toolbox written in the Matlab environment

(Math Works 7.0 Inc. 2006) and the Levenberg–Marquardt

back-propagation learning algorithm (Demuth et al. 2006)

was used in the training stage. Details of the experimental
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investigations and numerical simulations, which have

yielded the data for these models, are presented in the

following sections.

Experimental investigations

An extensive experimental research was completed at State

University of New York at Buffalo on cyclic resistance of

sands and silty sands prepared at different silt contents

(Thevanayagam et al. 2003). It involved several undrained

cyclic triaxial tests on Ottawa sand (OS#55), non-plastic

silt (Sil co sil #40) and their mixes at silt content (FC) of 0,

15 and 25 % by dry weight named OS-00, OS-15 and OS-

25, respectively (Kanagalingam 2006). The number of

equal stress cycles (NL) required to reach ±5 % strain level

(e) at predefined CRR(=Drv
0/2rc

0) of 0.1, 0.2 or 0.3 and

100 kPa initial effective confining stress (rvo
0) was deter-

mined for each test. Where Drv
0 is deviator stress and rc

0 is

the effective confining stress. Based on these undrained

cyclic triaxial test data for Ottawa sand–silt mixes, a

relationship between the undrained laboratory liquefaction

resistance (CRR)tx required to cause liquefaction in 15

cycles (NL = 15) and (Drc)eq has been developed for silty

sands at FC less than threshold silt content (FCth), as shown

in Fig. 2 (Thevanayagam and Ecemis 2008). By using

Fig. 2, (CRR)tx values were determined for equivalent

relative density (Drc)eq values of the samples used in cyclic

triaxial tests and presented in Table 1. In this table, column

5 lists the (Drc)eq values. (Drc)eq has been defined as

(Thevanayagam 2007a, b);

ðDrcÞeq ¼
emax � ðecÞeq

emax � emin

; ð1Þ

where emax and emin are maximum and minimum void ratio

of the coarse grains, respectively. (ec)eq is the equivalent

void ratio and used for soils at FC less than FCth (ec)eq has

been defined (Thevanayagam 2007a, b) in Eq. 2. In Eq. 2,

fc is the fines content by weight and b is the constant

depending on grain size characteristics of the soil.

ðecÞeq ¼
eþ ð1� bÞfc

1� ð1� bÞfc

ð2Þ

The field liquefaction resistance (CRR)field may be dif-

ferent from (CSR)tx depending on consolidation charac-

teristics and the soil profile at a site. Furthermore, multi-

directional shaking and modes of shear also differ from the

laboratory. The latter aspects have been studied and cor-

rections (Eq. 3) have been proposed by Castro (1975) and

Seed et al. (1978). In Eq. 3, Ko(=1 - sin /) is the coeffi-

cient of lateral earth pressure at rest, / is the soil friction

angle. (CRR)field values were calculated by using Eq. 3 and

given in Table 1, Column 10.

ðCRRÞfield ¼ 0:9
2ð1þ 2KoÞ

3
ffiffiffi

3
p ðCRRÞtx ð3Þ

Numerical simulations

In order to study the effect of k, mv and (Drc)eq on cone

penetration resistance of sand and silty soils, several sets

of numerical simulations were conducted using finite

element code ABAQUS (2000) (Ecemis 2008). In each

case, material properties required for the Drucker–Prager

model were obtained from several sets of monotonic tri-

axial test data on Ottawa sand and sand–silt mixes pre-

pared by mixing Ottawa sand with silt (Kanagalingam

2006; Thevanayagam et al. 2003). Cone penetration

resistances were monitored with penetration of the cone

diameter of 4.37 cm at a constant penetration speed of

v = 2 cm/s (ASTM D3441) until a steady state condition

was reached. The qc1N at the tip of the cone was recorded

against a non-dimensional parameter T(=vd/ch) with a

range of ch for a single soil type at different (Drc)eq. The

summary of the numerical simulation results are presented

in Table 2.

Development of ANN model for prediction of cone

penetration resistance

As mentioned earlier, the soil properties such as equivalent

relative density (Drc)eq, hydraulic conductivity (k), and

compressibility (mv) of silty sands affect normalized cone

penetration resistance (qc1N). Keeping this in view, an

ANN model (designated as ANN-1) with three input

parameters [(Drc)eq, k, and mv] and one output parameter

(qc1N) was developed for predicting qc1N. The details of the

input and output parameters of the ANN-1 model are listed

in Table 3. The input and output data were scaled to lie

between 0 and 1, by using Eq. 4.

0,0

0,1

0,2

0,3

0,4

0 20 40 60 80 100

(Drc)eq

(C
R

R
) t

x

FC<FCth 

NL=15

Fig. 2 (CRR)tx - (Drc)eq for NL = 15
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xnorm ¼
x� xminð Þ

xmax � xminð Þ ; ð4Þ

where xnorm is the normalized value, x is the actual value,

xmax is the maximum value and xmin is the minimum value.

The data was then divided into two subsets; a training

set, to construct the neural network model, and an inde-

pendent validation set to estimate model performance in

the deployed environment. Therefore, in total, 80 % of the

Table 1 Summary of CRR—

cyclic triaxial test results for

Ottawa sand–silt mixes

(Kanagalingam 2006)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Sample no. FC (%) emax emin (ec)eq (Drc)eq / (�) Ko (CRR)tx (CRR)field

OS-00 0 0.8 0.6 0.675 63 32 0.47 0.226 0.152

0.684 58 32 0.47 0.200 0.134

0.604 98 36 0.41 1.582 1.000

0.646 77 36 0.41 0.475 0.300

0.675 63 32 0.47 0.226 0.152

0.684 58 32 0.47 0.200 0.134

0.604 98 36 0.41 1.582 1.000

0.646 77 36 0.41 0.475 0.300

0.675 63 32 0.47 0.226 0.152

0.684 58 32 0.47 0.200 0.134

0.604 98 36 0.41 1.582 1.000

0.646 77 36 0.41 0.475 0.300

0.675 63 32 0.47 0.226 0.152

0.684 58 32 0.47 0.200 0.134

0.604 98 36 0.41 1.582 1.000

0.646 77 36 0.41 0.475 0.300

0.675 63 32 0.47 0.226 0.152

0.684 58 32 0.47 0.200 0.134

0.604 98 36 0.41 1.582 1.000

0.646 77 36 0.41 0.475 0.300

0.675 63 32 0.47 0.226 0.152

0.684 58 32 0.47 0.200 0.134

0.604 98 36 0.41 1.582 1.000

0.646 77 36 0.41 0.475 0.300

0.675 63 32 0.47 0.226 0.152

0.684 58 32 0.47 0.200 0.134

OS-15 15 0.75 0.43 0.780 10 29 0.52 0.100 0.070

0.710 45 31 0.48 0.172 0.117

0.780 10 29 0.52 0.100 0.070

0.780 10 29 0.52 0.100 0.070

0.710 45 31 0.48 0.172 0.117

0.780 10 29 0.52 0.100 0.070

0.780 10 29 0.52 0.100 0.070

0.710 45 31 0.48 0.172 0.117

0.780 10 29 0.52 0.100 0.070

0.710 45 31 0.48 0.172 0.117

0.780 10 29 0.52 0.100 0.070

OS-25 25 0.86 0.31 0.730 38 34 0.44 0.150 0.098

0.730 38 34 0.44 0.150 0.098

0.730 38 34 0.44 0.150 0.098

0.730 38 34 0.44 0.150 0.098

0.730 38 34 0.44 0.150 0.098
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data were used for training and 20 % for testing. It has

been shown that a network with one hidden layer can

approximate any continuous function, provided that suffi-

cient connection weights are used (Hornik et al. 1989).

Consequently, one hidden layer was used. The neural

network toolbox of MATLAB7.0, a popular numerical

computation and visualization software (Banimahd et al.

2005), was used for training and testing of MLPs. The

optimum number of neurons in the hidden layer was

determined by varying their number by starting with a

minimum of 1 and then increasing the network size in steps

by adding 1 neuron each time. Different transfer functions

(such as log-sigmoid (Sakellariou and Ferentinou 2005)

and tan-sigmoid (Orbanić and Fajdiga 2003) were

Table 2 Summary of CPT

numerical simulation results

(Ecemis 2008)

(1) (2) (3) (4) (5) (6) (7) (8)

Sample no. FC (%) (Drc)eq (%) mv (kPa-1) k (m/sec) ch (m2/sec) T (vd/ch) qc1N

OS-00 0 98 0.000026 1.E-03 3.85718 0.000227 234.34

1.E-04 0.38572 0.002266 225.24

1.E-05 0.03857 0.022659 203.29

1.E-07 0.00039 2.265907 83.62

1.E-08 0.00004 22.65907 90.94

77 0.000047 1.E-03 2.15200 0.000406 163.49

1.E-04 0.21520 0.004061 164.01

1.E-05 0.02152 0.040613 143.19

1.E-06 0.00215 0.406134 70.77

1.E-07 0.00022 4.06134 39.74

1.E-08 0.00002 40.6134 53.48

63 0.000033 1.E-02 31.27534 2.79E-05 110.24

1.E-03 3.12753 0.000279 110.31

1.E-04 0.31275 0.002795 111.01

1.E-05 0.03128 0.027945 97.72

1.E-06 0.00313 0.279453 51.27

1.E-07 0.00031 2.794534 42.51

1.E-08 0.00003 27.94534 45.69

58 0.000035 1.E-02 28.85831 3.03E-05 117.25

1.E-03 2.88583 0.000303 116.91

1.E-04 0.28858 0.003029 109.29

1.E-05 0.02886 0.030286 89.55

1.E-06 0.00289 0.302859 44.22

1.E-07 0.00029 3.028591 48.17

1.E-08 0.00003 30.28591 52.00

OS-15 15 45 0.000035 1.E-03 2.89155 0.000302 25.69

1.E-05 0.02892 0.030226 25.15

1.E-07 0.00029 3.0226 23.58

1.E-08 0.00003 30.226 23.14

10 0.000062 1.E-02 16.48375 5.3E-05 7.07

1.E-03 1.64837 0.00053 7.16

1.E-04 0.16484 0.005302 17.33

1.E-05 0.01648 0.053022 15.57

1.E-06 0.00165 0.530219 14.46

1.E-07 0.00016 5.302193 11.06

1.E-08 0.00002 53.02193 10.39

OS-25 25 38 0.000096 1.E-03 1.06416 0.000821 7.48

1.E-05 0.01064 0.08213 7.71

1.E-06 0.00106 0.821302 7.95

1.E-07 0.00011 8.213023 6.94

1.E-08 0.00001 82.13023 7.29
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investigated to achieve the best performance in training as

well as in testing. Two momentum factors, l (=0.01 and

0.001) were selected for the training process to search for

the most efficient ANN architecture. Training started with a

small number of epochs (=50) and kept on incrementing by

50 epochs until the onset of specialized training as reflected

in the reversal of the downward trend of the error for

testing data. The maximum number of epochs to train was

chosen as 500. The coefficient of determination, R2, and the

mean absolute error, MAE, were used to evaluate the

performance of the developed ANN models. In order to

determine the optimum network geometry, the perfor-

mance of the network during the training and testing pro-

cesses was examined for each network size until no

significant improvement occurred.

The details of the optimal performance of the networks

are given in Table 4. Table 4 shows that ANN with six

hidden neurons resulted in the maximum R2 of 0.9883 and

the minimum MAE of 6.38 in the testing phase. Therefore,

it was chosen as the best ANN model. Connection weights

and biases for the final model are presented in Table 5.

As mentioned earlier, the test data was randomly

selected and the remaining part was accepted as the

training data while developing the optimal ANN-1 model.

In addition to this, this sampling phase was performed for

four times (n = 4) by using different train/test samples.

The iterations for prediction were performed for each dif-

ferent train/test samples and the results were presented in

Table 6. It can be seen from the table that all the models

from n = 1 to n = 4 exhibit good prediction performance.

When comparing the prediction performances of these

models with the optimal ANN-1 model, the optimal ANN-

1 model yields the highest prediction performance.

Development of ANN model for prediction

of liquefaction resistance

As mentioned earlier, there is a unique correlation between

liquefaction resistance (CRR), normalized cone penetration

resistance (qc1N) and non-dimensional parameter (T).

Keeping this in view, an ANN model (designated as ANN-2)

Table 3 The details of the parameters used for the ANN-1 model

developed

Parameters used Minimum Maximum Mean SD

Input parameters

(Drc)eq (%) 10 98 54.6098 26.7739

k (m/sec) 1E-08 0.01 91.6E-05 26.11E-04

mv (kPa-1) 2.6E-05 9.6E-05 4.74E-5 2.15E-5

Output parameter

qc1N 6.94 234.34 70.7562 63.3877

Table 4 Details of the optimal

performance of networks in

predicting qc1N

Number of

neurons in the

hidden layer

Transfer function in l Number

of epochs

Training Testing

Neurons of

the hidden

layer

Neurons of

the output

layer

R2 MAE R2 MAE

1 Tan-sigmoid Log-sigmoid 0.001 100 0.3025 49.89 0.5857 60.66

2 Tan-sigmoid Tan-sigmoid 0.001 100 0.4211 46.85 0.5857 56.95

3 Tan-sigmoid Tan-sigmoid 0.001 100 0.9865 4.85 0.7437 23.81

4 Tan-sigmoid Tan-sigmoid 0.001 140 0.9822 4.48 0.7949 21.46

5 Tan-sigmoid Tan-sigmoid 0.001 190 0.9846 3.86 0.8175 20.37

6 Tan-sigmoid Tan-sigmoid 0.001 340 0.9960 2.18 0.9883 6.38

Table 5 Connection weights

and biases of the best ANN

model

Hidden neuron Weights Bias

Input neurons Output neuron Hidden layer Output layer

(Drc)eq k mv qc1N

1 1.2023 1.0096 4.1967 13.4256 -3.6485 -10.4978

2 -2.6187 0.0277 -3.8974 -9.5281 -2.0850

3 -0.7382 29.7529 -0.1046 -13.4605 29.8829

4 -9.5339 -1.0874 0.7208 -1.9402 -7.2946

5 -2.8259 7.7121 -3.2265 10.8344 6.0833

6 0.3763 -52.1087 0.1524 -29.713 -53.0366
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with two input parameters (T and qc1N) and one output

parameter [(CRR)field] was developed for predicting

(CRR)field. The details of the input and output parameters

of the ANN-2 model are listed in Table 7. The input and

output data were scaled to lie between 0 and 1, by using

Eq. 4.

The data was then divided into two subsets; a training

set and independent validation set. Therefore, in total,

80 % of the data were used for training and 20 % for

testing. One hidden layer was chosen. During the design of

optimal ANNs, the trials were formed similar to the trials

made in modeling of cone penetration resistance (see

‘‘Development of ANN model for prediction of cone

penetration resistance’’ section). The details of the optimal

performance of the networks are given in Table 8. Table 8

shows that ANN with five hidden neurons resulted in the

maximum R2 of 0.9983 and the minimum MAE of 0.01 in

the testing phase. Connection weights and biases for the

optimal ANN model are presented in Table 9.

As in the ANN-1 model, the test data was randomly

selected and the remaining part was accepted as the

training data while developing the optimal ANN-2 model.

In addition to this, this sampling phase was performed for

four times (n = 4) by using different train/test samples.

The iterations for prediction were performed for each dif-

ferent train/test samples and the results are presented in

Table 10. It can be seen from the table that all the models

from n = 1 to n = 4 exhibit good prediction performance.

When comparing the prediction performances of these

models with the optimal ANN-2 model, the optimal ANN-

2 model yields the highest prediction performance.

Results and discussion

A comparison of numerical results with the results

obtained from the ANN-1 model developed for the

prediction of qc1N is depicted in Figs. 3 and 4 for

training and testing samples, respectively. It can be

noted from these figures that qc1N values obtained from

ANN model are in good agreement with the numerically

obtained qc1N values, as their R2 is much closer to unity.

This shows that the ANN model is able to predict cone

penetration resistances of sand–silt mixes, if their

physical properties [(Drc)eq, k, and mv] are known.

Table 6 Details of the performance of networks for different train/test samples

Model Number of neurons

in the hidden layer

Transfer function in l Number

of epochs

Training Testing

Neurons of the

hidden layer

Neurons of the

output layer

R2 MAE R2 MAE

n = 1 6 Tan-sigmoid Log-sigmoid 0.001 300 0.9827 8.09 0.9699 5.34

n = 2 6 Tan-sigmoid Tan-sigmoid 0.001 500 0.9800 8.79 0.9471 11.25

n = 3 6 Tan-sigmoid Tan-sigmoid 0.001 160 0.9771 8.99 0.9362 11.40

n = 4 6 Tan-sigmoid Tan-sigmoid 0.001 250 0.9573 11.19 0.9526 11.36

Optimal ANN-1 6 Tan-sigmoid Tan-sigmoid 0.001 340 0.9960 2.18 0.9883 6.38

Table 7 The details of the parameters used for the ANN-2 model

developed

Parameters used Minimum Maximum Mean SD

Input parameters

T 2.79E-5 82.013 7.5492 17.0915

qc1N 6.94 234.34 70.7562 63.3877

Output parameter

(CRR)field 0.07 1.00 0.2679 0.3104

Table 8 Details of the optimal

performance of networks in

predicting (CRR)field

Number of neurons

in the hidden layer

Transfer function in l Number

of epochs

Training Testing

Neurons of

the hidden

layer

Neurons of

the output

layer

R2 MAE R2 MAE

1 Tan-sigmoid Tan-sigmoid 0.001 100 0.5443 0.13 0.6360 0.13

2 Tan-sigmoid Tan-sigmoid 0.001 200 0.9671 0.04 0.9616 0.06

3 Tan-sigmoid Tan-sigmoid 0.001 100 0.9860 0.02 0.9791 0.03

4 Tan-sigmoid Tan-sigmoid 0.001 380 0.9923 0.02 0.9936 0.02

5 Tan-sigmoid Tan-sigmoid 0.001 240 0.9988 0.01 0.9983 0.01
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Correlations were also calculated between input and

output parameters used in the ANN-1 model to show the

relation between the parameters. The correlation coeffi-

cients, r, values calculated are given in Table 11. Smith

(1986) suggested the following guide for values of rj j
between 0.0 and 1.0:

rj j � 0:8 Strong correlation exists between the two

sets of variables;

0:2\ rj j\0:8 Correlation exists between the two sets of

variables;

rj j � 02 Weak correlation exists between the two

sets of variables.

The r values in Table 11 are smaller than 0.8, which

indicate that there is not a strong correlation between the

parameters causing them to achieve the performance

results of the ANN-1 model. This result also indicates that

Table 9 Connection weights

and biases of the best ANN

model

Hidden neuron Weights Bias

Input neurons Output neuron Hidden layer Output layer

T qc1N (CRR)field

1 11.8511 -12.5340 -1.3987 -0.6636 0.8814

2 -0.9000 -4.9676 -9.6192 -1.6168

3 102.8228 -4.0986 10.5454 102.3089

4 -138.8900 -15.5882 -1.1691 -136.0383

5 -0.8074 -9.8285 -3.3869 5.1425

Table 10 Details of the performance of networks for different train/test samples

Model Number of neurons

in the hidden layer

Transfer function in l Number

of epochs

Training Testing

Neurons of the

hidden layer

Neurons of the

output layer

R2 MAE R2 MAE

n = 1 5 Tan-sigmoid Log-sigmoid 0.001 200 0.9951 0.01 0.9822 0.03

n = 2 5 Tan-sigmoid Tan-sigmoid 0.001 80 0.9930 0.05 0.9784 0.03

n = 3 5 Tan-sigmoid Tan-sigmoid 0.001 78 0.9797 0.05 0.9731 0.03

n = 4 5 Tan-sigmoid Tan-sigmoid 0.001 160 0.9959 0.05 0.9585 0.03

Optimal ANN-2 5 Tan-sigmoid Tan-sigmoid 0.001 340 0.9988 0.01 0.9983 0.01
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Fig. 3 Comparison of the qc1N values calculated from numerical

simulations with the qc1N values predicted from the ANN-1 model for

training samples

0 50 100 150 200 250
0

50

100

150

200

250

R2=0.9883

P
re

d
ic

te
d

 q
c1

N

Calculated q
c1N

Fig. 4 Comparison of the qc1N values calculated from numerical

simulations with the qc1N values predicted from the ANN-1 model for

testing samples
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ANN is a reliable data modeling tool to capture and rep-

resent complex relationships between input and output

parameters.

A comparison of (CRR)field values calculated by using

Eq. 3 with the results obtained from the ANN-2 model

developed is depicted in Figs. 5 and 6 for training and

testing samples, respectively. It can be noticed from these

figures that (CRR)field values obtained from the ANN

model are quite close to the calculated (CRR)field values, as

their R2 values are much closer to unity. This shows that

the ANN model is able to predict liquefaction resistances

of sand–silt mixes, if their T and qc1N values are known. If

qc1N values are unknown, qc1N values could be predicted by

using trained ANNs values in this study. Correlations were

also calculated between the input and output parameters

used in the ANN-2 model to show the relation between the

parameters. The correlation coefficient, r, values calculated

are given in Table 12. The r values in Table 12 are smaller

than 0.8, which indicate that there is not a strong correla-

tion between the parameters causing them to achieve the

performance results of the ANN-2 model. This result also

indicates that ANN is a reliable data modeling tool to

capture and represent complex relationships between input

and output parameters as mentioned earlier.

(CRR)field values were then obtained from the Robertson

and Wride (1998)’s liquefaction screening chart (Fig. 1)

for the data used in this study and compared with the

calculated (CRR)field values, as shown in Fig. 7. Figure 7

shows that (CRR)field values obtained from Fig. 1 are not in

good agreement with calculated (CRR)field values for the

data used in this study. This is possibly due to the fact that

the (CRR)field determined from Fig. 1 depends only on the

fines content of the soil, the determination of which is

based on only CPT data. As pointed out by Finn (1993),

Larsson et al. (1995) and Ziaie-Moayed et al. (2002), this

determination of fines content of the silty sands might

cause some uncertainty. Therefore, there will be probably

some errors in evaluation of liquefaction resistances of

sand–silt mixes using this method as pointed out by Ziaie-

Moayed et al. (2002).

In fact, the coefficient of correlation between the mea-

sured and predicted values is a good indicator to check the

prediction performance of the model (Gokceoglu and Zorlu

2004). In this study, variance VAF, represented by Eq. 5,

and the root mean square error RMSE, represented by

Eq. 6, were also computed to assess the performance of the

developed models (Grima and Babuska 1999; Finol et al.

2001; Gokceoglu 2002; Erzin 2007; Erzin and Yukselen

2009; Erzin et al. 2008, 2009, 2010)

VAF ¼ 1� var y� ŷð Þ
var yð Þ

� �

� 100; ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1
yi � ŷið Þ2

r

; ð6Þ

where var denotes the variance, y is the measured value, ŷ

is the predicted value, and N is the number of the sample. If

VAF is 100 % and RMSE is 0, the model is treated as

excellent.

Table 11 Correlation coefficients of each input and the output one by

one for ANN-1 model

Output parameter Input parameters

(Drc)eq k mv

qc1N 0.780 0.075 0.554
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Fig. 5 Comparison of the (CRR)field values calculated from cyclic

triaxial tests with the (CRR)field values predicted from ANN-2 model

for training samples
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Fig. 6 Comparison of the (CRR)field values calculated from cyclic

triaxial tests with the (CRR)field values predicted from the ANN-2

model for testing samples
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Values of VAF and RMSE for the ANN-1 and ANN-2

models developed and Robertson and Wride (1998)’s liq-

uefaction screening chart are listed in Table 13. It can be

noted from Table 13 that both of the ANN models devel-

oped exhibit high prediction performance based on the

performance indices, which demonstrates their usefulness

and efficiency.

When comparing the performance of the ANN-2 model

with the field liquefaction screening chart, the ANN-2

model is able to predict CRR much more efficiently. This is

possibly due to the fact that the ANN-2 model takes into

consideration the effect of non-dimensional parameter

T including the combined effect of the parameters, namely,

the rate of penetration (v), geometry of the cone (d), and

coefficient of consolidation (ch) influencing cone penetra-

tion resistance whereas, as mentioned earlier, the CRR

determined from Fig. 1 depends only on the fines content

of the soil, the determination of which is based on only

CPT data, and might cause some uncertainty as observed

by past researchers (Finn 1993; Larsson et al. 1995; and

Ziaie-Moayed et al. 2002). These results also indicate that

the ANN-2 model is able to predict liquefaction resistances

quite efficiently and is superior to the liquefaction screen-

ing chart (Fig. 1) for the data used in this study.

As mentioned earlier in the ‘‘Experimental investiga-

tions’’ section, CRR can be also calculated by using

Eq. (3). However, this determination of CRR is much more

time consuming, expensive and involves destructive tests.

Additionally, the determination of CRR by using the ANN-

2 model is quick, cheap and involves nondestructive tests.

Neural Network applications are treated as black box

applications in general (Cabalar and Cevik 2009; Cevik

et al. 2011). Some researchers such as Cabalar and Cevik

(2009), Cevik et al. (2011) and Köroğlu et al. (2013) opened

this black box and introduced the NN application in a closed

form solution by using related NN parameters such as

weights and biases. Similarly, ANN-1 and ANN-2 models

developed in this study can be expressed in explicit function

form using the related NN parameters. Using the weights

and biases of the optimal ANN-1 model (Table 5), nor-

malized cone penetration resistance (qc1N) can be expressed

in terms of equivalent relative density (Drc)eq, hydraulic

conductivity (k), and compressibility (mv) as follows:

qc1N ¼ ð227:40 � tanh WÞ þ 6:94; ð7Þ

where tanh ðxÞ ¼ ðex � e�xÞ=ðex þ e�xÞ; and finally output

is computed as:

W ¼ 13:4256 � tanhU1 � 9:5281 � tanhU2½
� 13:4605 � tanhU3 � 1:9402 � tanhU4

þ 10:8344 � tanhU5 � 29:7130 � tanhU6� � 10:4978

U1 ¼ 1:2023 � ðDrcÞeq þ 1:0096 � k þ 4:1967 � mv�3:6485

U2 ¼ �2:6187 � ðDrcÞeq þ 0:0277 � k�3:8974 � mv�2:0850

U3 ¼ �0:7382 � ðDrcÞeq þ 29:7529 � k�0:1046 � mv þ 29:8829

U4 ¼ �9:5339 � ðDrcÞeq�1:0874 � k þ 0:7208 � mv�7:2946

U5 ¼ �2:8259 � ðDrcÞeq þ 7:7121 � k�3:2265 � mv þ 6:0833

U6 ¼ 0:3763 � ðDrcÞeq�52:1087 � k þ 0:1524 � mv�53:0366

:

Similarly, using the weights and biases of the optimal

ANN-2 model (Table 9), liquefaction resistance (CRR)field

can be expressed in terms of the non-dimensional

Table 12 Correlation

coefficients of each input and

the output one by one for ANN-

2 model

Output

parameter

Input

parameters

T qc1N

(CRR)field 0.093 0.685
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Fig. 7 Comparison of the (CRR)field values calculated from cyclic

triaxial tests with the (CRR)field values predicted from the field

liquefaction screening chart for all samples

Table 13 Performance indices (R2, RMSE, MAE and VAF) of ANN-1

and ANN-2 models developed and the field liquefaction screening

chart

Model Data R2 RMSE MAE VAF (%)

ANN-1 Training set 0.9960 3.82 2.19 99.60

Testing set 0.9883 8.29 6.38 98.62

ANN-2 Training set 0.9988 0.01 0.01 99.88

Testing set 0.9983 0.01 0.01 99.83

The field

liquefaction

screening chart

All set 0.4767 0.24 0.13 41.66
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parameter (T) and normalized cone penetration resistance

(qc1N) as follows:

ðCRRÞfield ¼ ð0:93 � tanh YÞ þ 0:07; ð8Þ

where

Y ¼ �1:3987 � tanh L1 � 9:6192 � tanh L2½
þ 10:5454 � tanh L3 � 1:1691 � tanhL4

� 3:3869 � tanhL5�þ0:8814

L1 ¼ 11:8511 � T � 12:5340 � qc1N�0:6636

L2 ¼ �0:9000 � T � 4:9676 � qc1N�1:6168

L3 ¼ 102:8228 � T � 4:0986 � qc1N þ 102:3089

L4 ¼ �138:890 � T � 15:5882 � qc1N�136:0383

L5 ¼ �0:8074 � T � 9:8285 � qc1N�5:1425

:

It should be noted that the proposed ANN-1 and ANN-2

models in this study are valid for the ranges of parameters

given in Tables 3 and 7, respectively. It should be also

noted that the numerical simulations and the experimental

investigations (Tables 1, 2), were taken from two PhD

dissertations (Kanagalingam 2006 and Ecemis 2008) and

so small data size were used while developing the ANN

models, and it is not possible now to obtain the data for this

problem at this stage.

Conclusions

In this study, two different ANN models have been

developed: one for predicting cone penetration resistance

(ANN-1) and the other for predicting liquefaction resis-

tance (ANN-2). For this purpose, cyclic triaxial test results

on Ottawa sand–silt mixes at different fines content have

been used in the ANN-1 model, while CPT numerical

simulation results have been used in the ANN-2 model.

The ANN-1 model had three input parameters (Drc)eq,

k and mv, and an output parameter, qc1N. The ANN-2 model

had two input parameters, T and qc1N and an output

parameter (CRR)field. The results of the ANN-1 model were

compared with those obtained from experiments and found

to be close to them. The results of the ANN-2 model were

compared with those obtained from the numerical simula-

tions and found to be good agreement with them. Further,

(CRR)field values obtained from the Robertson and Wride

(1998)’s liquefaction screening chart for the data used in

this study were compared with the calculated (CRR)field

values. It is found that the liquefaction screening chart

based on fines content yielded poor predictions. In addi-

tion, the performance indices such as coefficient of deter-

mination, root mean square error, mean absolute error, and

variance were used to assess the performance of the ANN-

1 and ANN-2 models and the liquefaction screening chart.

The study demonstrates that the ANN-1 and ANN-2

models are able to predict cone penetration and liquefac-

tion resistances, respectively, quite efficiently, and the

ANN-2 model is superior to the liquefaction screening

chart since it depends only to the fines content of the soil.
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