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Abstract

We investigate the use of permutation tests for the analysis of parallel and stepped-

wedge cluster randomized trials. Permutation tests for parallel designs with expo-

nential family endpoints have been extensively studied. The optimal permutation

tests developed for exponential family alternatives require information on intra-

class correlation, a quantity not yet defined for time-to-event endpoints. There-

fore, it is unclear how efficient permutation tests can be constructed for cluster-

randomized trials with such endpoints. We consider a class of test statistics formed

by a weighted average of pair-specific treatment effect estimates and offer practi-

cal guidance on the choice of weights to improve efficiency. We apply the permu-

tation tests to a cluster-randomized trial evaluating the effect of an intervention to

reduce the incidence of hospital-acquired infection. In some settings, outcomes

from different clusters may be correlated, and we evaluate the validity and ef-

ficiency of permutation test in such settings. Lastly, we propose a permutation

test for stepped-wedge designs and compare its performance to mixed effect mod-

eling, and illustrate its superiority when sample sizes are small, the underlying

distribution is skewed, or there is correlation across clusters.
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Rui Wanga,b,∗ and Victor De Gruttolab

We investigate the use of permutation tests for the analysis of parallel and stepped-wedge cluster randomized

trials. Permutation tests for parallel designs with exponential family endpoints have been extensively studied.

The optimal permutation tests developed for exponential family alternatives require information on intraclass

correlation, a quantity not yet defined for time-to-event endpoints. Therefore, it is unclear how efficient permutation

tests can be constructed for cluster-randomized trials with such endpoints. We consider a class of test statistics

formed by a weighted average of pair-specific treatment effect estimates and offer practical guidance on the

choice of weights to improve efficiency. We apply the permutation tests to a cluster-randomized trial evaluating

the effect of an intervention to reduce the incidence of hospital-acquired infection. In some settings, outcomes

from different clusters may be correlated, and we evaluate the validity and efficiency of permutation test in such

settings. Lastly, we propose a permutation test for stepped-wedge designs and compare its performance to mixed

effect modeling, and illustrate its superiority when sample sizes are small, the underlying distribution is skewed, or

there is correlation across clusters. Copyright c© 2010 John Wiley & Sons, Ltd.

Keywords: Permutation test, cluster-randomized trials, pair-matched design, stepped-wedge design, time-

to-event endpoints

1. Introduction

Permutation tests have been used in parallel cluster-randomized trials to test the null hypothesis of no treatment effect

[1, 2]. Gail et al. discussed randomization-based inference for matched and unmatched cluster intervention trials[3]. They

considered both a strong null hypothesis that treatment has no effect on any cluster as well as a weak null hypothesis that

treatment does not affect the average community response. Permutation tests have several advantages over parametric

approaches: they are non-parametric and maintain size even if the test statistic is derived from a mis-specified model. For

analysis of paired cluster intervention trials with person-time data, Brookmeyer and Chen compared the performance of

permutation tests to that of the standard Mantel-Haenszel type of statistics ignoring intraclass correlation and the paired
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t-tests; they found that permutation tests performed well when the number of cluster pairs is small [4]. Murray et al.

compared the performance of permutation test with the mixed-model regression methods for the analysis of simulated

data in the context of a cluster-randomized trial for a wide range of settings including in the presence of measurable

confounding and violations of normality assumptions underlying the mixed-effects models [5]. Their results indicated

that permutation methods and model-based methods have similar performance in terms of size and power in most

situations; when the normality assumptions are violated and the intraclass correlation is not small, say, greater than 0.01,

the permutation test maintains the nominal type I error while the model-based test can be conservative.

The validity of permutation tests in cluster-randomized trials relies on the random allocation of treatment, and methods

exist to assure validity in the presence of variable selection [6]. Many applications of permutation tests in other contexts do

not begin with a randomized experiment, but rather with an assumption that the observations are statistically independent

with certain symmetry properties. If a permutation test is justified by an assumption of independence, and if that

assumption is false (e.g., unequal variance in two comparison treatment groups), then the nominal level of the test may be

erroneous (see for examples, [7–9]). However, tests derived solely from randomization have the correct level whether or

not potential responses under comparison treatment arms are independent [10–14].

The efficiency of permutation tests is affected by the choice of test statistic. Braun and Feng [15] develop optimal

permutation tests for parallel cluster randomized trials with exponential family alternatives where the test statistic is a

weighted sum of cluster errors with weights equal to the inverse of the total variance for each cluster. The total variance

is a function of within cluster variation and intraclass correlation. They show that the weighted permutation test (i.e.,

the permutation test using a weighted test statistic) with properly chosen weights is more powerful than the unweighted

permutation test, especially when cluster sizes vary substantially. However, optimal weights need to take into account the

intraclass correlation. Weighting by cluster sizes alone does not guarantee improvement of the performance of the test.

In this paper, we investigate the use of permutation tests for the analysis of cluster-randomized trials in the following

three areas. First, we consider matched and unmatched parallel cluster randomized trials with time-to-event endpoints and

discuss choices of test statistic to achieve better efficiency. The optimal tests developed in Braun and Feng [15] do not

apply to time-to-event endpoints because they require information on the intraclass correlation – a quantity has not been

defined for time-to-event endpoints. In the setting of paired-matched trials, we consider the class of test statistics formed

by taking a weighted average of estimated pair-specific treatment effect. We assess power associated with different choices

of weights (with constant weights representing the unweighted test statistic) and offer practical recommendations on

the choice of weights. This approach can be applied to unmatched trials by considering all possible treatment-control pairs.

In addition, we consider the setting where observations from different clusters may be correlated. While standard

mixed-effects modeling methods take into account correlation among observations within the same cluster, they usually

assume independence of observations from different clusters. This assumption may be violated in practice; for example,

clusters that are physically near each other may share similar characteristics that induce correlation of outcomes from

them. In cluster-randomized trials for HIV prevention, treatment contamination due to sexual relationships formed

between communities randomized to opposite treatment arms can occur. We investigate the validity and efficiency of

permutation tests in the presence of correlated outcomes across clusters.

Finally, we propose permutation tests for stepped-wedge designs and demonstrate their validity and, in some settings,

superiority over parametric model-based modeling. In contrast to the parallel design for cluster-randomized trials

discussed above where clusters are randomized to different treatment conditions at baseline, the stepped-wedge design

allows clusters to cross over to the experimental intervention arm in a unidirectional manner at different times. The time
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of this crossover to the intervention arm is randomized. At each of the pre-selected time points, some clusters initiate the

intervention; the response to the intervention in all clusters is measured. As discussed in Hussey and Hughes [16], this

type of design can be especially useful when limited resources or geographical constraints make it logistically difficult

to implement the intervention simultaneously in many communities. In addition, all clusters eventually receive the

intervention - a feature that may reduce ethical concerns about evaluating the population-level impact of an intervention

shown to be effective in an individually-randomized trial. Methods have been described to analyze the resulting data

through the use of a mixed effects model where random effects model the correlation between individuals within the same

cluster and the fixed effects model the time effects [16]. The use of permutation tests for cluster randomized trials with

stepped-wedge designs have not been studied. The permutation tests for parallel designs rely on the random allocation of

communities into treatment and control arms and cannot be applied to stepped-wedge designs because all communities

will cross-over to the treatment arm over time. To overcome this challenge, we propose to construct permutation tests

where the permutation distribution is generated by permuting the random order of the treatment assignment and compare

the performance of such tests to their parametric counterparts.

The rest of the paper is organized as follows. In section 2, we investigate permutation tests for parallel cluster-randomized

trials with time-to-event endpoints. In Section 2.1, we propose a class of test statistics based on pair-specific treatment

effect estimates and investigate the impact of the choice of test statistic on efficiency. In Section 2.2, we evaluate the

validity and efficiency of permutation tests when outcomes from different communities are correlated, and in Section 2.3,

we describe the construction of such test statistics for unmatched parallel cluster-randomized trials and illustrate its use

using data from a cluster-randomized trial evaluating effect of an intervention to reduce the incidence of hospital-acquired

infection. In Section 3, we propose a permutation test for stepped-wedge designs and compare their performance with

mixed-effects modeling. Section 4 provides a Discussion.

2. Parallel cluster randomized trials with time-to-event endpoints

Suppose that we have J pairs of communities in a matched-pair cluster-randomized trial to assess the effect of

intervention versus control. We pair communities on the basis of demographic or other characteristics that are expected to

be correlated with the outcome of interest and then randomly assign communities with each pair between two treatment

arms. Let i = 1, 2 denote the intervention and control arms respectively. Let Tijk, Cijk, Uijk = min(Tijk, Cijk) and

δijk = 1(Tijk ≤ Cijk) denote the time to event, the censoring time, the observed time to event or censoring, and the event

indicator for individual k in community j on treatment i, j = 1, . . . , J , and k = 1, . . . ,Kij , where Kij denote the sample

size in jth community on treatment i. Here we use 1(·) to denote the indicator function. Let β denote the treatment effect

and β̂j denote the estimated treatment effect based on data from the jth pair. For example, β̂j might be the estimated

treatment effect obtained from a Cox model applied to data from individuals in the jth pair of clusters.

We consider the class of test statistics of the form

Sobs =
J

∑

j=1

wj β̂j ,

where wj’s are weights allocated to β̂j . Under the null hypothesis of no treatment effect, i.e., H0 : β = 0,

f(β̂1, β̂2, . . . , β̂J) = f(γ1β̂1, γ2β̂2, . . . , γJ β̂J)

3
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for any choices of γj = ±1. Here we use f(·) to denote the joint density function. The permutation distribution is formed

by a collection of Sp =
∑

wjγj β̂j . Under the null hypothesis of no intervention effect in any community, H0 : β = 0,

the observed treatment effect can be viewed as a random sample of size 1 from the permutation distribution generated by

randomly permuting the allocation of community between treatment arms [17]. The p-value is given by the proportion of

test statistics resulting from permuted datasets that are more extreme than the observed test statistic among all possible

permutations:
∑M

j=1 I(|Sp
j | ≥ |Sobs|)

M
, where M is the number of all possible permutations.

The number of all possible permutations M increases quickly with the number of units and is in general quite large so that

enumerating all the possibilities becomes computational prohibitive. In practice, we take a random sample of permutations

and approximate the p-value by

1 +
∑m

j=1 I(|Sp
j | ≥ |Sobs|)

1 + m
, where m is the number of sampled permutations.

We add 1 to both the numerator and denominator to account for the observed test statistic. Gail et al. [3] considered a

special case of this type of test statistics for continuous outcomes Yijk in analyzing parallel cluster randomized trials.

More specifically, they considered pair-specific treatment effect estimate β̂j as the difference in the sample average

K−1
1j

∑

k Y1jk − K−1
2j

∑

k Y2jk and all weights wj = 1 for j = 1, . . . , J . Here, to handle time-to-event endpoints, β̂j can

be the estimated log-hazard ratio from Cox proportional hazard models as described below.

The choice of test statistic does not affect the validity of permutation test, which is ensured by randomization. However,

the efficiency of permutation test is affected by the choice of test statistic. Analysis of data from cluster-randomized trials

based on cluster-level summaries requires selection of weights used to create weighted averages of these summaries.

Hayes and Moulton [17] discuss the trade-off between the weighted and the unweighted approaches, and recommend

the latter in general for its robustness. The weighted approach may improve precision, but only when the weights are

based on accurate unconditional variance estimates of the cluster-level summaries, which requires an accurate estimate

of intraclass correlation[17]. Although optimal test statistics have been proposed for exponential family endpoints (e.g.,

continuous, binary, counts etc) [15], it is unclear how to construct the optimal test statistic for time-to-event endpoint. The

optimal test statistic proposed in Braun and Feng [15] makes use of intraclass correlation – a quantity not yet been defined

for time-to-event endpoint. Motivated by the uncertainty in choice of weights to improve efficiency and lack of optimal

weights for time-to-event endpoints, we conduct a simulation study to compare two specific test statistics, unweighted

and weighted according to the conditional within-cluster sampling variances of pair-specific treatment effect estimates.

2.1. Comparison between unweighted and weighted test statistics

We compare the performance of the permutation tests with various test statistics of the form
∑

j wj β̂j , where j = 1, · · · , J

and β̂j denotes the estimated pair-wise treatment effect. In the first setting, we consider J = 10 pairs of communities, with

sample sizes ranging from 100 to 1000, in increments of 100. The underlying clustered failure time data (e.g. times to

infection) are generated by adding a frailty term in an accelerated failure time (AFT) model. Let Tik denote the failure

time of interest for the kth subject from the ith cluster, and Xi denote the treatment assigned to the cluster i.

log(Tik) = bi + α + βXi − ǫik,

where β measures treatment effect; bi
i.i.d
∼ N(0, θ2) introduces correlation within communities. We first consider the

setting where ǫik follows an extreme value distribution ∼ G(ǫ) = exp{−exp(− ǫ−µ
σ

)}, with µ = 0 and σ = 1. The

4
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censoring times are simulated from a uniform distributions with probability mass on interval [1, 2], thereby causing

outcomes to be right-censored.

Communities with same sizes are pair-matched. We calculate a treatment effect estimate within each pair, β̂j , using a

Cox proportional hazard model. In this setting, Tik follows an exponential distribution conditional on bi and proportional

hazards assumption is satisfied. For the unweighted permutation test, we use the sum of pair-wise treatment effect

estimates (i.e., log hazard ratio) as the test statistic. For the weighted permutation test, we use the weighted sum, where

the weights are based on the estimated sampling variance of β̂j within each pair. For the null hypothesis of no treatment

effect, β = 0, we can find the null distribution of this statistic by randomly re-assigning treatment to each of the paired

communities and re-calculating the treatment effect. In pair-matched settings, re-assigning treatment to each of the paired

communities only leads to a possible sign change in β̂j . Figure 1 below compares size and power for permutation tests

using the unweighted and weighted test statistics.

As shown in Figure 1, the relative performance of the unweighted and weighted test statistics depends on the magnitude

of intraclass correlation. The weighted test statistic achieves greater power than the unweighted when the between-cluster

heterogeneity θ is small – in this simulation setting, < 0.1. The difference is substantial, especially for the effect

sizes that are of practical relevance, i.e., those associated with power around 80%. For example, when θ = 0.01,

for effect size β = 0.076, the weighted test statistic achieves 80% power for the given sample size whereas the

unweighted test statistic is only associated with 70% power. As θ increases to values close to 0.1, their performances

become almost identical – suggesting that unweighted test statistics may be preferable because of their simplicity. As

θ becomes very large, e.g. 0.5, the unweighted test statistic is associated with greater power than the weighted test statistic.

We also evaluate a test statistic where the pairwise treatment effect estimate was obtained using a Cox proportional

hazards model and its associated robust variance estimate that takes into account the correlation among time to event

endpoints [18]. Our results revealed that this test statistic is associated with lower power than both the unweighted and

weighted test statistics considered above, regardless of the magnitude of intraclass correlation. This may result from the

fact that this robust variance approach was developed for settings with a large number of small clusters and does not work

well for the settings with a small number of large clusters.

The relative performance of the unweighted and weighted test statistics depend crucially on the magnitude of intraclass

correlation and the level of heterogeneity in cluster sample sizes. If the sample sizes for all clusters are equal, then the

unweighted and weighted test statistics will lead to the same results irrespective of the magnitude of intraclass correlation.

When sample sizes vary across clusters, the relative performance of these two test statistics may change depending on the

magnitude of intraclass correlation. In these simulated settings, the intraclass correlation ρ for the underlying failure time

is given by θ2

θ2+σ2 . The results suggest that, for smaller ρ, e.g. ρ < 0.01 in the current setting, the weighted test statistic

tends to be associated with greater power than the unweighted one; as ρ increases to greater than 0.01, the advantage of

the weighted test statistic decreases. For larger ρ such as 0.05, the unweighted test statistic yields greater power than the

weighted one. The results are not surprising as the optimal weight would likely be the inverse of accurate unconditional

variance estimates for each pair of comparison as in other similar settings with exponential family endpoints [15, 17].

When the intraclass correlation is small, the effect of ignoring it tends to be small and the weights based on within

cluster variances only are close to being optimal; when the intraclass correlation is large, weights based on within cluster

variances alone would be further away from the optimal weights. For CRTs with a binary or continuous outcome, the

optimal weights to be used in a weighted t-test are [17]

wi =
mi

1 + ρ(mi − 1)
,

5
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Figure 1. Empirical size/power estimates for 0.05 level test of the null hypothesis H0: β = 0 using the unweighted (solid lines) and weighted (dotted lines) test statistics, for

right-censored endpoints and varying magnitude of treatment effect β and standard deviation of between-cluster variation θ, based on 1000 experiments. The underlying failure

times Tik’s were generated according to log(Tik) = bi + α + βXi − ǫik , where bi ∼ N(0, θ2) and ǫik ∼ exp{−exp(−ǫ)}. The censoring times were assumed to

follow a uniform distribution with support on [1, 2].
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where ρ denotes the intraclass correlation and mi represents the sample size for cluster i. As can be seen from this

formula, if the clustering effect is small so that ρ is close to 0, weights based on individual cluster sizes are close to the

optimal weights; on the other hand, if ρ is large, the weights tend to be constant so that equal weights may be closer to the

optimal weights.

We also considered the setting where ǫik follows a normal distribution N(0, 1), implying that Tik follows a log-normal

distribution conditional on bi. The results are similar (Figure 2) irrespective of the underlying failure time distributions.

With right-censored time-to-event endpoints, we can not calculate the intraclass correlation ρ directly because the

underlying failure times are not completely observed. We investigate the usefulness of estimating ρ based on the binary
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Figure 2. Empirical size/power estimates for 0.05 level test of the null hypothesis H0: β = 0 using the unweighted (solid lines) and weighted (dotted lines) test statistics, for

right-censored endpoints and varying magnitude of treatment effect β and standard deviation of the between-cluster variation θ, based on 1000 experiments. The underlying

survival times Tik were generated according to log(Tik) = bi + α + βXi + ǫik , where bi ∼ N(0, θ2) and ǫik ∼ N(0, 1)}. The censoring times were assumed to follow

a uniform distribution with support on [1, 2].
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event indicator as an approximation of the ρ for the underlying failure time. Note that when estimating ρ, only data from

the control communities will be used to avoid the possible extra heterogeneity in outcomes caused by the treatment. Let p

denote the overall proportion computed from all control clusters, mH denote the harmonic mean of the individual cluster

sizes, and s2 denote the empirical variance of cluster proportions. The between-cluster variance σ2
B can be estimated as

[17]:

σ̂2
B = s2 −

p(1 − p)

mH

.

We can then estimate the intraclass correlation ρ as follows:

ρ̂ =
σ̂2

B

p(1 − p)
.
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Figure 3. True intraclass correlation for the underlying failure time (solid lines) and estimated intraclass correlation based on binary event indicator (dotted lines) for

varying magnitude of standard deviation of the between-cluster variability θ, based on 1000 experiments. The underlying failure times Tik were generated according to

log(Tik) = bi + α + βXi + ǫik , where bi ∼ N(0, θ2) and ǫik ∼ N(0, 1). The censoring times were assumed to follow a uniform distribution with support on [1, 2].
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For the settings we consider, we find that the estimated ρ based on the binary event indicator is generally smaller than

the true ρ, and the difference between them increases as ρ increases (Figure 3). Therefore, when prior knowledge of ρ is

not available, we may in practice estimate ρ based on the binary event indicator data, but must recognize that this will

underestimate the true ρ.

In addition to right-censored endpoint, we also consider interval-censored endpoints by setting two observational times,

both distributed as uniform, on intervals [1, 2] and [2, 3], respectively. The pair-wise treatment effect estimates are obtained

using Cox proportional hazards model for interval-censored observations using an R package “frailtypack”. Results are

summarized in Figure 4. As before, when the between-cluster heterogeneity θ is small, the weighted test statistic achieves

greater power than the unweighted test statistic, and their relative performance reverses when θ becomes large.

2.2. Correlated outcomes across communities

In some settings, outcomes from different communities may be correlated. For example, communities geographically

near each other or clusters that share similar community characteristics may have outcomes that are more correlated

with each other than they are with others. In the context of HIV prevention studies, outcome differences between the

treatment arms may be diluted as a result of sexual contacts formed between intervention and control communities. The

customary main aim of a CRT is to measure the overall treatment effect, defined as the difference in outcomes among

interventions if they are implemented throughout populations under study. If there is a single intervention and a control

condition, mixing between communities assigned to different treatment policies will tend to attenuate this overall effect.

The term interference between units has been used to describe the phenomenon that outcomes of one unit may be affected
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Figure 4. Empirical size/power estimates for 0.05 level test of the null hypothesis H0: β = 0 using the unweighted (solid lines) and weighted (dotted lines) test statistics, for

interval-censored endpoints with varying magnitude of treatment effect β and standard deviation of the between-cluster variability θ, based on 1000 experiments. The underlying

failure times Tik were generated according to log(Tik) = bi + α + βXi − ǫik , where bi ∼ N(0, θ2) and ǫik ∼ exp{−exp(−ǫ)}. Interval-censored observations were

generated by comparing the failure times to two observational times, both distributed as uniform, on intervals [1, 2] and [2, 3].
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by the treatment assignments of other units (see for example, [19]). Under the null hypothesis of no treatment effect, the

permutation test has the correct type I error and remains valid as randomization is the sole basis for inference and no

treatment effect implies no interference between units [14].

We investigate the validity and power of the permutation test in such settings by simulating outcome data from 10 pairs of

communities and specifying correlated cluster-specific random effects bis within and between pairs of communities. More

specifically, we group 10 pairs into 5 blocks, where each block contains 2 pairs of communities and

(b2i−1,0, b2i−1,1, b2i,0, b2i,1)
T ∼ MV N((0, 0, 0, 0)T , Rθ2), i = 1, 2, · · · , 5,
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Table 1. Empirical estimates of P (reject H0) for right-censored data for varying within- and between- cluster correlations

(ρw and ρb), based on 10,000 experiments

ρw = 0.5 ρw = 0.2 ρw = 0
ρb = 0.2 ρb = 0.1 ρb = 0

θ β Tu Tw Tu Tw Tu Tw

0.001 0 0.049 0.050 0.050 0.050 0.050 0.050

-0.1 0.499 0.598 0.498 0.598 0.499 0.598

-0.2 0.930 0.988 0.931 0.988 0.930 0.989

0.1 0 0.049 0.050 0.046 0.046 0.048 0.050

-0.1 0.366 0.388 0.306 0.319 0.280 0.285

-0.3 0.985 0.998 0.975 0.989 0.965 0.981

0.5 0 0.047 0.047 0.046 0.048 0.046 0.048

-0.2 0.186 0.161 0.135 0.120 0.116 0.108

-0.5 0.754 0.672 0.573 0.492 0.482 0.412

where

R =













1 ρw ρb ρb

ρw 1 ρb ρb

ρb ρb 1 ρw

ρb ρb ρw 1













.

We generate the times to infection in community i from an exponential distribution with hazard rate λ0 · exp(bi)exp(βXi),

where X denotes the treatment indicator and exp(β) represents the treatment effect (hazard ratio comparing treatment with

control). Throughout we fixed λ0 = 0.2. Censoring times, C, were generated from a Uniform distribution with support

[1,2]. Generated infection times were compared to the censoring times to create the time to event outcomes (U, δ), where

U = min(T,C) and δ = 1(T ≤ C). Within each pair, we fitted a Cox proportional hazard model h(t) = h0(t)exp(βX),

where X denoted the treatment indicator, and obtained an estimate for β, β̂i, and its standard error estimate si = ŝ(β̂i). The

unweighted and weighted test statistic considered were Tu =
∑

i β̂i and Tw =
∑

i s−2
i β̂i as before. Table 1 summarizes

the size and power of the permutation test using unweighted and weighted test statistics for varying treatment effect β

and correlation structure. The permutation test has the correct Type I error and remains valid when the outcomes from

different communities are corrected. When θ is small (e.g. intraclass correlation ρ < 0.01 in the current setting), the

weighted test statistic is associated with greater power; as θ gets larger, the unweighted test statistic yields increasingly

greater power.

2.3. Unmatched parallel cluster randomized trials

The class of test statistic we consider is based on pairwise treatment effect estimates. In matched-pair cluster-randomized

trials, the pair-specific treatment effect estimates are obtained from data generated by each pair. We next consider

extension of this approach to unmatched cluster randomized trials. Suppose that there are J1 communities randomized

to treatment and J2 communities randomized to control. Let Zj = 1 if cluster j is assigned to treatment and Zj = 0 if

this cluster is assigned to control so that J1 =
∑J1+J2

j=1 Zj . Let Z = (Z1, . . . , ZJ1+J2
) denote the vector of treatment status

for the J1 + J2 clusters. Let D = (U, δ,X,Z) denote the data matrix consisting of the time-to-event outcomes (U, δ),

covariates X, and treatment assignment Z. Let d
obs denote the observed data matrix for the realized assignment. Let

D(ℓ) = D(Zℓ) = (U, δ,X,Zℓ) denote the permuted data matrix where Z
ℓ denote a re-randomization of Z. Under the null
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hypothesis H0 of no treatment effect,

Pr(D = d(zℓ) | Z
p
= z

obs,D = d(zobs)) = M−1,

where we use “
p
=” to denote “is a permutation of” and M is the total number of permutations (J1 + J2)! (or

(

J1+J2

J1

)

if

only distinct treatment assignments are considered). That is, the observed data matrix, dobs, can be viewed as a randomly

selected element from the set
∏

, consisting of M matrices d(zℓ). It follows that if T = T (D) is any test statistic, the

observed value of T can be viewed under H0 as a random sample of size 1 from the resulting permutation distribution of

values {T (d(zℓ)) | d(zℓ) ∈
∏

}. This provides the basis for valid inferences about H0.

Here we consider a specific type of test statistic to be the weighted average of all pair-wise treatment effect estimates.

More specifically, let θ̂jj′ denote the treatment effect estimate based on data from jth community from the intervention

arm and j′th community from the control arm. The test statistic we consider is
∑

j,j′ wjj′ θ̂jj′ . That is, we will estimate

a treatment effect based on data from each of the all possible treatment-control pairs and use a weighted average of

these pair-wise treatment effect estimates as the test statistic. Each permuted dataset is obtained by randomly allocating

J1 communities out of J1 + J2 communities to the intervention arm. The permutation distribution is then generated by

evaluating the same test statistic on each permuted dataset. A p-value can be obtained as above. We note that alternative

test statistics can also be used. For example, we can use treatment effect estimated from models for correlated failure time

data. Commonly-used approaches include a pseudo-likelihood approach with a working independence assumption [20]

and a frailty model approach where parametric random effects are used to capture the correlation among clustered data [21]

To illustrate, we use this permutation test to analyze data from a cluster-randomized trial evaluating the effect of

surveillance for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE)

colonization and of the expanded use of barrier precautions compared with existing practice on the incidence of MRSA or

VRE colonization or infection in adult ICUs [22]. This study enrolled 18 ICUs, 10 of which received intervention. Data

on times to MRSA or VRE colonization or infection were collected. The total number of subjects included in the analysis

was 3447; the sample sizes for individual ICUs varied from 105 to 315. For each pair of intervention-control ICUs, we

calculate a treatment effect estimate using Cox proportional hazard model and its associated robust variance estimate

[18]. We consider two test statistics, unweighted and weighted, with weights proportional to the inverse of the conditional

within-cluster variance estimates. The resulting p-values (median, [25th, 75th percentiles]) based on 100 permutation

tests were 0.38 [0.37, 0.39] and 0.45 [0.44, 0.46] respectively, suggesting that the intervention under evaluation did not

significantly reduce times to MRSA or VRE colonization or infection.

3. Cluster randomized trials with stepped-wedge design

In contrast to the parallel design for cluster-randomized trials mentioned above, the stepped-wedge design allows clusters

to cross over to the experimental intervention in a unidirectional manner at different times. The time of this crossover to

the intervention is randomized. At each time point, some clusters initiate the intervention; the responses in all clusters are

measured. Permutation methods for parallel cluster-randomized trials involve random allocation of treatment assignment

to clusters and do not apply to stepped-wedge design because clusters in a stepped-wedge cluster-randomized trials will

all receive the intervention over time. Instead of randomly allocating treatment assignment, we propose to randomly

assign the order of receiving the intervention.
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Hosted by The Berkeley Electronic Press



Statistics

in Medicine R. WANG and V. De Gruttola

Table 2. Empirical estimates of P (reject H0) comparing the permutation approach(TMM ) and mixed-effects models

(MM ) for step-wedge design for number of periods J = 6, standard deviation of the cluster-specific random effect

θ = 0.1, varying number of clusters I , number of individuals sampled per cluster at each time interval N , and the

intervention effect β, based on 10,000 experiments

β = 0 β = 0.1 β = 0.3
I N Error distribution MM TMM MM TMM MM TMM

10 100 Normal 0.056 0.049 0.629 0.581 1 1

Cauchy 0.051 0.049 0.051 0.049 0.053 0.052

Lognorm 0.059 0.047 0.221 0.186 0.928 0.898

Pareto 0.059 0.053 0.756 0.723 1 0.999

10 25 Normal 0.061 0.050 0.257 0.213 0.953 0.929

Cauchy 0.053 0.055 0.053 0.054 0.053 0.057

Lognorm 0.059 0.053 0.108 0.097 0.475 0.432

Pareto 0.060 0.050 0.334 0.292 0.978 0.968

5 50 Normal 0.070 0.044 0.244 0.167 0.945 0.858

Cauchy 0.053 0.043 0.053 0.044 0.054 0.047

Lognorm 0.060 0.044 0.106 0.076 0.466 0.343

Pareto 0.068 0.045 0.322 0.232 0.974 0.935

Suppose there are J periods, each of which is denoted by j, j = 1, . . . , J . We let the first period (j = 1) serve as the

the baseline period for all clusters. Suppose that at each subsequent period, j = 2, . . . , J , Ij clusters are randomized to

initiate the intervention. Under the null hypothesis of no intervention effect, we can obtain the null distribution of the test

statistic by permuting the order in which clusters start receiving intervention; we then compute the test statistic using the

permuted order of assignment. We can then compare the observed test statistic to its permutation distribution under the

null hypothesis. That is, we randomly assign each cluster to initiate treatment at one of possible periods while preserving

the number of clusters assigned to the different treatment initiation periods as the observed data. Operationally, this is

done by creating a vector of length I (the total number of clusters), denoted as I. Each element of this vector indicates

the period in which treatment is initiated; the elements of this vector I are permuted to conduct the test. Permuting the

elements of vector I ensures Ij clusters assigned to each possible treatment starting points in the re-randomized datasets.

The test statistic we consider is the estimated treatment effect from the mixed effect model for correlated outcomes with

fixed period effects.

We simulate data from a stepped-wedge design with I clusters, J periods, Ij clusters are randomized to receiving

the intervention at each period, and N individuals sampled per cluster per time interval. Let Yijk denote the response

corresponding to individual k at time j from cluster i, and let Yij denote the mean for cluster i at time j. Yijk is generated

under the model:

Yijk = µ + αi + γj + Xijβ + eijk, (1)

where αi is a random effect for cluster i, γj is a fixed effect for time interval j (j = 1, · · · , J , and γ1 = 0), Xij

is an indicator of the treatment assignment for cluster i at time j and β is the treatment effect. We consider four

distributions for eijk, including 1) Normal: eijk ∼ N(0, 1); 2) Cauchy with location parameter 0 and scale parameter 1,

i.e., eijk ∼ 1
π(1+eijk)2 ; 3)Lognormal where the mean and standard deviation of the logarithm were 0 and 1; and 4) Pareto

with location parameter 1 and shape parameter 3, i.e., eijk ∼ 3
e4

ijk

, for eijk > 1.

Tables 2 − 3 summarize the empirical size (columns corresponding to β = 0) and power (columns corresponding to
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Table 3. Empirical size estimates comparing the permutation approach (TMM ) to mixed-effects models (MM ) for step-

wedge design for θ = 0.1, total number of periods J = 6, and varying ρ, ν, number of clusters I , and number of

sampled subjects N per cluster at each time period, based on 10,000 experiments. The outcomes Yijk’s are generated

according to Yijk = µ + αi + γj + (αγ)ij + Xijβ + eijk, where (α1, . . . , αI)
T ∼ MV N(0,Σ), Σ is an exchangeable

variance-covariance matrix with variance θ2 and covariance ρ ∗ θ2, and (αγ)ij ∼ N(0, ν2).

I N ρ ν MM TMM

10 100 0 0.1 0.163 0.050

0 0.2 0.374 0.051

0.1 0 0.055 0.048

0.2 0 0.057 0.048

10 25 0 0.1 0.085 0.051

0 0.2 0.239 0.053

0.1 0 0.060 0.053

0.2 0 0.063 0.050

5 50 0 0.1 0.122 0.045

0 0.2 0.166 0.048

0.1 0 0.068 0.045

0.2 0 0.065 0.042

non-zero β) comparing two approaches: 1) fitting a mixed effect model for correlated outcomes with fixed time effects

(MM); and 2) permutation test with the estimated treatment effect from the mixed effect model (TMM ).We first consider

the settings where αi
i.i.d
∼ N(0, θ2) (see Table 2). When sample sizes are relatively large with I = 10 and N = 100,

the usual mixed-effects model (MM) performs well, even when the error distributions deviate from the normal. TMM

has similar performance as MM . As sample size decreases to I = 5 clusters and N = 50 subjects per cluster at each

time interval, the permutation tests generally control type I errors better than does MM . Comparing the settings where

I = 5 and N = 50 to those where I = 10 and N = 25 (which preserves total sample size), the improvement in control

of type I error associated with the permutation test is more evident when the number of clusters is small, rather than

when the number of subjects within each cluster is small. This phenomenon is likely due to the fact that in the settings

we considered, wherein θ = 0.1, the effective sample size accounting for intraclass correlation for I = 5 and N = 50 is

smaller compared that for I = 10 and N = 25.

Model (1) implies that observations in the same cluster at different periods have the same correlation as two in the same

cluster in the same period. To reflect the setting where observations in the same cluster in the same period have stronger

correlation than those in different periods, we can include a random interaction term in the model:

Yijk = µ + αi + γj + (αγ)ij + Xijβ + eijk, (2)

where (αγ)ij ∼ N(0, ν2). We also consider the settings in which data from different clusters may be correlated; here

(α1, . . . , αI)
T ∼ MV N(0,Σ) and Σ is an exchangeable variance-covariance matrix with variance θ2 and covariance

ρ ∗ θ2. In such settings, the permutation test approaches control type I error better than MM regardless of sample size

(see Table 3). If the true data generating process includes an additional random interaction term that is ignored in data

analysis, testing based on mixed effects model can lead to severely inflated type I error; in contrast, the permutation test

remains valid.
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4. Discussion

We consider a class of test statistics formed by a weighted average of pairwise treatment effect estimates and evaluate the

effect of weights on efficiency. Accurate estimates of the unconditional variance of pairwise treatment effect estimates

incorporating intraclass correlation would improve efficiency of the permutation test, but these are generally difficult

to obtain. Therefore, using equal weights is an attractive approach, in terms both of efficiency (it may be closer to the

optimal weights) and ease of implementation. If the individual cluster sample sizes vary substantially and the intraclass

correlation is negligible, the weighted version of the test statistic may lead to greater power than the unweighted test

statistic. This advantage decreases as the intraclass correlation increases. To guide the choice of test statistic, we may

use prior knowledge on the intraclass correlation or estimate the intraclass correlation using a binary event indicator

to provide a lower bound for the true intraclass correlation of the underlying failure time. Because the estimation of

intraclass correlation uses data from the control arm only and this estimate contains no information about treatment effect,

using it to select permutation test statistic does not bias the subsequent test for treatment effect. Furthermore, even if the

estimated intraclass correlation is imprecise (e.g., in the case of time-to-event endpoints) and the weighted test statistic

is in fact associated with lower power than the unweighted test statistic, it affects only the efficiency, not the validity, of

the permutation test. For unmatched trials, we can construct the test statistic by considering all pairwise treatment-control

comparisons. Taking into account correlation among β̂ij and β̂ij′ may further improve the efficiency of the test and is

worthy of further investigation.

If we postulate a semiparametric or parametric model for the treatment effect, the permutation tests can be inverted to

obtain point and interval estimates for the model parameters. For time-to-event outcomes, we may consider an accelerated

failure time model. More specifically, let T1 and T2 denote survival times sampled from F1(·) and F2(·), the survival

distributions of two treatment groups respectively and β > 0 is some positive constant. According to this model, T1

has the same distribution as βT2; or equivalently, F2(t) = F1(βt). Let β0 be some specified value and consider testing

H(β0) : β = β0. A point estimate for β is given by the value for which there is the least evidence against H(β0) : β = β0,

say, by giving the largest p-value. A confidence interval of size 100(1 − α)% for β can be formed by the set of β0 which

are not rejected at the α level of significance. It is important to note that, for censored observations, the transformed

data arise from two groups with equal underlying survival distributions but, in general, different underlying censoring

distributions. The methods described in [23] can be used to construct the permuted datasets that are equally likely

as the observed data to form the null distribution for the test statistics. Confidence intervals obtained by inverting

the permutation tests will be similarly affected as the p-value in the sense that more efficient tests will be associated

with narrower confidence intervals. Similar approach can be used for continuous outcomes generated under the model

described in Section 3 to obtain confidence intervals. In this case, the test for H(β0) : β = β0 can be readily constructed

by transforming the original outcomes Yij to Y ∗
ij = Yij − Xijβ0.

Test statistics of the class we consider are easy to implement, flexible, and useful in a variety of settings. Although

motivated by analysis of cluster-randomized trials with time to event endpoints, the class we discuss applies to any type

of endpoint. When estimating pairwise treatment effect, we can incorporate covariates, conduct variable selection on

covariates, and accommodate missing data. For example, in the presence of missing data, the pairwise treatment effect

estimate may be obtained from inverse probability weighted generalized estimating equations [24]. One limitation of

this approach arises in settings where the cluster-randomized trial includes a large number of small clusters. In this case,

treatment effect estimates based on pairwise estimates may not be stable, and sometimes cannot be estimated due to

sparseness of data.

In analyzing cluster-randomized trials, the permutation test provides an attractive alternative to its parametric counterparts
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for testing the null hypothesis of no treatment effect. It remains valid in small samples and in the presence of correlation

across different clusters regardless of underlying data distribution, and is robust to mis-specification of the models used

to construct the test statistic.
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