

The use of Petri net theory for simplexys expert systems
protocol checking
Citation for published version (APA):
Lammers, J. O., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Information and
Communication Technology (ICT) (1990). The use of Petri net theory for simplexys expert systems protocol
checking. [Pd Eng Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 22. Aug. 2022

https://research.tue.nl/en/publications/376870b4-b318-4dae-be9a-ac66486b33cf

The Use of
Petri Net Theory for
Simplexys Expert Systems
Protocol Checking
by
J.O. Lammers

EUT Report 9O-E-238
ISBN 90-6144-238-9

June 1990

ISSN 0167- 9708

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering

Eindhoven The Netherlands

THE USE OF PETRI NET THEORY

FOR SIMPLEXYS EXPERT SYSTEMS PROTOCOL CHECKING

by

EUT Report 90-E-238

ISBN 90-6144-238-9

Eindhoven

June 1990

Coden: TEUEDE

Final report of the post-graduate course "Information and
Communication Engineering" of the Institute for Continuing
Education (IVO) of the Eindhoven University of Technology,
followed in the period May 1988 till May 1990.

Supervisors: Prof. dr. ir. J. E. W. Beneken
and

Dr.ir. J.A. Blom,
Division of Medical Electrical Engineering,
Faculty of Electrical Engineering,
Eindhoven University of Technology,
P. O. Box 513,
5600 MB Eindhoven,
The Netherlands

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Lammers, J.O.

The use of Petri net theory for Simplexys expert systems
protocol checking / by J.O. Lammers. - Eindhoven: Eindhoven
University of Technology, Faculty of Electrical Enginnering. -
Fig., tab. - (EUT report, ISSN 0167-9708; 90-E-238)
Thesis, Institute for Continuing Education (IVO), Eindhoven. -
Met lit. opg., reg.
ISBN 90-6144-238-9
SISO 608.1 UDC 616-089.5 NUGI 742
Trefw.: Petrinetten; expertsystemen / patientbewaking;
expertsystemen.

3

.... Abstract

The Simplexys real time expert systems toolbox allows the design of expert
systems that are so compact and efficient that they allow real time operation

even on a small computer such as a Pc. Simplexys expert systems are also

reliable. because the logical correctness and consistency of the knowledge
base is checked using a variety of techniques. Due to this knowledge checking
before the final expert system is built. little checking is necessary at run time.

A Simplexys knowledge base contains a protocol that describes the time

sequencing knowledge that is part of the knowledge base. This protocol
closely resembles a Petri net. Petri net theory is used to realize an algorithm

that checks the correctness of protocols.

Lammers, J.O.
THE USE OF PETRI NET THEORY FOR SIMPLEXYS EXPERT SYSTEMS PROTOCOL
CHECKING.
Faculty of Electrical Engineering, Eindhoven University of
Technology, The Netherlands, 1990.
EUT Report 90-E-238

4 COI1lC!1I~

. Contents

Abstract. .. 3

Summary , 6

1 Introduction , ,......................... 8

2 Condition/Event nets , , , , , , . , ... , 11
2.1 Introduction , ... , , .. , ... ,......... 11
2.2 Graphical representation of a Petri net , ,......... 11
2,3 State transitions , , ... ,.... 12

2.4 Other Petri net classes , , ,.... 14

3 Place/Transition nets , . 16

3.1 Introduction , ,...... 16

3.2 Basic definitions ... ,.,........................... 16

3.3 Enabling and firing of transitions . I7

3.4 Interaction between individual transitions .',........... 19

3.5 Properties of P /T-nets , . 21

4 The protocol part of a SimplelQ's knowledge base 25
4.1 The Simplexys toolbox. 25

4.2 The Simplexys knowledge base '............ 27

4.3 The correspondence of protocols and Petri nets , 30

5 The Petri net class that represents correct protocols 32

5.1 Introduction 32

5.2 Requirements for correct protocols 33

5.3 Safe Place/Transition nets versus Condition/Event nets. . . . 35

5.4 Liveness of the protocol 35

5.5 A correct protocol represents a Live Safe PIT-net 37

5 Contents

6 Analysis of Petri nets . 39
6.1 Introduction 39
6.2 Terminology and theorems 39

6.3 Decomposition of the analysis 43
6.4 Analysis of strong connectedness . 44
6.5 Simultaneous firing of transitions. 44
6.6 Analysis of liveness and safeness 47
6.7 Methods that reduce the protocol"s complexity 49

7 Realization of the protocol checker . 52

7.1 Introduction 52
7.2 The data structure . 52
7.3 Checking of strong connectedness 53

7.4 Checking of liveness and safeness 54
7.5 Construction of the reachability tree 55
7.6 The data structure of the reachability tree '" 60
7.7 Error messages ... 62

8 The user interface of the protocol checker 63
8.1 Introduction 63

8.2 A protocol represents a Petri Net 63
8.3 Syntax checking. 65
8.4 Topologic checking .. 68

8.5 Checking of the dynamic behavior . 71
8.6 Properties of a correct protocol . 77

8.7 Properties of an incorrect protocol 77
8.8 List of warning and error messages 79

Conclusions . 81

References 83

Appendix A Free Choice nets 86

6 Summary

Summary

Many programs in the medical domain contain much very specific heuristic
knowledge. In standard software, the medical knowledge would mostly be

spread out all through the program, which makes it difficult to change and
maintain those programs. In expert systems, the knowledge is separately
specified in a knowledge base which is easy to understand, self-documenting,
and thus easy to modify and update.

The Simplexys real time expert system toolbox is written in Pascal. The

knowledge in a Simplexys knowledge base is compiled by a knowledge
compiler program into Pascal code. This code results in a runnable expert
system when it is linked with the inference engine, a Pascal program that
peruses the knowledge base in order to derive conclusions from input data.
Compilation has two functions: the creation of more efficient code and the
verification of the correctness of the code in order to prevent run time errors.

Correctness checking of the knowledge base is performed before the final

expert system is built. It entails two different mechanisms. First, semantic

checking of the knowledge base involves an analysis of the interaction

between the individual chunks of knowledge. Second, protocol checking
involves the examination of the correctness of the time-sequencing knowledge

that is contained in the knowledge base. In a monitoring situation, the notion
of context is essential; the meaning of the data may depend on the

circumstances. The context information and the transitions between contexts
are implemented in a protocol that closely resembles a Petri net.

The set of active states in a Petri net represents a context in Simplexys; a
context specifies the final conclusions or goals which the inference engine

must derive from the input data. A context represents the current situation, a
transition represents progress from one context to another. In every context,

the inference engine will evaluate the conditions that must hold before a

transition to a new context can take place. The Petri net denotes a protocol:
progress by a sequence of transitions from the initial context (protocol start)

through other contexts toward the final context (protocol end). Given the
close resemblance between Simplexys protocols and Petri nets, the design and

realization of the protocol checker is based upon Petri net theory.

7 Summary

In order to be able to use Petri net theory to check the correctness of
Simplexys protocols, the correspondence between the protocol and a Petri net
class must be established. In Simplexys, a context is a set of active states; a
state is either true (active) or false (inactive). In a Petri net, an active state is
marked with one or more tokens. In Simplell.)'s, multi-token states, generally
possible in Petri nets, are thus meaningless. Therefore a Petri net class in
which there is at most one token per state is needed to represent the

protocol; the Petri net classes Condition/Event nets and Safe
Place/Transition nets are suitable for this.

P /T-nets rather than C/E-nets are chosen to represent protocols because
transitioQ.s in a C/E-nets have a restriction that is not implemented in

Simplell.),s. Safeness of the P /T-net is checked to guarantee at most one token

per state. Liveness is checked to guarantee that the protocol never comes to a
deadlock: a context from which no further progress is possible because no
transition can occur. Furthermore, live ness guarantees that the protocol can
always tenninate, independent of the transitions that occurred before.

Finally there is a check for conflicts between transitions that can occur at the
same time. Conflict checking is only partial, because during checking
generally the knowledge about the exact conditions for the occurrence of a
transition is missing.

The main goal of checking is to test whether the semantics of the knowledge
base agree with the assumed intentions of the knowledge engineer. Where a

Simplexys protocol differs from a Live Safe P /T-net, an appropriate warning
message is given. Due to checking, knowledge engineers have a tendency to

learn to compose their protocols in the form of correct Petri nets; checking
assists the knowledge engineer in understanding the knowledge base during
its development. If it were possible to execute a knowledge base with a
protocol that the checker finds incorrect, run time errors like a deadlock
context, a non-terminating context or a conflict could occur.

].8 Imroductlon

1· Introduction

This document is the final report of an investigation concerning the use of
Petri nets in Simplexys, the real time expert system toolbox that has been

developed by the Medical Electrical Engineering division of the Eindhoven
University of Technology [Blom, 1990].

The Simplexys expert system toolbox is used to build real time expert systems.

Major applications of Simplexys-generated expert systems are in patient
monitoring. One of the applications that is currently under development, is a
rule based alarms system for a ventilator (respirator; anesthesia machine).

The sensor outputs are interpreted by a Simplexys knowledge base in order to

generate specific alarm messages [van der Aa, 1990]. Another application is

an automatic blood pressure controller for patients undergoing cardiac

surgery [Zwart, 1990; Lammers, 1990].

A protocol is a description of the lime sequencing knowledge part of a
Simple",)'S knowledge base. A protocol closely resembles a Petri net, and Petri
net theory is used to develop and realize a program that analyzes the
correctness of the protocol. Important aspects of protocols in Simplexys
knowledge bases are:

A. Validity

The (semantic) meaning of the protocol agrees with the intentions of the
knowledge engineer.

B. Con·ecllless

The protocol has a unique meaning; it is executable, and does not come to a
deadlock.

C. Documentation

The knowledge base is a documentation of the knowledge that is

incorporated in the system; the protocol is part of this documentation.

In order to use Petri net theory to check the correctness of protocols, the
correspondence between protocols and a certain Petri net class must be
established first.

1.9 Introduction

For the choice of the kind of Petri net that represents correct Simpie>;ys
protocols, the following are important:

1. The Petri net class that represents protocols.
2. The properties that a correct protocol should have.
3. The interpretation of a protocol.
4. Software tools for protocol design and analysis.

1. The Petri Net class that represents a protocol

There are several families, classes and sub-classes of Petri nets. A Petri net
class that is suitable to represent a protocol supports sophisticated constructs,
so that a compact and clear specification is possible. However, not every
construct should be allowed: the knowledge engineers should be convinced to
formulate the problem in such a way that a correct Petri net results.

Furthermore the Petri net class should make checking possible. The
significance of the features that can be checked, and the methods through
which checking is performed, depends strongly upon the Petri net class that is
used.

2. The properties that a correct protocol should have

Each Petri net of some class has its specific properties. Correct protocols
should have certain properties; otherwise an appropriate and specific error
message should be reported. Furthermore, in order to assist the knowledge
engineer with the design and development of the protocol, additional
properties can be checked. The following questions must be answered:

A. Which properties must a correct protocol have.
B. Which additional properties can be checked in order to assist the

knowledge engineer.

C. What is the meaning of these properties.
D. Through which methods can these properties be analyzed.

E. How are conflicts against these properties reported.

1.10 Introduction

3. The SimpleJ.ys illlerpretatioll of a protocol

After the expert system has been built, the Simple).')'s inference engine will

execute the protocol. Important issues are then:

A The execution of the protocol must agree with Petri net theory.
B. In a real time expert system the execution must be fast enough.
C. Little error checking can be afforded at run time.
D. Run time errors must be reported and if possible solved without a

system stop.

4. Software tools for protocol design and analysis

The Simplexys toolbox contains several programs that work together. The
protocol checker checks whether a protocol represents a correct Petri net. The

interpretation program is that part of the Simplexys inference engine that
executes the protocol. For development and debugging, a simulation tool is
available.

This document is built up as follows. Chapter 2 is a general introduction to

Petri nets. Necessary formal definitions follow in chapter 3. Chapter 4

describes the relation between protocols in a Simplexys knowledge base and
Petri nets, and the interaction between the protocol and the remainder of the

knowledge base.

In chapter 5 the properties of a correct protocol are specified, taking into
account the function of a protocol in a Simplexys knowledge base. Chapter 6
describes the algorithms through which a protocol is analyzed, and chapter 7

describes the implementation of these algorithms. Finally chapter 8 explains
the error and warning messages that are reported by the checker.

2.11 Condition/Event nelS

·.2 Condition/Event nets .

2.1 Introduction

Carl Adam Petri first described Petri nets [Petri, 1962]. During the last 25
years, Petri net theory has been developed further and many new results have

been derived. A Petri net models the time sequential or dynamic behavior of a
system or process, and Petri net theory supports the analysis of such systems
or processes. An important characteristic of a Petri net is its concurrency:
parts of the model can operate concurrently (simultaneously) with other parts
[Petri, 1986; Reisig, 1985].

This chapter explains the concepts and terminology of Petri nets. Section 2.2
describes the graphical representation of Petri nets. In section 2.3 the
dynamic behavior of an elementary net class (Condition/Event nets) is

discussed. Finally chapter 2.4 introduces Place/Transition nets, which are a
generalization of Condition/Event nets. Formal definitions will be given in
chapter 3.

2.2 Graphical representation of a Petri net

A Petri net contains four parts:

(a) A set of states, also called "S·elements", "places" or "conditions",
drawn as circles.

(b) A set of transitions, also called "T-elements" or "events", drawn

as boxes or bars.

(c) A set of arcs which represents the relation between states and
transitions, also called the "flow relation".
(d) A set of tokens, collectively called the "marking".

It depends on the Petri net class which terminology is used. In this chapter
Condition/Events nets (C/E-nets for short) are considered [Thiagarajan,
1986; Rozenberg, 1986]; the next chapter treats Place/Transition nets (P/T
nets). According to the Petri net class, S-elements are called "conditions" or
"places" and T-elements are called "events" or "transitions"; in Simplexys
protocols, the names "states" and "transitions" are used instead. To prevent
any confusion, for an S-element the name state and for an T-element the
name transition is used throughout the whole document.

2.12 CondHlOn/Evenl nets

An active state is marked with a token; the composition of one or more active

states is called the marking or the context in Simplexys. Generally, the initial
marking is indicated when a Petri net is drawn; figure 2. J shows a e/E-net
with its initial marking.

2.3 State transitions

A marking in a Petri net represents the set of active states; the initial marking
is the set of states that is active when the system starts up. In figure 2.1, sO

is the only state in the initial marking.

/;~}so

Figure 2.1
A Condition/Event net and
its initial marking

s2

• •

,3

Figure 2.2
A step is enabled

In figure 2.1, transition to is enabled by the initial marking sO, because all

states that have an arc to to contain a token. When to fires, there is a

change of state; the upstream state sO looses its token and the downstream
states s 1 and s2 get one (figure 2.2).

2.13 Condition/Event nets

In figure 2.2, both t 1 and t2 are enabled because the upstream states s 1
and s2 are marked. Transitions t1 and t2 can fire independently of each
other: if t 1 fires, t2 is still enabled, and the other way around. There is
concurrency: the left part of the net can operate independently of the right
part. Transitions that do not influence each other'S firing, are called a step.

53, -

•

Figure 2.3

sO

A choice is enabled

55

t.

56

Figure 2.4
Result of a sequence

Figure 2.3 results when both t1 and 12 have fired, in an arbitrary order or
at the same time. Now transition t7 is not enabled because not all its
upstream states are marked with a token: s7 must also be marked to enable
17.

As in figure 2.2, in figure 2.3 two transitions enabled, too. The transitions 13

and t4 are not a step like tl and 12, because after firing of 13, transition
t4 is not enabled anymore and vice versa. There is a choice to fire 13 or to
fire t4, but not both.

If transition 13 fires, the token flows from s4 to s7. If t4 fires instead, the
token flows to s5, and 15 is enabled. When 15 fires, the token flows to s6,
and t6 is enabled; when t6 fires, the token flows to s7. The context that
results in either case is (s3, s7), as shown in figure 2.4. This context finally
enables t7; if that transition fires, the net returns to its initial marking, the
one shown in figure 2.1.

2.14 Condition/bent nelS

In summary, initially sO is marked; by firing to. two net parts are made
active, which can operate independently. Finally, when 17 has fired, these
net parts are made inactive again and the system returns to its initial context;
thus the initial context (sO) equals the final context. In the right part of the

net, there is a choice at s4 between t3 and t4; choosing either path will

finally result in s7.

Important (and desired) properties of this net are that both choices at s4

result in s7, and furthermore that after splitting up at to, the two tokens
merge when t7 fires.

The dynamic behavior of a Petri net depends strongly upon the initial
marking. The same C/E-net as figure 2.1, with another initial marking, for
instance (s4, s5) will show a completely different dynamic behavior. When
(s4, s5) is the initial marking. the net will sooner or later come to a deadlock
because state s3 will never get a token, and thus t7 is never enabled.

The terminology of Petri nets and the way in which transitions fire has been

introduced now; only the concept state capacity is left. The state capacity
defines the maximum number of tokens that a state can carry. In C/E-nets,

the state capacity for each state equals one; a state is either active or not, and

a state cannot contain two or more tokens. As a consequence, a transition is

not enabled if one of its downstream states already carries a token. For
example, suppose that the initial marking of the net in figure 2.1 equals (s4,
s5) rather than (sO). Then the initial marking does not enable transition t4
because state s5 is already marked.

Note that in the Simplexys inference engine the restriction that every output

state must be unmarked to enable a transition is not implemented; instead
the tokens merge. When t4 fires from context (s4, 55), the new context is

just (55). This is discussed in further detail in chapter 5.

2.4 Other Petri net classes

For Condition/Event nets, the state capacity equals one for every state;

Place/Transition nets [Reisig, 1986] allow more than one token per state. The
state capacity is generally not the same for every state, and can be larger than
one, up to infinity. Transitions can fire only if the output states have enough

capacity left to store the transported tokens.

2.15 CondllionjE\"elll nets

The arc weight specifies the number of tokens that is transported when a
transition fires. The PIT-net of figure 2.5 describes a sender (states s1 and s2)
that produces 3 messages when 12 fires; the receiver (states s3 and s4) gets 2
messages from buffer s when t3 fires (if a state capacity or an arc weight
equals one, the number 1 is not indicated). The state capacity of the buffer
equals 8; when the buffer contains more than 5 messages, t2 is not enabled
and when it contains less than 2 messages, t3 is not enabled.

0,
• 53

"

" (,)

(~
~ " " . "

to) ¢:,
"

..
\

''--()c;;/
·.1t-;"4 "---€ " " "" '<l

Figure 2.5

Firing of tra115iti0115 in a P /T-net

A C/E-net is a special kind of P /T-net: all state capacities and arc weights
equal one. That is the reason that a transition is not enabled if one of its

output states already contains a token.

A further generalization of P /T-nets are Predicate/Event nets (Pr /E-nets for
short) [Genrich, 1986]. where tokens and arcs are labeled; tokens can only
flow along arcs with a corresponding label. Pr /E-nets are not considered in
further detail.

Another type of net that is used to specify the function of Programmable
Logic Controllers (PLCs) are Grafcets [Blanchard, 1977; Valette, 1986]. Since
Grafcets disagree with some of the basic Petri net properties, these are not
discussed in this document.

In the next chapter, the formal definitions for PIT-nets are given. It may
seem curious to study a Petri nets class that allows more than one token per
state, but there is a sub-class of P /T-nets that has attractive properties to
represent Simplexys protocols.

3.16 Place/Transition nets

3PlacejTransiUon nets·

3.1 Introduction

In chapter 2, Condition/Event-nets were introduced. This chapter describes a
more universal class of Petri nets: Place /T ransition nets (P /T -nets for short).
In order to let the terminology in this chapter agree with the Simplexys
terminology, the word state is used rather than place.

Most of the Petri net terminology that was introduced briefly in chapter 2, is

formally defined in section 3.2 and 3.3. Section 3.4 discusses the different
ways in which transitions can interact, and section 3.5 finally describes some
of the basic properties of Petri nets.

3.2 Basic definitions

A P /T-net contains the following parts [Reisig, 1985].

Definition [3.1] P/T-net
N = (S, T; F, 1(, M, W) (notation)
S: set of states or set of S-elements

T: set of transitions or set of T -elements
F; F!:; (Sx T) u (T xS), the set of arcs or the flow relation

K: the state capacity of every state
W: the arc weight of every arc
M; the initial marking or initial token distribution

The set (SxT) contains all couples {s, t} where s E Sand t E T. The flow
relation F is the set of couples {s, t} and {t, s}, where sand tare
connected by a directed arc. The inverse flow relation p-l contains all couples
{s, t} where {t, s} is in F, and all couples {t, s} where {s, t} is in F. The trace
F* denotes a sequence of elements of F.

The state capacity k(s) of a state is the maximum number of tokens that this
state can contain; state capacities need not be the same for every state.
Special cases occur if all state capacities are equal to one, or if all state
capacities are infinite.

3.17 Pla("crrran~ilion nets

The arc weight w(s,t) or w(t,s) is the number of tokens that is transported
when a transition fires; the arc weight is generally different for every arc. A

special case occurs if all arc weights are equal to one.

Definition [3.2] C/E-net
A C/E-net as an special kind of a PIT-net: all state capacities k E K and all
arc weights w E Ware equal to 1. The sets K and Ware omitted in the
definition.

A transition is enabled if (1) its input states contain at least the number of

tokens of the corresponding arc weight w(s,t) and (2) if its output states have

enough free capacity to carry the number of tokens specified by the arc
weight w(t,s). The formal definition for an enabled transition is given in the
next section.

Definition [3.3] The matrix representation
(a) N = (S, T; F, K. W, M) (N represents a PIT-net)
(b) N;j = W (t;, s~ - w(s;, t

J
) (contents of the matrix)

(c) N = I S I x III (matrix dimensions)
(d) The marking M is represented by a vector

An example of a PIT-net is given in figure 3.1; its matrix representation is
given in figure 3.2.

~_sl

•

Figure 3.1

'2 •

A PlacefTransition net

• ,3

s.

tl t2 t3 t4

51 1 -1 0 0

52 -1 1 0 0

53 0 0 1 -1 M '
54 0 0 -1 1

5 0 3 -2 0

N

Figure 3.2

0

1

0

\0

Matrix representation of figure

3.1

3.3 Enabling and firing of transitions

The preset and postset of a net element are defined as follows:

Definition [3.4] Preset and postset
(a) x E X where X = (S u T) (x can be any S- or T-element)
(b) Preset -x = {y E X I (y,x) E F}
(c) Postset x· = {y E X I (x,y) E F}

3.18 P!acc/Tri:lll~i(IOI1 ncu.

The preset of a net element is the set of upstream net elements or input net

elements; the postset the set of dOW1l51ream or output net elements. The
preset or postset of a state is a set of transitions; the preset or postset of a
transition is a set of states. Some presets and postsets of the net of figure 3.1
are:

11 = s2
"5 = t2

tl· = s1

s' = t3

Further definitions are:

·t2 = s1

"51 = tl
t2' = {s2, s}

s1' = t2

Definition [3.5] Markings, arc weight and state capacities
(a) If M is the current marking, M(s) denotes the number of tokens at state s
(b) w(s,t) denotes the weight of the arc from state s to transition t; wit,s)
is defined similarly.

(c) k(s) is the capacity of state s.

The conditions for an enabled transition are:

Definition [3.6] Enabled transition

M enables t -
(a) V s E ·t: M(s) ~ w(s,t) and
(b) V SEt·: M(s) + wit,s) ,; k(s)
(c) Notation M[t> (M enables t)

(d) For a C/E-net: V s E ·t: M(s) = 1 and V SEt·: M(s) = 0

A transition is enabled by a certain marking if every state in the preset
contains enough tokens (condition a) and if every state in the postset has

enough state capacity left to carry the transported tokens (condition b). The

conditions for an enabled transition in a C/E-net follow if w(s,t), wet,s) .and
k(s) are all set to 1. When an enabled transition fires, the old marking is

transformed into a new marking according to the following definition.

Definition [3.7) Firing of a transition
(a) M is the old marking, M" is the new marking
(b) Transition t is enabled

(c) Firing '" s E 1: M"(s) = M(s) - w(s,t) and
(d) '" SEt·: M"(s) = M(s) + wit,s)
(e) In matrix notation: M" = M + Nf, where fit) = I if t fires, else 0

(f) Notation M[t> M" (M is transformed to M" when t fires)

(g) For a C/E-net: VSE"1: M"(s) = 0 and '" SEt·: M"(s) = 1

When a transition fires, every input state looses the number of tokens that is

specified by the weight of the arc to that transition, and every output state

gets the number of tokens given by the weight of the arc from that transition.

~;.lY I':.i<'l' ·lr.ln~I\lun Il<..'l~

JA Interaction between indh-jdual transitions

The following definitions are illustrated with figure 3.3. A marking can enable

more than one transition concurrently. Independent transitions are called a
step.

Definition [3.8] Step tranSItions tl and t2 form a step -

(a) Both tl and t2 are enabled and

(b) If t I fires, then t2 is still enabled and

(c) If t2 fires, then t1 is still enabled

Figure 3.4 contains a number of steps. Nets that do not contain any step have

no concurrency because there is never more than one active state; such net

types are called S-graphs (definition Ala) and fulfill special topological

properties. Two transitions that are concurrently enabled, are called a choice

if the transitions are dependent.

Definition [3.9] Choice transitions tl and t2 are in choice -
(a) Both tl and t2 are enabled and

(b) If tl fires, then t2 is not enabled or

(c) If t2 fires. then tl is not enabled

If there is a choice between transitions, they cannot fire simultaneously; if

they do, a conflict occurs and the new marking is undefined. Figure 3.3 shows

some transitions that are in choice. Net types that have no choice are

deterministic because it is known for certain what the new context will be;

such net types are called T-graphs (definition Alb) and, like S-graphs, these

fulfill special topological properties.

Figure 3.3

Steps.

l t2. t3} at {s:t s2}

{t2, t61 at {sl, 54)

(t4. t5) 0 t (53, 54)

o.ncl so on

ChOice

(tl, t5) ot 53

(t4, t6) ot 54

lllustration of step and choice

3.20 Place/Transition nets

Firing a sequence of transitions transforms a certain marking into another:

Definition [3.10J Firing sequence

The set {II' t2, t2, •• In} is a firing sequence al marking MI ..
(a) MI[t l > (M J enables t l)

(b) MJti>Mi+l where Mi+l[ti+l> (after firing ti, ti+1 is enabled)
(c) The firing sequence {tl' t2, t3, •• tn} results from MI to Mn.
(d) Notation MI[{t j , t2, t3, •• tn} > Mn

In figure 3.3 at marking sO, the firing sequence {to, t2, 13, t6, t5, t7} results

in marking s7, but {to, 13, t4, t2, 15, 13, t6, t7} and many other firing
sequences also transform sO into s7.

The definition of confusion is illustrated with figure 3.4. Confusion is a

difficult concept to explain.

/

z

Figure 3.4 Confusion between X, Y and Z

Definition [3.11 J Confusion

The set of transitions {X, Y, Z} forms a confusion ..

(a) Both X and Yare enabled and not in choice with Z at marking M.
(b) After the firing of transition X from marking M, transition Y is in choice
with Z, but on the other hand

(c) After the firing of transition Y (instead of Xl from marking M, transition

X is not in choice with Z.

3.21 Plare!Tran~ilion nel~

In other words: confusion (X, Y, Z) means that whether or not there is a
choice between two transitions (Y and Z) depends on the firing of another
transition (X). Net types that are confusion-free are called Free Choice nets
(definition A.2).

3.5 Properties of PIT-nets

Topological properties result from the way in which the states and transitions
are connected. Some topological properties like step, choice and confusion
have already been introduced. Further topological properties are:

Definition [3.12) Pure and simple

(a) Pure: '<I XES u T : "X n X' = '" (no self loops)
(b) Simple: '<I x, yES u T : "X = 'Y and X· = y' => x = y

(0.) (b)

Figure 3.5

(a) A non-pure net

(b) A non-simple net

A net is pure if there is no arc from a transition to a state if there is an arc
from that state to that transition. Figure 3.Sa gives a non-pure net. A net is
simple unless there are states or transitions that have equal upstream and
equal downstream transitions or states. Figure 3.Sb gives a non simple-net.

3.22 Place/TransitIon nets

Definition [3.13J Weak and strollg connectedness

(a) A net is weakly connected - all x,y E S u T are in the

relation (F u F·1)*. In other words: there is a path along forward or
backward arcs (F u F·1)* from every S- or T-element to every other
S- or T-element.

(b) A net is strongly connected - all x,y E S u T are in the
relation F*. In other words: there is a forward path from every
S- or T-element to every other S- or T-element.
(c) A strongly connected net is also weakly connected. The converse is
generally not true.

Figure 3.6a-c illustrates this definition .

•

'"

Figure 3.6

(a) Not a ",,·eakly connected net

(b) A weakly connected net,

(c) A strongly connected net

Finally the dynamic properties liveness and safeness are introduced. A
reachable marking is a marking that can result from the initial marking after
some firing sequence. The set of all reachable markings can be constructed in

a read!ability tree; the root of the tree is the initial marking Mo. Every
element of the tree is linked with its successor markings that result from firing
an enabled transition. The set of reachable markings is defined as follows:

3.23 Pla('c;Tran~ition nelS

Definition [3.14] Reachable markings

(a) M[t> M" means that M enables t and that M" results from
marking M if t fires (definition 3.7f)
(b) set of reachable markings

[Mo> is the smallest set of markings such that Mo E [Mo> and

if MI E [Mo> and 3 t E T such that MI[t> M2 than M2 E [Mo>
(c) Every reachable marking in [Mo> can result from Mo by a certain
firing sequence.

(d) For every marking M, the set [M> contains its successor markings; for

example, [Mo> contains the successor markings of Mo (all reachable
markings).

The set of reachable markings of figure 2.1 is:

[Mo> = {sO (sl, s2) (sl, s4) (sl, s7) (sl, s5) (sl, s6)
(s3, s2) (s3, s4) (s3, s7) (s3, s5) (s3, s6)}

Definition [3.15] Safeness and liveness

(a) A net is n-safe

- 'if M E [Mo>, 'if s E S: M(s) s n
(b) A net is live

- 'if ME [Mo>, 'if t E T: 3 M" E [M> which enables t.

Liveness (figure 3.7a) means that at every reachable marking every transition
can be enabled after some firing sequence. Safeness means that for all
reachable markings, every state contains at most n tokens. A net is simply

called safe if it is I-safe (figure 3.7b) .

• •

Figure 3.7
(a) A live, but not safe net

(b) A safe, but not live net

(c) A live and safe net

'"

3.24 Placc(fran!>ilion nels

For a I-safe PIT-net, the firing rule (definition 3.6 and 3.7) can be simplified.

Definition [3.16] Firing rule for I-safe P/T-nets

(a) M enables t - '<I s € ·t: "1 c: M
(b) Firing: M" = M \ "1 u t·
(c) The marking M is a set of states that is marked.

(d) The set of marked states is called a COl1lext in Simplexys.
(e) All arc weights w € Ware equal to 1, and not denoted.
(f) All state capacities k € K are infinite, and also not denoted.

Safe PIT-nets are an attractive sub-class of PIT-nets. As a consequence of

safeness, all arcs weights must be equal to one, and the state capacity can be
any number. Condition 3.6b for an enabled transition in a PjT-net can be

omitted because it is known from I-safeness that an output state is unmarked
before firing.

Like C/E-nets, safe PIT-nets never have more than one token per state. The
difference is that for C/E-systems multiple tokens are prevented by the firing
rule, while for safe PIT-net it is known from the net topology that multiple

tokens cannot occur. The contrast is clear when the conditions for an enabled
transition are compared. (Condition 3.6d for C/E-nets and 3.I6a for P IT
nets)

Simplexys protocols have only one token per state because multiple tokens

merge. However, merging of tokens has no place in proper Petri nets, and

therefore protocols must be checked for I-safeness, which guarantees that
merging of tokens will never occur (chapter 5).

Most of the definitions and results given here are derived from Reisig [1985].
In the remainder of this document, these definitions will be used; they are
briefly recalled if necessary.

4.25 Thc protocol part of a SimpleX)'S knowledgc ba!>c

4.1 The Simplexys toolbox

The Simplexys real time expert systems toolbox allows the design of expert
systems that are so compact that they can run on IBM PC XT or AT
compatible computers and that are so efficient that they allow real time
operation on such hardware [Blom, 1987; Blom, 1990]. Furthermore, they are

safe, because a variety of checks concerning the logical correctness and
consistency of the knowledge base are performed.

Section 4.2 describes the Simplexys knowledge base and the protocol that is

part of a knowledge base. Such a protocol is a description of the time
sequencing knowledge part of the knowledge base. Section 4.3 will show that
a Simplexys protocol closely resembles a Petri net.

Simplexys was developed for medical applications, especially in the domain of
patient monitoring. Two applications are currently under development; one of
these is an adaptive blood pressure controller [Lammers, 1990]. During and
following cardiac surgery, the blood pressure of the patient is frequently
artificially decreased through an infusion of the drug sodium nitroprusside.
Manual control of the blood pressure by adjusting the flow rate of the
infusion pump is often very time- and attention-demanding and interferes
with the other tasks of the anesthetist. Automatic control can be substituted,
but a problem is the wide variability of the inter- and intra-patient sensitivity
to the drug; adaptive control of some form is thus necessary. Moreover,
several other aspects, mostly having to do with the safety of the patient, need
special consideration.

The second research project is an intelligent alarms system to monitor the

integrity of an anesthesia machine [van der Aa, 1990]. Such a machine applies
artificial respiration to a patient undergoing surgery by providing his lungs
with a mixture of oxygen and anaesthesia gases. If some kind of failure
develops somewhere in the machine, the expert system generates an error
message which is as specific as possible, such as "leak at endotracheal tube".
The expert system reanalyzes the data every 5 seconds.

4.26 The protocol part of a SimpleX)"S knowledge I)ase

The expert system is thus used to interpret the measurements of physiological
variables, and it uses medical knowledge to generate a precise diagnosis of the
causes of the failure (figure 4.1).

The expert systems methodology is very convenient in the design of process
supervision systems, especially in the medical domain where much very

specific heuristic knowledge must be incorporated into a successful system. In
standard software, the medical knowledge would mostly be spread out
throughout the program, which makes it difficult to upgrade and maintain
those programs. In expert systems, the medical knowledge is separately
specified in a knowledge base, which is easy to read, self documenting and
easy to modify and update.

Figure 4.1

inference

engine

knowledge

bo.se

A Simplexys expert system

diSplQY

control

Knowledge is represented in a Simplexys rule base; the rule base is compiled
by a rule compl1er program into Pascal code (both as constant arrays and
executable code), and subsequently linked with the inference engine, also a
Pascal program, resulting in a runnable expert system.

The output of the rule compiler is an efficient internal format of the
knowledge, which allows the inference engine to use look-up rather than
search; this is one of the reasons why Simplexys expert systems are so fast.
Moreover, before the knowledge is linked with the inference engine and
compiled by the Pascal compiler, extensive checking is performed so that only

a few checks on the correctness of the knowledge need to be made at run
time (figure 4.2). Checking entails two different mechanisms; checking of the
protocol, which describes the time-sequencing knowledge of the rule base, is
the main subject of this document. Semantic checking [Lutgens, 1990] of the
knowledge base involves checking the ways in which the individual chunks of
knowledge interact, and will not be discussed here.

4.27 The prolocol pan of a Slmplexys knowledge base

The executable code is called a runnable expen system. The rule compiler, the
semantic checker, the protocol checker and the inference engine are
Simplexys expen system tools. A tracer/debugger tool is also available.

Inference ~ ___ ,
engine

pnscol
COMpiler

poscol cooe

executable code

Figure 4.2
COflStmcting a StinpleJ.)"S application

The Simplexys expert system toolbox generates fast expert systems, when
compared to many other expert systems. At run time, no time is wasted in

searching for rules or in matching strings, as is commonly done in other
expert systems: knowledge is compiled and the inference engine knows where

to find a chunk of knowledge if it needs it. Moreover, Simplexys generates

expert systems that are safe; the semantic and protocol checks assist in the
design of expert systems that can run unattended and without interaction with

the user, which are important properties for real time expert systems.

4.2 The Simplexys knowledge base

The task of a real time expert system is to process (measured) data as soon as
they are available, and to derive conclusions from the data before new data

are available. Four types of knowledge exist in Simplexys:

- long term knowledge: facts (e.g. the patient's age)
- medium term knowledge: data remembered until a new value is assigned

(e.g. 'the heart rate is normal')

- short term knowledge: data forgotten unless new data are made available

(e.g. the actual blood pressure measurement)
- states: the context of the process, which remains constant until a transition

occurs (e.g. 'the patient is connected to the ventilator').

4.28 The protocol pan of a Simple-,y"s knowledge ha~c

The Simplexys inference engine will derive goals (final conclusions such as
'no problems') from the input data, using knowledge that is specified in the

rule base. There are several types of rules; an example of an evaluation rule is:

Black: 'Coffee is black'

not Milk and not Sugar
then fa : Teaspoon

The first line of the rule gives a symbolic name to it, as well as a text string
which can be used in explanations and to show results. The second line
specifies the method or expression through which the value of rule Black can

be acquired; possible outcomes are true, false or possible (unknown,
undecidable). The conclusion of an evaluation rule, like Black above, is
obtained through the evaluation of a logical expression that references other
rules (Milk and Sugar) which will therefore need to be evaluated as well. The

third line states that if rule Black is true, rule Teaspoon is to be made false.

Rule Black is an evaluation rule; its evaluation causes the evaluation of other
rules, up to the primitive IUles, which implement basic concepts. The value of
a primitive rule is usually obtained through asking a question or performing a
test on data, which can be acquired through Pascal code. Examples of
primitive rules are:

Milk: There is milk in the coffee'
ask (the user must answer a question)

Sugar: There is sugar in the coffee'

test (start of pascal code)

write ('How many sugar cubes are there in the coffee? ');
readln (number);
if number> 1 then test: = tr else test: = fa;

endtest

Besides primitive rules and evaluation rules, Simplexys implements stale rules

and context switch statements that describe a protocol. A state rule represents
a state (place) in the corresponding Petri net. Examples of state rules are:

Day: 'It is daytime'

state

then goal: Temperature_aUeast_15_degrees

Night: 'It is night'
state

initially tr

then goal: Temperature_at_least_S_degrees

The first line of the rule again states a symbolic name and a text string; the
second line specifies the rule type. The value of a state rule is either tr (true)
or fa (false); po (possible, unknown) is not allowed for state rules.

4.29 The protocol pari of a Simplexys knowledgc ha!.c

The third line of rule Night denotes that the initial value of the state is true.
The last line of these state rules specifies the goals (final conclusions) that
must be evaluated in every run in which that state rule is true.

A state rule obtains its value either through an initially statement, as in the
third line of the above rule, or through an on-statement. The execution of an
on-statement corresponds with the firing of a transition in a Petri net. The
following set of on-statements implements a protocol:

on Sunset
on Sunrise
on Stop

from Day
from Night
from Day

to Night
to Day

to *

Day and Night are state rules, and the trigger rules Sunset, Sunrise and Stop
can be rules of any type, for instance:

Sunset: 'sunset'

RedSky and SunWest

Sunrise: 'sunrise'

btest (time> = 6)

Stop: 'you want to stop'
ask

The general format of an on-statement is:

on trigger from from-list of states to to-list of states

Execution of an on-statement proceeds as follows: if all the states in the
from-list are true, the corresponding trigger is evaluated and if it returns true.
the on-statement is executed. The result of the execution of an on-statement
is that the states in the to-list are made active (true) and the states in the
from-list inactive (false).

Besides initial states, a protocol also contains final states, according to the
notion that a medical protocol has both a beginning and an end. Final states

are anonymous and marked with a '*', as in the last on-statement above.

The context is the set of active states rules. The goals of the active states, as
well as the triggers that can invoke the execution of an on-statement, are

evaluated in every run. After the execution of an on-statement a new context
is activated, and as a consequence other goals and trigger rules will generally
be evaluated from that moment on.

The state rules and on-statements in a Simplexys rule base collectively define
a protocol; such a protocol closely resembles a Petri net. In the next section
the correspondence of protocols and Petri nets is discussed.

4.30 The prolOcol part of a Simpl~_\.}'S knowledge ba~e

4.3 The correspondence of protocols and Petri nets

In the previous section the interaction of the protocol and the remainder of

the rule base was clarified. States and transitions (on-statements) playa
different role in protocols: states represent memory and transitions action; in
Petri nets, states and transitions are graphically denoted by circles and boxes,
respectively.

The context in a Simplexys protocol is the set of active states, and it
determines which goals and trigger rules the expert system must evaluate.

Transitions are defined with on-statements, which describe in which way the
results of the evaluation of trigger rules can change the active context. Figure
4.3 gives the state rules and the on-statements that implement a greenhouse
climate control system, as well its Petri net representation:

sO : 'Night'
state
initially tr

s1 : 'Heat the greenhouse to day-temperature'
state

then goal: goals concerning heating

s2 : 'Regulate climate'
state
then goal: goals concerning climate regulation

s3 : 'Supply of water'
state

s4 : 'Water supplied, dung added'
state

sS : 'Water supplied, no more dung added'
state

s6 : 'Supply of water completed'
state

on Sunrise
on One hour after sunrise
on Sunset

on No_water _supply
on Start water supply - -
on Enough dung
on Stop_water _supply

from sO
from sl
from s2 s6
from s3
from s3
from s4
from sS

to
to
to
to
to
to

to

• sO

Sulrise
S1ar1 woter

supply

51 " "
No (~.
IIc:te,. cful19
supply

52 56 55

Stop
.. o1er supply

Sunset

•

Figure 4.3
The Petri Net description
of a greenhouse climate
guarding system

s1 s3
s2
•
s6
s4
sS
s6

4.31 The pro\Ocol pan of a Simplex)"!> knowledge bOd!.e

The initial context is sO, because that state rule is initially tr (true, active).

Every on-statement corresponds with a trallSitiol1 in the Petri net; the

execution of an on-statement is similar to firing a transition. The trigger of an

on-statement is evaluated only if the states in its from-list are true, i.e. only if

the transition is enabled. In figure 4.3, only the transition labeled Sunrise is

enabled. If the trigger is true, the corresponding on-statement is executed.

The result of the execution of an on-statement is that the states in its to-list
are made active, and the states in the from-list inactive. In the corresponding
Petri net the transition fires, and every output state gets a token, while every

input state looses its token.

The marking in a Petri net corresponds with the context in a Simplexys
protocol; it contains the active states. Petri nets provide the possibility of
more than one active state at the same time. In the previous example, the

time-sequencing knowledge about climate control is separated from

knowledge about the supply of water; however, goals concerning climate

control and water supply are evaluated simultaneously.

This Petri net contains one final state, denoted as '. Simplel!.)'s stops when no

more states are active (except final states). The context in which only final
states are active is called the final context. In the Petri net of figure 4.3, the

final context is reached when transition Sunset fires.

Different connections between transitions and states are possible. For
instance, in figure 4.3 the transition "on Sunrise from sO to s1 s3" makes

both s 1 and s3 active, while the two transitions from s3 make either s4

or s6 active. This difference in semantic meaning is clear from the syntax of

the on-statements as well as from the graphical Petri net representation.

Given the close resemblance between Petri nets and protocols, Petri net

theory can be used for the analysis of Simplexys protocols. The possible

occurrence of more than one token per state is the only topic in which

protocols disagree with Petri nets. In Simplexys, the situation in which a state
has more than one token cannot occur because multiple tokens merge. In
C/E-nets, multiple tokens are prevented by the restriction on when a

transition can fire. In PIT-nets, multiple tokens are allowed. The next chapter

will show that a proper protocol represents a safe PIT-net, in which merging

of tokens never occurs.

5.31 The Pelrl net cla!;!; that reprc!;ent!; correct proI0l'ol

5 The Petri net class that represents!=orrect protocols.. .

5.1 Introduction

The previous chapters were an introduction to Petri nets and protocols and
their function in Simplexys rule bases; the topic of the next chapters is
protocol checking. There are several classes and sub-classes of Petri nets. and
every individual net of a certain class should have certain properties. In this
chapter. some desired protocol properties are formulated and translated into a

Petri net class: Live Safe Place/Transition nets. The next chapters describe a
method that checks whether a protocol represents such a Petri net. Live Safe
Free Choice nets [Thiagarajan. 1984; Best. 1986] turned out to be a too

restrictive net class to represent correct protocols (appendix A).

This chapter starts from the knowledge engineering point of view. and

formulates a set of requirements which a proper protocol must satisfy (section

5.2). These requirements are translated into a Petri net class; the primary
requirement that multiple tokens are not permitted results in the use of Safe
P /T-nets rather than C/E-nets (section 5.3). Finally. some additional
properties that a proper P /T-net must fulfill are formulated; the main

property is that the so-called extended net, that is derived from the protocol.
is live (section 5.4).

Where possible, properties and requirements in this chapter are described
both in Petri net terminology as well as in Simplexys terminology. The

protocol is implemented by on-statements (sectioll 4.3). An example of an on

statement is:

on t from sl s2 s3 to s4 s5.

This on-statement describes the transition t of the states (s1 s2 s3) to (s4

s5); it is executed if (1) the states s1. s2 and s3 are all active. i.e. marked
with a token, and if (2) the trigger rule t is true. After execution or firing.
the states 51. s2 and s3 are made inactive and 54 and s5 are made

active.

Basic net elements are states and transitions. A set of states that is true
simultaneously is a context. The from-list or the set of input states of transition

t equals (51 52 53); the to-list or set of output states equals (s4 s5).

5.33 The Petri net cJa~s thaI represents rorrect protocoJ~

5.2 Requirements for correct protocols

The requirements below are the ones required by a knowledge engineering
point of view. The terminology used here has been explained in sections 2.2
and 2.3.

Requirement 5.1 Initial states and final states

There is at least one initial state (in the rule base defined as initially tr), and

at least one final state (denoted as "'). The set of initial states is the initial
context, the marking when Simplexys starts up; Simplexys stops when only

final states are marked, i.e. when reaching the final context.

Requirement 5.2 Every transition has input and output states

Every transition has a non empty from-list and a non empty to-Jist; the syntax
of Simplexys [Blom, 1990] and the rule compiler's checking already guarantee
this.

Requirement 5.3 One token per state

There is at most one token per state: a state that is true will not become true
again due to firing a transition, i.e. two or more tokens on a state, generally

possible in PIT-nets, is meaningless for Simplexys.

Requirement 5.4 Every state is reachable

Every state can become true from the initial context after firing a sequence of
transitions; it makes no sense to define states that can never become marked.

Requirement 5.5 Every transition can fire

Every transition can be enabled after some firing sequence; it makes no sense
to define a transition that can never fire.

Requirement 5.6 The final context is always reachable

Simplexys stops when the final context is reached, a context in which only
final states are marked. From every possible context, the final context must
be reachable after at least one firing sequence, i.e. Simplexys can always
terminate, independently of the transitions that have fired before.

5.34 The Petri nct class that represent:. ('orreci protocol:.

Requiremelll 5.7 Always at least one transition enabled

A transition is enabled when all its input states are true; then the trigger rule

is evaluated, and if the trigger rule results in true, the corresponding
transition fires. Every reachable context must enable at least one transition;

then there are no deadlock contexts, from which no further change of context
is possible.

Requirement 5.8 Firing a transition does not depend upon its output states

In a Petri net, a transition is enabled if (1) the set of input states is true and
if (2) its output states have enough capacity to store the transported tokens

(definitions 3.6 and 3.7). Since only one token per state is permitted

(requirement 5.3), an on-statement should not be executed if one of the states
in the to-list is already true. This restriction is important for Petri nets and

clear from the graphical representation; for example, it is clear from figure

2.5 that transition t2 cannot fire thrice without firing t3 in between.
However, this restriction is not as clear from the syntax of an on-statement as
from the graphical representation of a Petri net. The intuitively expected

semantic meaning of an on-statement does not agree completely with the
semantics of Petri nets. To prevent any confusion, Simplexys protocols should
be represented by a Petri nets class in which restriction (2) is always fulfilled.

Requiremelll 5.9 There is concurrency

Generally, a context enables more than one transition; two transitions that

are concurrently enabled form a step when after firing one of them, the other

is still enabled (for instance in figure 4.3 at cOntext (sl, s4». There are net

classes without concurrency, in which every context contains exactly one state.
This is too restrictive for Simplexys protocols.

Requirement 5.10 There is choice between transitions

I t two or more transitions are enabled concurrently, and if more than one

transition can fire simultaneously, they form a step; a choice between
transitions occurs when only one of them can fire. After firing one of the

transitions in a choice, the other transitions are not enabled anymore (at state
s3 in figure 4.3). Net classes without choice exist; for Simplexys protocols,

this is too restrictive. Petri nets without choice are deterministic: it is known
beforehand which sequence of contexts will become active.

5.35 The Petn net clas3 that represents correct protocols

Requirement 5.11 There are no conflicts

If two transitions are in choice, both cannot fire simultaneously. A choice
results in a conflict when the triggers of the transitions that are in choice, are
true at the same time. For instance, a conflict occurs if the triggers "start
water supply" and "no water supply" are true at the same time. Generally it is
not known beforehand whether or not two triggers will become true at the
same time. However, if the triggers are logically or textually equivalent and
the on-statements are concurrently enabled, a conflict is certain.

Requirement 5.12 Every net element is connected

Every state and transition in the net is connected with an initial state and
with a final state; a state that is not connected with an initial state cannot
become true; an active state that is not connected to a final-state can never
become false.

5.3 Safe Place/Transition nets versus Condition/Event nets

Requirement 5.3 states that only one token per states is permitted; clearly
C/E-nets fulfill this requirement (definitions 3.1 and 3.2). The firing method
prevents multiple token states because a transition cannot fire unless its
output states are false. However the same firing method disagrees with
requirement 5.8. Safe PIT-nets satisfy both requirements: requirement 5.3 is
met by safeness, and requirement 5.8 is satisfied by the firing method
(definition 3.16).

Stated differently: for a C/E-net, the firing method prevents more than one

token per state; for a safe PIT-net, the net topology prevents that a marked
state becomes marked again.

Since PIT-nets allow both choice and concurrency, requirements 5.9 and 5.10
are also fulfilled. Furthermore, by checking for conflicts requirement 5.11 will
be fulfilled, but conflict checking can only be partial.

5.4 Liveness of the protocol

The complete protocol in a Simplexys knowledge base can contain several
independent sub-protocols. In such cases the Petri net contains some subnets
that are not connected (figure 5.2a). In a correct protocol every individual
subnet contains one or more initial states and one or more final states. The
extended net results from the original protocol when the individual subnets are

connected and the final context is linked with the initial context (figure 5.2b).

Requirements 5.4 to 5.7 for protocols are almost equal to the requirements

for iiveness for Petri nets (definition 3.1Sb). The difference is that a Simplexys

knowledge base implements a (medical) protocol that has both a start and an

end. As soon as no states but final states are active, SimpJexys has reached

the final context, and stops. In a live PIT-net every transition can always re

occur; thus a live Petri net is cyclic. A SimpJexys protocoJ can be made cyclic

if a special transition next patient is defined from the final context to the

initial context. Stated differently, instead of stopping when the final context is

reached, Simplexys would start up again from the beginning.

Figure 5.1 shows the general method through which the extended net is

derived from the original protocol. Notice that the extension is only made in

mind: neither the checking algorithm nor the Simplexys inference engine

makes this extension in reality. The net is extended in order to find the

correspondence between correct protocols and the powerful Petri net

property live ness.

In order to extend the protocol, a new start state sO and an new end state sw

are added; the start state is connected, by a dummy transition to, to the

original initial states; the end state gets a token from every transition with a •

in its to-list. Generally more than one token can arrive at sw (for instance

two tokens in figure S.2b), but these tokens merge. Strictly speaking state sw

is not I-safe, but that is no problem because it only exists in mind. An extra

transition next patient is added as transition tc; it is rued when all states have

lost their tokens except sw. After firing, state sO gets a token again and the

net has returned to the initial context.

Figure 5.1
Extending a protocol

•

..

Figure 5.2
Connecting several subnets by

extending the net

5.37 The Petri net clas!. that represents correct protocol!.

The extended net that is derived from a correct protocol is strongly connected;
requirement 5.12 is fulfilled if the extended net is strongly connected
(definition 3.13b). A net is strongly connected if there is a forward path from

every net element to every other net element. For the original protocol, this

means that there is a forward path from an initial state to any state, as well

as from any state to a final state.

If the extended net is live, the protocol fulfills requirements 5.4 to 5.7.
Liveness (definition 3.15b) means that in every reachable context every
arbitrarily chosen transition can be enabled after a certain firing sequence.
Liveness is a very strong property, too strong for (non-extended) protocols.
The net in figure 5.2a represents a correct protocol, but it is not live. Figure
5.2b shows the extended net, which is derived from the same protocol, and
which is live.

Indeed, protocol requirements 5.4 to 5.7 equal liveness of the extended net.

Requirement 5.5 (every transition can fire) and requirement 5.7 (there is

always at least one transition that is enabled) are fulfilled by the definition of
live ness. Requirement 5.4 states that every state can become active. Since a
correct extended net is strongly connected (requirement 5.12), every state is
in the to-list or in the from-list of at least one transition; moreover, every

transition can fire (requirement 5.5). A state that is in the to-list of a
transition is marked after firing; a state that is in the from-list was marked
before firing. Hence every state can be marked (requirement 5.4).

One requirement is left: it must always be possible to reach the final context
(requirement 5.6). Liveness means that every transition can always fire from

any reachable context. As a consequence, any transition that is enabled by the

initial context can always re-occur. Thus the initial context must be reachable

from every context, and since the initial context can only be reached from the

final context, the final context is always reachable.

5.S A correct protocol represents a Live Safe PIT-net

Section 5.2 specified a set of requirements for a correct Simplexys protocol.
In sections 5.3 and 5.4, the correspondence with a Petri net class was
established and additional properties were formulated. This results in the
proposition that a correct protocol represents a Live Safe Conflict free
Place/Transition net. The Petri net properties and the corresponding protocol

requirements are summarized in this section.

Property 5.13 There is at least one initial state and one final state (req 5.l)
A net without initial and final states is not live.

5.38 The Petri rict class that represents correct protocols

Property 5.14 The eJ.1ended net is strongly connected (req 5.12)

The extended net is strongly connected if there is a forward path from every

state or transition to every other state or transition, i.e. the original protocol

contains forward paths from an initial state to any state, as well as from any

state to a final state.

Property 5.15 The protocol represents a I-safe P/!-net (req 5.3 and 5.8)

A PIT-net generally allows more than one token per state; in Simplexys two

or more tokens merge. The merging of tokens has no place in PIT-nets,
however, and therefore the protocol must be checked for safeness. Moreover,

a transition is enabled as soon as its from-list is true.

Property 5.16 The extended net is live (req 5.4 - 5.7)

In the extended net, the initial context can become active again after reaching

the final context; if the extended net is live, every transition can (re)occur

from every marking by firing a certain sequence of transitions. For the

original protocol this means that always at least one transition is enabled, and

that the final context is always reachable.

Property 5.17 The lIet is conflict-free (req 5.9 - 5. J1)

P /T-nets allows both choice and concurrency. A conflict between transitions

that are in choice occurs when the trigger rules both result in true. Conflicts

cannot always be prevented since the conditions for firing a transition are not

known to the checker. However, if the triggers of transitions that are in

choice are logically equivalent, a conflict is certain.

The combination of these properties results in the use of Live Safe

Place/Transition Nets (LS P /T-nets for short), where the property 'Jive' refers

to the extended net, as defined in section 5.4. The next chapters develop a

scheme to check a net for being live and safe.

6.39 Analysis of Petri net~

6 ADalysis of Petri nets .

6.1 Introduction

The previous chapter demonstrated that a correct Simplexys protocol

represents a Live Safe PIT-net. This chapter describes the method which

checks whether a protocol is such a live and safe PIT-net; the next chapter

briefly discusses some implementation strategies. Where Simplexys protocols

differ from LS PIT-nets, appropriate warning messages are given (chapter 8).

An important part in checking is the construction and analysis of the

reachability tree. A Simple>.)'s protocol represents a rather unrestricted type

of Petri net. The knowledge engineer who constructs the protocol is generally

not a Petri net expert; the popular net class Free Choice nets, which allows

sophisticated analysis methods, cannot be used for Simplexys. Analysis of Free

Choice nets is based upon deadlocks and traps [Best, 1987) (appendix A).

Other checking strategies, such as linear algebraic techniques [Lautenbach,

1987) and synchronic distances [Goltz, 1986) are also not suitable for analysis

in this expert system context.

Commercial computer tools are available for analysis [Feldbrugge, 1986;

Jensen, 1986), tools that check for liveness, connectedness and other
properties. In order to apply such a tool, it could have been integrated with

the Simplexys environment, but this would have taken much effort. Moreover,

messages that occur during the analysis must also be understandable for a

knowledge engineer who is not a Petri net expert.

This chapter start with the definitions and theorems used by the checker

(section 6.2). Section 6.3 describes the decomposition of the analysis into sub

checks. Checking connectedness, one of the sub-checks, is discussed in more

detail in section 6.4. The topic of the remainder of this chapter is the

reachability tree. Section 6.5 describes the impact of on-statements with

equivalent trigger rules which can fire simultaneously, and section 6.6 states

that liveness and safeness can be demonstrated by an analysis of the tree.

6.2 Tenninology and theorems

This section contains the definitions and theorems which are used in the

analysis. For PIT-nets, the word place is used for an S-element, and the word

marking for a set of places that is marked simultaneously. This terminology

does not agree with that of Simplexys, where state is used instead of place and

context instead of marking. In this chapter the Simple,,),s terminology is used.

6.40 Analysis of Petri nelS

The difference between a sufficient and a necessary condition is important.

Denoting A - B means that A implies B, i.e. that A is a sufficient
condition for B, while B is a necessary condition for A Furthermore, A

B means not B - not A. The text 'if A then B' means A-B. Denoting
A - B means that A implies B and that B implies A, i.e. that A is a
sufficient and necessa/)' condition for B, and reverse. The text 'iff A then B'
means A-B.

The difference between necessary and sufficient conditions is noted because
some necessary, but not sufficient, net properties are analyzed. If no error
develops during such a test, correctness has not yet proved. However, if an
error develops, it is detected in an early stage, and the error can be reported
with a more specific message.

A Simplexys protocol is implemented by a set of on-statements. Every on
statement represents a transition in the corresponding Petri net (figure 6.1).

51 52 53

Figure 6.1 Graphical representation of "on t from S 1 s2 s3 to s4 s5"

Trigger rule t is evaluated only if all of the states sl, s2 and s3 have a
token. Stated differently: t is enabled if (sl s2 s3) is (part of) the current
context. When t is evaluated and results in true, the input states sl, s2 and
s3 loose their tokens and the output states s4 and s5 each get one. The set
of states (sl s2 s3) is calJed the from-list and (s4 s5) the to-list of the on
statement.

From section 3.3 we recall the definitions of preset and postset. States and
transitions are connected by directed arcs. The preset of a net element is the
set of its upstream net elements; the postset is the set of its downstream net
elements. For figure 6.1, the preset of t, denoted as 't, equals (51 s2 s3),

the postset t· equals (s4 s5). Similarly the presets of 54 and s5 contain
t, but can contain other transitions as well. Transition t is also part of the
postset of the states s 1, 52 and s3.

In summary, the following terms refer to the same set of states:

preset
postset

1

t·
input states
output states

from-list
to-list

6.41 Analysis of Petri nets

A net is pure if no on-statement contains an identical state in its from- and
to-list. The nets shown in figure 6.2 contain a self loop, and are thus non-pure.
A net is simple if no two or more different net elements are functionally
equivalent, i.e. have equal pre- and postsets. For instance, a protocol that
contains two on-statements with identical from- and to-lists is not simple. The
definitions used in Petri net theory are:

Definition 6.1 Pure and simple (see also 3.12)

(a) Pure: ';/ XES u T : 'X () X· = 0

(b) Simple: ';/x, yES u T: 'X = 'Y
(c) The notation XES u T means:
transition).

y

y

Figure 6.2

(no self loops)

and x' = y' - x = y
x can be any net element (state or

(0.) (b)

Live safe nets that contain a self loop

A net is strongly connected if every net element can be reached from every
other net element by a path along forward directed arcs. Weak connectedness
is a similar property, but now a mix of forward and backward arcs is allowed
rather than only forward arcs.

Definition 6.2 Weak and strong connectedness (see also 3.13)

(a) A net is weakly connected iff all x,y E S u T are in the flow relation
(F u F"l) •.

(b) A net is strongly connected iff all x,y E S u T are in the flow relation

F'.
(c) The trace X' denotes a sequence of elements of X.

6.42 A.na!y~is of Petri nels

A Petri net is safe if no state will ever have more than one token. Stated

differently. if an on-statement is executed. it is known that all the output

states are inactive. A Petri net is live if every transition can always (re)occur.

independently of the sequence of transitions that fired before.

Definition 6.3 Safeness and liveness (see also 3.15)

(a) A net is safe

- '</ M E [Mo>, '</ s E S: M(s) ~ 1
(b) A net is live

- '</ M E [Mo>, '</ t E T: :3 M" E [M> that enables t.

In this definition, M is a context or a reachable marking, and Mo is the

initial context. The set [Mo> denotes all contexts that can be reached from

Mo by any firing sequence (definition 3.10). M(s) denotes the number of
tokens that state s contains in context M. The property safeness means that

no reachable context contains a multi-token state. Liveness means that in

every reachable context M, for any transition t, there is a firing sequence

resulting in a new reachable context M" that enables t. This means that in

every context any arbitrary transition can be enabled, after firing some

sequence of transitions.

Both nets of figure 6.2 represent quite tricky protocols because the Petri nets

contain a self loop. but from the SimpleX)'s point of view both nets of figure

6.2 are live and safe, and thus correct. However, in order to gain live ness

from the Petri net point of view, the nets must be extended with a transition

next patielll that can fire from the final context to the initial context. Stated

differently, instead of terminating after reaching the final context, Simplexys

would start up again from the beginning. Hence the protocols that are

described by the Petri nets in figure 6.2 are correct, because their extended

nets are both live and safe.

A correct protocol represents a strong!)" connected extended Petri net. From

now on the properties live ness and connectedness will refer to the extended

net.

Theorem [6.4) Liveness and safeness imply strong cOllnectedness

If a PIT-net is live and safe - it is strongly connected.

This theorem states that strong connectedness is a necessary condition for

liveness and for safeness. Another necessary condition is:

Theorem [6.5) NecessQl)l condition for liveness and safeness
If a PIT-net is live and safe - for all XES u T : "X >I< 0 >I< X·

For a protocol, this theorems means (1) that every on-statement has non

empty to- and from-Jists and (2) that every state is contained in at least one

to-list and in at least one from-list.

6.43 Analysis of Pelri nelS

6.3 Decomposition of the analysis

The goal of the analysis is to check whether the on-statements in a Simplex'ys
rule base represent a Live Safe PIT-net. The checking algorithm is divided
into tree stages: syntactic, topologic and dynamic checking. If errors are
reported in some stage, further checking is abandoned,

1. Syntax checking

The protocol part of a Simplexys knowledge base is implemented by on
statements and state rules. To make the analysis faster, before the analysis
the preset and the postset of every state and transition are computed from

the on-statements, thus making them directly available in every step of the
analysis.

In this stage a check for syntax errors also takes place: all pre- and postsets
must be non-empty because that is a necessary condition for liveness and
safeness (theorem 6.5). These algorithms are rather straightforward and not

discussed in detaiL Finally there is a check for one type of conflict: transitions
with equal presets and equal trigger rules. Complete conflict checking is
performed during dynamic checking,

2. Topologic checking

Checking whether the net is pure, simple and strongly connected is done in

this stage. A non-pure net is likely to be neither live nor safe, but this is not
certain: figure 6.2 gives two non-pure nets which are both live and safe.

However, since non-pure Petri nets are quite tricky, warning messages are
generated for every on-statement with common state rules in from- and to
list. In later stages of checking it will turn out whether or not such a net is
live and safe.

A non-simple net element also generates a warning message only. Non-simple
net elements affect liveness nor safeness, but the knowledge engineer might

have made a mistake; and since the protocol can be simplified by combining
equal net elements, warning messages are generated for net elements with

equal pre- and postsets. These algorithms are derived directly from the
definitions above, and are not discussed in further detaiL

Finally a check for strong connectedness is made. Since strong connectedness
is a necessary condition for liveness and safeness, a non-strongly-connected
net will cause errors in the next stage, in which Iiveness and safeness are
checked. By checking connectedness, these errors are reported in an earlier
stage with more specific messages. The relevant algorithms are discussed in
section 6.4.

6.44 Analysls of Petri net!.

3. Dynamic checking

To check for live ness, safeness and conflicts, the reachability tree is
constructed. A reachable context is a set of active states; the reachability tree

contains all reachable contexts. Checking for conflicts is described in more
detail in section 6.5, and checking for liveness and safeness in section 6.6.

6.4 Analysis of strong connectedness

Strong connectedness is checked in the second stage of analysis (topologic
checking). This check is redundant: protocols that are not strongly connected
will cause deadlocks, transitions that cannot fire, or states that cannot get a
token in the next (dynamic checking) stage. However, a message that some
net part is not connected with an initial state or with a final state is more
specific and thus more helpful than a message that a cenain firing sequence
results in a deadlock.

Strong connectedness means that there is a forward path from every state or
transition to every other state or transition. Note that connectedness is
defined for the extended net, in which the final states are connected with the
initial states.

Checking the connectedness of a protocol is split up into two sub-checks. First
it is checked whether a forward path exists from the initial state to every net
element, second whether a forward path exists from every net element to the

final state. The checking method is tuned to Simplexys protocols. These two
sub-checks are necessary and sufficient for strong connectedness. There is a
path from every arbitrary net element to the final state, and thus (in the
extended net) to the initial state, and there is a path from the initial state to

any arbitrary net element. Hence the extended net is strongly connected.

6.5 Simultaneous firing of transitions

A certain reachable context generally enables more than one transition. A
transition is enabled if all the states in the from-list are active in that context.

Without any loss of generally, assume that two transitions are enabled by
some reachable context. Two transitions are independent if their from-lists
have no states in common. In figure 6.330 transitions t 1 and t2 are
independent.

- 6.45 Anal) SIS of Petri nelS

When trigger tl is true. the transition will fire and similarly when trigger t2
is true, that transition will fire. These transitions can fire both, in any order,

or even simultaneously, without interfering. During the construction of the

reachability tree, tl is fired first, and the resulting context (52,53,54) is

added to the tree. Second, t2 is fired from the original context (51, 52, 53)
and the resulting context (51,55) is also added to the tree (figure 6.3b).

Because tl and t2 are independent, the new context after firing tl

enables t2 and the context after firing t2 enables t 1. Firing of t 1 or t2
results in the same successor context (s4, 55) that is added to the tree. If at
run time tl and t2 are true at the same time, the intermediate contexts

(52,53, s4) and (sl, s5) are not reached (but the checking algorithm cannot
know that).

51 s2 s3 (51 52 53)

• tV ~2

(52 s3 54) (51 55)

tl
t~ /t1

54 "S
(54 55)

(n) (b)

Figure 6.3
Independent transitions tl and t2

Two transitions that are concurrently enabled are dependent if the intersection

of their from-lists is non-empty. In figure 6.4a, both tl and t2 are enabled.
After firing tl, context (s3. s4) is added to the tree; this new context does
not enable t2. Nothing is wrong with this: there is a choice to fire tl or t2,

but not both. Problems occur when triggers tl and t2 are both true at run

time; this is called a conflict. In Petri net theory, this is not allowed, and the
resulting context is undefined. In Simplexys, the inference engine first fires t 1

and then tries to fire t2 because that transitions was also enabled. However,

it turns out that t2 is not enabled anymore and hence it is not fired.

sl s2 53
(51 52 53)

tV ~2
(53 54) (51 55)

(n) (b)

Figure 6.4
Dependent on statements t1 and t2

6.46 Analy~is of Pelri nel~

A net without any choice between transitions is deterministic: it is known

beforehand which contexts will be active, and in which order. Because this is

too restrictive for Simplexys, choices are supported, and generally choices do

not cause conflicts. Checking for conflicts is possible during the construction
of the reachability tree. Unfortunately the checker cannot always know
whether the two trigger rules of the two transitions that are in choice will be

true simultaneously at run time. However, in two cases the checker knows
that a conflict is certain: if the two transitions refer to the same trigger rule

and if the trigger rules are logically equivalent.

Trigger rules are logically equivalent if they refer to the same primitive rules

in a logically equivalent way. For instance, not (a and b) is logically

equivalent with not a or not b. Equivalence of trigger rules is checked by

placing the and operator between the two trigger expressions, and evaluating

this expression symbolically [Lutgens, 1990). If the resulting expression equals
true, the triggers are logically equivalent and a conflict is certain. If the

expression results in false, a conflict never occurs. If the result is neither

always false nor always true, certain circumstances could cause a conflict.

In summary, a conflict is detected when two or more on-statements satisfy the
following conditions:

(a) The transitions are enabled at the same time alld

(b) The intersection of the from-lists is not empty and

(c) The triggers of the on-statements are logically equivalent.

If two on-statements have equal from-lists so that (a) and (b) are satisfied, a

conflict is certain if the triggers are logically equivalent (figure 6.5a). Such
conflicts are detected in the first stage (syntax checking). It is known from

live ness (which is checked in the third stage), that all transitions can fire at
least once. Hence on-statements with equal triggers and equal from-lists cause

conflicts. Figure 6.Sb contains no conflict since condition (c) is not satisfied.

During the third stage (dynamic checking), conflicts are also checked. On

statements with equal from-lists are checked in the syntactic stage, on
statements with common states in their from-lists are checked for conflicts in

the dynamic stage. The two transitions labeled y in figure 6.Sc both have

state s in their presets. Whether or not a conflict occurs depends upon the

actual context: a conflict occurs only if sl and s2 are both true.

AAW
'6 6' X 6 6' '6· 6'

(n) (b)

Figure 6.5

(a) Conflict with trigger x at state s
(b) No conflict at state 5

(c) Conflict depends all 51 and 52

(c)

6.4 7 Analy!.il> of Petri nct~

Two on-statements that refer to the same trigger rules and are simultaneously

enabled but that are independent because the intersection of their from-lists

is empty, do not cause conflicts. During the constructing of the reachability

tree such transitions are fired simultaneously, and result in only one new

context. The intermediate contexts that result if one of them is fired

individually, is not generated. This method agrees with the way in which the

Simplexys inference engine executes on-statements.

Because of the unknown relationships between triggers, there can be

differences between the reachable contexts which are generated by the

checker and the contexts that are reachable at run time. If two transitions fire

simultaneously at run time because their triggers are both true, the

intermediate contexts which the checker has generated are skipped. The

checker fires transitions simultaneously only if the trigger rules are logically
equivalent.

6.6 Analysis of liveness and safeness

The construction of the reachability tree has already been discussed briefly in

the previous section. The reachability tree (definition 3.14) contains all

possible state combinations or contexts; the root of the tree is the initial

context. Generally the initial context enables more than one transition; firing

one of these transitions results in a successor context, firing all enabled

transitions from that context results in a set of successor contexts. Every

reachable context is linked with its successor contexts, which results in a tree

representation. In fact the "tree" is a network because a context might have

more then one predecessor (figure 6.3b), but the term tree is established in

Petri net theory.

When all transitions that are enabled by the initial context are subsequently

fired, the initial context is expanded into a set of successors, which are added

to the tree. Then the individual successors are expanded, in the same way as

the initial context was expanded, and their successor contexts are added to

the tree as well. This continues until every context in the tree has been

expanded and no new contexts can be generated any more. When the tree is

complete, it contains all possible state combinations.

A successor context is added to the tree only if it is not already in it. If two

enabled transitions have equal triggers, these are fired simultaneously, as

described in section 6.5.

6.48 Analy!.is of PClri nets

Five kinds of errors can occur: three during the constructing of the tree and
two more can be found when it is completed. The errors that can develop
during the construction of the tree, are:

(1) A deadlock context is a reachable context that does not enable any
transition. A deadlock context cannot be expanded into a set of successors. A

net that comes to a deadlock is not live.

(2) A nOll-safe state is a state that gets a token due to the firing of a

transition, while it already had a token before.

(3) A conflict occurs if two transitions fire simultaneously (because they are

both enabled and have identical triggers) and have common input states. The

occurrence of these conflicts has already been described in more detail in the
previous section.

When the reachability tree is completed, the following two errors can occur:

(4) A context is non-terminating if no firing sequence from that context

results in the final context. Once a non-terminating context is reached at run

time, Simplexys can never stop. During the construction of the reachability
tree, the contexts that can terminate are marked. This is described in more

detail in section 7.5.

(S) Finally there is a check whether or not every transition has fired at least
once.

Intuitively a Petri net that passes these five checks is correct, and indeed

these checks are sufficient and necessary for liveness and safeness, the
original checking goal. Check (3) does not playa role in liveness and
safeness.

Four steps are taken to verify that the combination of checks (I), (4) and (5)

is sufficient for liveness (definition S.15b). First, it is clear from the preceding
that the reachability tree contains all reachable contexts. Second, from the

initial context every transition can fire at least once (5). Third, from every

reachable context the final context is reachable (4). Fourth, the final context

is connected with the initial context by a dummy transition next patient
(Iiveness is defined for the extended net).

Liveness means that from every context a firing sequence exists so that any
arbitrarily chosen transition can be enabled. Checking guarantees that for
every reachable context a certain firing sequence results in the final context,

and thus can result in the initial context. From the initial context every
transition can fire. This is sufficient for liveness; when the net has passed

checks (4) and (5), it is live. Note that check (1) does not playa role, since a

deadlock context cannot terminate.

6.49 Analy::.is. of Pelri nels

These checks are also necessa/)' for liveness: if one of the checks (l), (4) or
(5) results in an error, the net is not live, If a deadlock occurs (I), no

transition is enabled; as a consequence the net is not live, If any transition

can not fire at least once (5), the net is not live either. Finally, if there is a
context from which the final context is not reachable, at least one of the
transitions to the final context cannot be enabled,

Hence checks (1), (4) and (5) are both sufficient and necessary conditions for

liveness, For safeness, check (2) is both sufficient and necessary since it covers
definition 3,15a,

6.7 Methods that reduce the protocol's complexity

The reachability tree contains all possible state combinations. The larger the

number of states, the larger the reachability tree. In the worst case, every new

state that is added to the protocol can make the number of reachable
contexts two times larger; the new reachability tree then contains all the
original contexts twice: once when the new state is active and once when it is
not active.

During dynamic checking, reduction (see below) might be necessary to prevent
a blow up of the internal storage and to prevent checking from taking a very

long period of time. Besides reduction of the Petri net, analysis of individual

and independent subnels is possible, Reduction during syntactic or topologic
checking is unnecessary because these checking stages are far less

computation time and computer memory consuming than dynamic checking,

Reduction means that several states and transhions are deleted from the Petri

net or are merged, without changing the relevant dynamic properties live ness

and safeness. Two states can be merged without changing Iiveness or safeness
if their presets as well as their postsets are equal. Two transitions can be
merged if similarly conditions hold, Merging of net elements like this reduces
the number of net elements, but does not reduce the number of reachable
contexts.

The dynamic error messages that are reported contain the complete firing
sequence that results in the context that causes the error, After merging states

or transitions, the transitions of the firing sequence and the intermediate
contexts are changed. Extra intelligence would then be necessary in order to

report error messages that are relevant for the original protocol rather than
for the reduced protocol. Merging of net elements is currently not
implemented.

6.50 Analysis of Pelri nels

A second reduction method is deletion of net elements that are redundant to

the checker. A state and transition pair (s, t) that is linked (s' = t) can be
deleted if transition t has only one input state (s) and one output state (say

s'), and state s has only one output transition (t) and one input transition

(say n. State s and transition t can be deleted if transition t' is directly

connected to state s'; transition t and the intermediate state s can be
skipped. Since both sand t have only simple connections, deleting sand

t influences liveness nor safeness. Every state-transition pair that is deleted
reduces the number of reachable contexts, because an intermediate state is
skipped. In the firing sequence which is reported in case of an error, these
intermediate transitions are also skipped, but the messages are still relevant
for the original protocol. For protocols that contain many single linked state
transition pairs, this reduction method can decrease the number of reachable
contexts considerably. This reduction method is not currently implemented
either.

A more sophisticated method through which net elements can be merged, is

the following. Two states sand s' can be merged if there is a single
transition t between the two states (thus s· = t and t· = s') and moreover

a single path of a set of transitions from s' back to s (thUS s'· = t" and t"·
= s" and so on until SA. = tA

and tA. = s). A new master state is defined in

which all input and output transitions of sand s· are collected. Some
additional conditions for merging are that sand s' have no common input
and output transitions and have no different output transitions with equal
triggers. Similarly two transitions can be merged. In a protocol that contains
cyclic parts, this reduction method can decrease the number of reachable

contexts dramatically. However error messages that refer to the reduced net

are changed, and these are hardly relevant for the original protocol.

The preceding three reduction methods can be applied in turn repeatedly.

until no reduction is possible anymore. Some protocols would reduce

considerably, others hardly or not. Moreover, most of these reduction

methods make the dynamic error messages less clear. The algorithms for
reduction have been constructed and tested, but they have not been
incorporated into the current version of the protocol checker.

Sequential analysis of individual subnets is a better and more appropriate

method of reduction. A subnet is a part of the protocol that has no

connection with the remainder of the protocol. Figure 5.2 contains two
subnets. A subnet contains at least one initial state and at least one final state
since the extended net must be strongly connected. In fact, the extended net is

constructed in order to artificially connect the individual subnets and to make

the net cyclic.

6.51 Analysis of Petri nets

A subnet can operate independently of the remainder of the protocol, and
thus dynamic checking can be performed for every subnet separately. The
dynamic error messages are then related to one subnet only, and the firing
sequence that is reported can easily be traced back by the knowledge
engineer.

Since Simplexys offers the possibility to define more then one initial state,

large protocols will generally contain several independent subnets.

Sequentially checking the different subnets is usually much faster than

checking the protocol as whole, because the total number of reachable
contexts that is generated is often far less. This powerful reduction method

has been implemented in the protocol checker.

7.51 Reahzalion of Ihc prolOcol checker

7 Realization of the protocol checker

7.1 Introduction

In the previous chapter the checking for live ness and safeness was discussed
at a high level; in this chapter the implementation of the checker's
algorithms, especially the construction of the reachability tree, is discussed.

The Simplexys expert system is a toolbox: a set of programs to build real-time
expert systems. The Petri net checker is one of these tools. Tools uses each

other's data in a special way: the output of a tool is a set of files containing
Pascal code, that is linked with the source code of the tool that needs that

information. The file that is used by the Petri net checker contains the

information about the protocol in terms of Pascal constant array definitions.

The number of states and transitions is specified by constant definitions, so

that the Petri net checker can define arrays that have the appropriate length.

During the first stage (syntax checking), the preset and the postset of every

net element are derived from this description, and some syntactic checks are
performed (section 7.2). Section 7.3 describes the implementation of the
algorithm that checks for connectedness. Section 7.5 describes the

construction of the reachability tree and section 7.6 describes the data

structure that is used to store the reachability tree. Finally section 7.7

describes the way in which error messages are generated. In chapter 8 the
error messages are explained in more detail.

7.2 The data structure

In the implementation of the checking algorithm, sets of states and transitions
play an important role. The two set variables Swhole and Twhole contain

all those states and transitions that are involved in a particular stage of

checking. By changing Swhole and Twhole, a sub-protocol is checked; in
that way dynamic checking is performed for every subnet separately. Initially
Swhole and Twhole contain all net elements.

The set variable SO is the initial context and contains all the states that are

initially true. Similarly Tw contains the final transitions: all transitions that
have a • in their to-list.

7.53 Realization of the protocol checker

In the included file, the number of states and transitions is defined with the
constants _N _5 and _N _ T. The Petri net is defined by three constant arrays
to obtain the highest speed for the inference engine. For checking reasons,
the preset and postset of every net element are derived from these arrays,
and these are stored for later use.

As described in section 6.3 (1), during the first stage (syntax checking) a
check is made for empty sets 50 and Tw and empty pre- and postsets.
There is also a check for conflicts: on-statements that have the same from
lists and equal triggers. Other conflicts are detected during the construction of
the reachability tree.

7.3 Checking of strong connectedness

As described in section 6.4, connectedness is checked in two steps. The first
step starts at 50 and walks along downstream arcs (postsets) through the
net; errors occur when not all states and transitions are passed through. The
second step starts at Tw and walks along upstream arcs (presets) through
the net; here too, errors occur when not all net elements are passed through.
The two algorithms are similar, and only the first one is discussed in more
detail.

Initially the set of connected states equals 50 and the set of connected
transitions is empty. The first step is to add the postset of every state in 50
to the set of connected transitions; then, for every individual transition that is
added, the states in the postset are added to the set of connected states. The

second step is to add all transitions in the postset of the last added states and
so on, until no more elements can be added. The scheme is given below:

5connected : = SO

T connected : = 0

Sdelta := 50
repeat

Salpha := 0

for all states i in 5delta do
for all transitions j in PostState(i) do

Tconnected := Tconnected u j
for all states k in PostTransU) do

if k not in Sconnected then
Sconnected : = Sconnected u k
Salpha : = Salpha u k

fi
ad

od
ad

Sdelta : = 5alpha
until Sdelta = 0

7.54 Realization of the prolOcol checker

Now the sets Sconnected and Tconnected contain all the states and
transitions that can be reached by downstream arcs from SO. The states and
transitions that are not connected with SO are easily found by comparing
Sconnected and Tconnected with Swhole and Twhole.

The second algorithm starts at Tw and adds net elements that are in the

presets, in a similar way. If all states and transitions are connected with Tw
as well as with SO, the (extended) net is strongly connected; otherwise the

net elements that are unconnected are reported.

7.4 Checking of liveness and safeness

Checking for live ness and safeness is the most complex type of checking.
Many aspects are involved, such as administration of the reachability tree,

simultaneous firing of on-statements with equal triggers, and error checking
and reponing.

The worst case size of the reachability tree grows exponentially with the

number of states, and thus for large protocols checking may become
impossible due to the limited computer memory size. However, a large

protocol is likely to contain several independent subnets. A subnet can be
separately checked for liveness and safeness; it has no connection with the
remainder of the protocol. For instance, the net of figure 5.2a contains two
independent subnets: the left subnet contains one initial state, the right part

two initial states.

A subnet contains at least one initial state (due to strong connectedness), and
for every initial state a subnet can be generated. A subnet, that is generated,

is stored in Swhole and Twhole which contain the states and transitions

that are involved in dynamic checking.

The sets Swhole and Twhole are generated in a similar way as

Sconnected and Tconnected above (section 7.3). The difference is that

upstream as well as downstream net elements are added to Swhole and

Twhole, rather than downstream net elements only. Stated differently,
PostState (i) is changed in PostState (i) v PreState (i); PostTrans (j) is

changed in PostTrans (j) v PreTrans (j).

7.55 Realization of the protocol checker

Subnets that are generated for different initial states, can result in identical
sub nets. For instance, for figure 5.2 the subnet that is generated for the
middle initial state is identical with the subnet that is generated for the right
initial state. Sequentially, the non-identical subnets are checked for safeness
and live ness. Checking for every subnet sequentially saves computation time
and memory space, and error messages that are generated are more specific

then if the Petri net is checked as whole.

The topic of section 7.5 is the generation of the reachability tree for a certain
subnet, and the detection of deadlocks, non-safe states and conflicts. The tree

itself is treated as a black box, which supports four functions: (1) store a
newly generated context, (2) check whether a particular context is in the tree,
(3) obtain an old context that is not yet expanded into its successor contexts
and (4) trace back to the initial context and obtain the firing sequence that

results in a particular context.]t is important to notice that only one firing
sequence resulting in a context can be stored. These four basic tree
operations are implemented in four procedures which are described in more
detail in section 7.6

7.S Construction of the reachability tree

The root of the reachability tree is the initial context of the subnet that is to
be checked. When the tree is completed, every element of the tree is linked
with its successor contexts. In fact the "tree" is a network because a context
might have more then one predecessor, but it is implemented as a list. The
algorithm that constructs the reachability tree is:

(0) PutIntoList (SO n Swhole)
(1) while GetFromList (Sold) do

(2) T : = Enabled (Sold)

(3) for all transitions j in T do

(4) Snew : = Fire (Sold, j. T)

(5) if not InList (Snew) then PutIntoList (Snew) fi
(6) ad
(7) ad

(8) check whether every transition has fired
(9) check whether all reachable contexts can terminate

7.56 RealulIlion of the prolOco\ checker

(0) The initial states (SO) that are in the subnet that is currently heing
checked (Swhole) form the initial context, which is the root of the tree.

(1) The tree delivers a non-expanded context Sold. The first call to

GetFromList delivers the initial context. As soon as all contexts in the tree
have been expanded, GetFromList returns false, indicating a completed tree.

(2) T is the set of transitions that are enabled by Sold. If no transition is
enabled, Sold is a deadlock context, and an error message is generated.

A transition is enabled if all the states in its from-list are true; the set of
enabled transitions is determined by the context Sold and the structure of

the Petri net. It is easy to find the enabled transitions by scanning through all
transitions, and check if their preset is contained in Sold. However, this is

not the most efficient way: it is faster to scan only through the transitions that

are connected to Sold, and check if these are enabled:

scheme of T:= Enabled (Sold):

T:= 0

for all states i in Sold do
for all transitions j in PostState(i) do

if PreTransU) s; Sold then

fi
ad

ad

T:= T uj

if T = 0 then

ReponDeadlock (Sold)

fi

(4) Firing a transition j in T results in a new context Snew. If individual
transitions in T have identical triggers, these are fired simultaneously:

scheme of Snew: = Fire (Sold, j, T) without error detection:

Ssub : = PreTransU)

Sadd := PostTrans(j)
for all transitions jj in T (except j) do

if jj has the same trigger as j then

Ssub : = Ssub u PreTrans(jj)

fi
ad

Sadd : = Sadd u PostTrans(jj)

Snew : = (Sold \ Ssub) u Sadd

7.57 Rcahzalion of Ihe prolocol cileC'kcr

This scheme describes the firing of one transition j in the set of enabled
transitions T. If there are no enabled transitions with the same trigger as j,

only the first two and last lines are executed; the result of firing a transition is

that aJl states in the preset are made false and aJl states in its postset are
made true,

After firing j, the other transitions that are enabled and have triggers that
are textuaJly or logically equivalent, are fired. The preset and the postset of
the transitions that fire, are put in the sets Ssub and Sadd respectively;

eventually Ssub and Sadd will be the unions of the to-lists resp. the from
lists of all enabled on-statements that have equivalent triggers. The new
context results from the old one by subtracting Ssub and adding Sadd, in
that order. The order is important because one transition can make a state
false, while another transition can make that state true.

If firing transition jj adds a state to Ssub that is already in Ssub, a conflict

occurs: transition jj was enabled by Sold, and needs an active state for

firing, that has already been made inactive by another transition (which was

also enabled by Sold). The latter transition will not fire and will not update

Ssub and Sadd (see the scheme below).

If firing transition jj adds a state to Sadd that is already in it, a multi-token

or non-safe state has been detected: two transitions fire simultaneously, and
both put a token on the same state. In such cases, the latter transition also
fires and Ssub and Sadd are updated.

When Ssub and Sadd have been computed, the new context is derived
from the old one by subtracting Ssub and adding Sadd. Then non-safe
states can also be detected, as the scheme below shows. The set Sxx

contains the states that were true before firing and that will stay true because

they are not influenced by firing. The intersection of Sxx and Sadd are the

states that were true before firing and are made true again by firing. Hence if
the intersection is not empty, it contains non-safe states.

7.58 ReallUllion of lhe pro!ocol checker

When the error detection strategies described above are included, the scheme
for firing a transition is:

scheme of Snew: = Fire (Sold, j, T) (with error detection):

Ssub : = PreTrans(j)
Sadd : = PostTransU)
for all transitions jj in T (except j) do

if jj has the same trigger as j then

fi
ad

if PreTrans(jj) n Ssub .,. 0 then

ReportConflict (Sold, jj)
else (fire jj)

fi

Ssub : = Ssub u PreTrans(jj)
Sns ; = PostTrans(jj) n Sadd
if Sns .,. 0 then

ReportNonSafe (Sold, Sns, jj)
Sadd ; = Sadd u PostTrans(jj)

Sxx : = Sold \ Ssub
Sns ; = Sxx n Sadd
If Sns .,. 0 then

ReportNonSafe (Sold, Sns, j)

fi
Snew : = Sxx u Sadd

(5) In step (4) one successor context Snew is generated by firing a transition
(or a set of enabled transitions with the same trigger). Context Snew is one
of the successors of Sold, and it is added to the reachability tree if it is not
already in it.

(6) Back to step (4). Another transition that is enabled by Sold is fired, and
its successor context is added to the tree in step (5). When all transitions that
are enabled by Sold have been fired, Sold is expanded into a set of
successor contexts that are stored into the reachability tree.

(7) Back to step (1). A new non-expanded context is taken from the tree, and
it is expanded in steps (2) ., (6) into a set of successors. As soon as all

contexts have been expanded, the reachability tree is complete and
GetF romList returns false.

(8) During the construction of the reach ability tree, every transition that fires
is put into a set; when the tree is completed, this set must be equal to
Twhole. If not, there are transitions that cannot fire at least once, and an
error message is reported.

7.59 Realizalion or the prOlOC'oJ checker

(9) When the reachability tree is completed. for every reachable context it is
checked whether a firing sequence can result in the final context. During the
construction of the tree. some administration is done to achieve this. Every
context in the tree contains a flag that is set if that context can temlinate

because there is a firing sequence (a path in the tree) from that context to
the final context. The original (first) scheme of this section is changed to
implement this:

(0) PutlntoList (SO n Swhole)
repeat

(1) while GetFromList (Sold) do
(2) T : = Enabled (Sold)
(3) for all transitions j in T do

(4) Snew : = Fire (Sold. j. T)
if Snew = final context then (i)

SetFlags (Sold)
else

(5) if not InList (Snew) then (ii)

(6)
(7)

PutIntoList (Snew)
SetFlags (Sold)

else

if Flag (Snew) then (iii)

SetFlags (Sold)
else (iv)

store Sold as not expanded

fi
fi

fi

od

od

until no flags set this pass
(8) check whether every transition has fired
(9) check whether all reachable contexts have an flag set

When a transition fires from context Sold in step (4). there are four

possibilities for the successor context Snew.

(i) The successor context is the final context. The flags of Sold and its
predecessors back to the initial context are set: for all these contexts it is
known now that they can terminate.

(ii) The new context Snew is not yet in the tree. Snew is a newly generated
reachable context, and it is added to the tree. but without its flag set.

(iii) The successor Snew is already in the tree. and moreover the flag of
Snew is set. Then also the flags of Sold and its predecessors are set: as in
the first case, for all these contexts it is known now that they can terminate.

7.60 Realization of the protocol checker

(iv) The new context Snew is already in the tree, but its flag is rIOt set: it is
not decidable yet whether or not Snew can terminate, and thus it is
undecidable for Sold as well. The context Snew has two predecessors: the
first because it was already in the tree, and the second is Sold. It is likely
that the flag of Snew will be set later, because one of its successors can
terminate. Then also the flags of both predecessors and their paths back to
the initial context must be set.

However, the tree is implemented in such a way that only one predecessor is
stored (it would take too much memory space to store an unknown number
of predecessors for every context). The fact that Snew is a predecessor of
Sold cannot be remembered; instead Sold is marked as a not yet
completely expanded context. When the reachability tree is completed, a
second pass (actually a repeat-until loop) is necessary to check, for every non
expanded context, whether or not one of its successors has a flag. Note that
during the second pass all successors of Sold are already in the tree. If one
of the successors of Sold has a flag now, Sold and its predecessor's flags are
set also; if not, it is still not decidable whether or not this context can
terminate.

When the second pass is completed, three possibilities exist. First, no contexts
without a flag are left; thus all contexts can terminate. Second, not all
contexts have a flag, but during the last pass some flags were set; then

another pass is provided in an attempt to add more flags. Third, not all
contexts have a flag, and no flags were added during the last pass; the
contexts that still have no flag, cannot terminate, and are reported as such.

7.6 The data structure of the reach ability tree

In the previous section, the reachability tree was treated as a black box which
offers four function: check whether a context is in the tree, add a context to

the tree, get a non-expanded context from the tree, and produce the
predecessors of a context.

The data structure of the tree can be implemented in different ways. The
term reachability tree is established in Petri net theory, but in fact the
reachability tree is a network because a context can have more than one
predecessor. Storing the tree as a network would require a large amount of

memory space: for every context an unknown number of addresses of
predecessors must be stored (addresses of successors should not be stored,
because successors can be re-generated if necessary). In order to obtain some
example firing sequence that results in an error context (necessary for error
messages), storing one predecessor is sufficient. As described in the previous
section. for setting the flags for the contexts that can terminate, storing of one
predecessor is also sufficient. The drawback of saving memory space is a
longer computation time.

7.6] Reahzation of the prolocol checker

The reach ability tree is thus stored as a singly linked list, in which the link

points to a predecessor context. Besides memory space, searching time muSt
be minimized. There are two types of searching in the checking process: for a
non-expanded context and whether or not a context is in the tree. Searching

is a real bottleneck since even for a relatively small protocol, hundreds or
thousands of different reachable contexts can be generated.

Searching in a linear list is far from efficient since on average half the list

must be scanned through to know whether a context is in the list. In a tree
representation, as in figure 6.2, a non-expanded context is easily found, but
finding out whether or not a context is in the tree takes as much time as in a
linear list.

A better approach is a binary tree in which every level represents a state. For
every reachable context there is a path along the levels; when a state is in the
context, the path moves to the right at that level, else to the left. To find a
context in the tree, as many steps as the number of states are necessary; the

number of steps can easily be ten or more, but this method is far more
efficient than the previous ones.

However the most efficient way to find out whether a context is in the tree, is

a direct organization: a large store contains boxes that can contain one context
each. The box number is called the address; the address where a context is

stored depends completely on the pattern of the states that are true (if the
state is in the context) or false (not in the context). In principle every possible
combination of true and false states has a box where that context is stored (in
fact a flag that indicates whether or not that context is in the box is
sufficient). Some of the boxes represent a reachable context, others not. To
search whether a context is in the tree, its address is computed, and its box is
inspected. However, the implementation is somewhat more complicated.

Generally there will be thousands of possible state combinations, but only a

few hundred may be reachable. When the protocol contains 20 states, one
million (220) state combinations are in principle possible. Since such a large

store is not available, several state combinations are mapped onto the same

address. Mapping of a state combination to a box address is called hashing.

Due to hashing, more than one possible context is mapped onto the same box
address. Although most contexts are not reachable, a context that is added to
the tree can find its box occupied by another context. Then hashing is
performed again, which results in another address; if that box is also
occupied, hashing is performed again and so on. After 5 unsuccessful trials,

the context in stored in an overflow list.

7.62 Reahzalion of Ihe prmocoJ checker

Searching for a context is performed in a similar way: hashing is performed
and there are three cases. First, if the box contains the context, it has been
found. Second, if the box is empty, that context is not in the tree. Third, if the

box contains another context, hashing must be performed again and again as
described above, until the context is found or the box is empty; finally a scan
through the overflow list may be necessary.

Storing a new context and searching for a context is performed quickly now,
but two more functions need to be performed. First, the tree must deliver a
non-expanded context. If only a flag marks whether or not a context is
expanded, a scan through part of the list will be necessary to find a non
expanded context. Especially when the tree is almost completed, it takes
much time to find a non-expanded context by that method. A faster method is
to administrate a list of occupied box addresses; the lower part of the list
contains the expanded contexts, the upper part the non-expanded contexts.

The address of a non-expanded context is found just above the border, and
when the context is expanded the border moves one position upward. A newly
generated reachable context is added to the tree by storing its address at the
top of the list.

Finally, the tree must produce a predecessor of a context, and a sequence of
transitions from the initial context to that context. The predecessor is used to

add flags when a context can terminate, the firing sequence is used for error

messages only. Every context in the tree contains the address of one of its
predecessors. The firing sequence is obtained by tracing back to the initial
context, and by determining at every step which transition caused that context
switch.

7.7 Error messages

During dynamic checking, four types of errors are checked for: deadlocks,
non-safe states, conflicts and non-terminating contexts. Four routines produce
appropriate error messages; tbese are ReportDeadlock, ReportConflict,

ReportNonSafe and ReportNoEnd. Every error message contains the
complete firing sequence that leads to the context that causes the error. A
complete description of the error messages is given in chapter 8.

To prevent the same error from being reported several times, a deadlock

context is reported only if none of the states in that context was contained in

an earlier reponed deadlock context. The same method is used for non
terminating contexts. A similar method prevents multiple error messages to
be generated for non-safe states and for conflicts.

8.63 - The Ul>cr Interface of the protocol checker

8 The user interface of the protocol C;hecker

8.1 Introduction

When a Simplexys application is created, first the rule base is composed with
a text editor, which is then translated by the Simplexys rule compiler, which
checks for syntactic correctness. Second, semantic analysis is performed by the
Simplexys checker, which includes the protocol checking that is the subject of

this document. If the knowledge base is semantically correct, the translated
rule base is linked with the Simplexys inference engine, which results in a
runnable real time expert systems.

Semantic analysis is performed to assist the knowledge engineer in the
validation of the rule base, to report doubtful and/or wrong constructions,
and to prevent run time errors. Since the difference between a doubtful
construction and an error is not very strict, the checker does not prevent the
building of the expert system if errors have been detected. For the protocol,
the most serious error is a global system stop due to a deadlock: a context
from which no transition is possible. The occurrence of a non-tenninating

context is also a serious error, because from such a context the final context

cannot be reached, and hence Simplexys cannot stop.

In section 8.2, the resemblance between Petri nets and the on-statements of a
knowledge base is studied. Firing of a transition in a Petri net agrees
completely with the execution of an on-statement.

Checking of the Petri net is done in three stages. Section 8.3 explains the
additional syntax checking, section 8.4 the topologic analysis and section 8.5
the analysis of the dynamic behavior. Section 8.6 illustrates the properties of a
correct protocol, and section 8.7 the run time errors that might occur during
the execution of an incorrect protocol. Finally section 8.8 briefly recalls and
explains the messages which are reported in case of errors.

8.2 A protocol represents a Petri Net

Petri nets [Reisig, 1985) are a graphic representation of the dynamic behavior
of a system. Petri net theory supports analysis of processes that are modelled

by a Petri net. As described in chapter 4, the on-statements of a Simplexys
knowledge base represent a Petri net: a state is drawn as a circle and the
trigger of an on-statement as a square or a bar.

If a state is active (true), it is marked with a token; the set of active states is
called the context or the marking. States that are initially true are called initial

states; the set of initial states is the initial marking or the initial context.

8.64 The user inlerface of the protocol checker

States that are represented by a • are called final states; a context where only

final states are active is called the final context (Simplex')'s stops when the
final context is reached).

The syntax of an on-statement or a transition in the corresponding Petri net, is:

on trigger from from-list of states to to-list of states

The trigger can be a rule of any type, for instance an ask rule or an evaluation

rule. The from-list and the to-list contain state rules. A transition is enabled if
all the states in the from-list are active. Then the trigger rule is evaluated,

and if it evaluates to true, the on-statement is executed: this makes the states
in the from-list false and the states in the to-list true.

Different transitions can have the same trigger; in figure 8.1, the first and the
last on-statement have the same trigger, but represent different transitions. The
graphic representation of a set of on-statements with a Petri net is
straightforward:

On-statements:

51 and s3 are defined as
initially true

all t1 from sl to s2
all t2 from s3 to s6
on t6 from s2 s6 to s7

on t3 from s3 to s4
on t4 from s4 to s5
on t5 from 55 to s6
on tl frol11 s7 to •

Figure 8.1
Graphic representation of on statements

Every transition has some input or upstream states and some output or
downstream states; tokens in a Petri net flow in the direction of the arcs,

starting at the initial states and disappearing at the final states.

A transition is enabled when every input state is marked with a token; in
figure 8.1, the transitions with triggers labeled tl, t2 and t3 are enabled.
For every enabled transition, the inference engine evaluates the related
trigger; if the trigger is false nothing happens, otherwise the on-statement fires

and a context switch occurs: all input states loose their tokens, all output
states get one. A context is reachable if some firing sequence from the initial
context results in that particular context.

So far the correspondence between Simplexys protocols and Petri nets. Note

the difference between an enabled transition and a firing transition. Chapter 2
describes the firing of transitions in a Petri net in more detail.

8.65 The user IllIerfacc of the protocol checker

8.3 Syntax checking

The rule compiler performs some syntax checking of the rule base, and thus

also syntax checking of the protocol. The protocol is syntactically correct if:

11] Sylllax checking by the role compiler

a. Every on-statement has non-empty from- and to-lists.
b. Every rule used in every from- and to-list is a state-rule.
c. At least one state is initially true.

d. No on-statement has a • in its from-list.

When it finds the knowledge base to be syntactically correct, the rule
compiler produces several files that are used by the semantic checker.
Semantic protocol checking is performed in three stages; this section explains

the first stage of checking, which performs some additional syntactic checks.
The next two sections are about the two other stages: topologic and dynamic

checking. Syntax checking is mainly analysis of the completeness of the

protocol. The syntax errors that can be reported, are:

12] No final state

If the protocol does not contain anyon-statement with a • in its to-list,

Simplexys can never stop (figure 8.2a). The error message that is reported is:

•• ERROR No ON statement has an empty TO list

cr"
., 50

t3 " t1 t3 t1

51 51

t2

(u) (b) •

Figure 8.2

(a) A net without an end-state

(b) A co"ect net

(for figure 8.2a)

8.66 The user inlerface of Ihe prOiocol checker

/3 J Conflict between transitions

Generally a context enables more than one transition. For instance, in figure
8.1 the transitions tI, 12, and 13 are concurrently enabled and Simplexys will
evaluate the corresponding trigger rules. Concurrently enabled transitions are
either dependent or independent. The transitions tI and 12 can fire
independently: if t1 fires, t2 is still enabled and the other way around. On
the other side 12 and 13 are dependent: if 12 fires, 13 is not enabled
anymore and the reverse (see also sections 2.3 and 3.4). There is a choice

either to fire 12 or 13, but not both. Normally a protocol will contain
several choices, which are necessary to describe non-deterministic behavior.

A conflict occurs when the triggers 12 and t3 both evaluate to true at the
same time: then it depends upon the textual order of the on-statements in the
rule base which of them will fire. Generally it is not known whether 12 and
13 can become true at the same time, However, if two transitions that have
equal from-lists refer to the same trigger rule (figure 8.3a) or have logically
equivalent triggers rules, a conflict is certain and a message is reported:

•• ERROR Conflict at STATE sO

ON x FROM sO TO sI
ON x FROM sO TO s2

(for figure 8.3a)

During dynamic checking, conflicts can also occur (section 8.5 (16». The net
in figure 8.3b is correct: triggers x and y occur in more than one on
statement, but there is no conflict. The problems in figure 8.3a occur because
the on-statements with the same trigger also have equal from-lists. If the
knowledge engineer intended to give both s 1 and s2 a token after firing x,

figure 8.3c illustrates the correct net:

ON x FROM sO TO 51 s2

50
•

Figure 8.3

x

s2

y

•

(b)

sO

(for figure 8.3c)

•
y

s2

y

54

x

s3

y

(a) Conflict occurring at sO with trigger x

(b) No conflict

(c) Both sl and s2 get a token wizen x fires

(c)

s2

y

8.67 The u~er interface of the protocol checker

{4J States without upstream transitio115

Every state (except initial states) must have at least one upstream transition.
Stated differently: every state is in at least one to-list. If not, that state can
never become true (figure 8.4a) and the following error message is reported:

•• ERROR Unreachable STATE (not in any TO list) s2 (for figure 8.4a)

50 50
• •

tl tl

51

r
51

r t3 t3

• *
(0) (b)

Figure 8.4
(a) s2 has no upstream transitions

(b) A correct net

f 5] States without downstream transitions

52

(0)

Figure 8.5

50
•

(b)

(a) s2 has no downstream transitions

(b) A correct net

If a state has no downstream transition, once true it can never become false

(figure 8.Sa). The error message is:

•• ERROR Dead-end STATE (not in any FROM list) s2 (for figure 8.Sa)

If any error is found in one of the tests [2] to [5], further checking is aborted:
for a net that is not syntactically complete, lots of error messages would be
reported the next two stages, and the final conclusion about correctness is

known already.

8.68 The user interface of Ihe prolOcol checker

8.4 Topologic checking

After syntax checking has verified the completeness of the protocol, topologic
checking verifies whether states and transitions are connected correctly.

[6] Self loops

Normally the from-list and the to-list of an on-statement are disjunct. If not,
the from- and to-list contain common states. A self loop is a doubtful
construction. When transition t2 in figure 8.6a fires, state s2 is made true
and cannot become false. Figure 8.6b also contains a self loop: s2 must be
true to enable tl, but to make s2 true, t1 must fire. Protocols that contain
a self loop are likely to cause dynamic errors (a deadlock or a non-safe state)
but this is not certain: see figure 6.2 for nets that contain a self loop but are
correct. For self loops, warning messages are reported:

•• WARNING Self loop (for figure 8.6a)
ON t2 FROM s2 TO s2 s3

•• WARNING Self loop (for figure 8.6b)
ON tl FROM sl s2 TO s2

51 51

tl

s2 52

s3 53

(0) (b)

Figure 8.6
(a) Self loop al 12
(b) Self loop alII

8.69 The user interface of the protocol checker

171 identical on-statements

Two on-statements are identical if their from-lists are equal and their to-list
are equal as well. Since identical on-statements affect liveness nor safeness,
this is not an error. Because identical transitions can be merged, as figure 8.7
shows, warning messages are reported:

•• WARNING Identical ON statements
ON t1 FROM s1 TO s2 s3
ON t2 FROM s1 TO s2 s3

51

t1 1:2 tl DR t2

52 53 s2 s3

(Cl) (b)

Figure S.7

(a) Identicaloll-statements t1 and t2

(b) Merging of identical on-statements

IS] Identical states

(for figure 8.7a)

tl t2 tl t2

52 53

t3

:.J (0) (b)

Figure 8.S

(a) Idelltical states s2 and s3

(b) Merging of identical states

States are identical if they have the same upstream and the same downstream

transitions. As for identical transitions [7), only a warning message is given
because identical states can be merged as figure 8.8 shows:

•• WARNING Identical STATES s2 s3 (for figure 8.8a)

8.70 The u~er interface of Ihe prolOcoi chccJ..:cr

[9J States that are not connected with an initial state

There must be a path from an initial state to every other state. States that are
not connected with an initial state can never get tokens. The net of figure
8.9a is corrected when either sl or s2 is defined initially true, or when the

two subnets are connected, as shown in figure 8.9b. Notice that the net of
figure 8.9a does not produce error message [4].

•• ERROR No connection with an initial STATE

ON t2 FROM s2 TO sl
ON t3 FROM sl TO s2
ON t4 FROM s2 TO •

t2

52

Figure 8.9

I
sO

tl

*

t2

(for figure 8.9a)

tl

(a) There is no forward path from a stan-state to s1 and s2

(b) All states are connected with a stan-state

8.71 The user inlcrfare of the pr01ocol checker

/1O} States that are not connected with a final state

Every state must have a forward path to a final state (marked as *). States
that are not connected with a final state cannot loose their tokens (figure
8.1Oa).

* * ERROR No connection with a final STATE
ON t2 FROM s2 TO sl
ON t3 FROM 51 TO 52

t2

50
It-Q--{)f--{]<-{e

i2

(for figure 8.1Oa)

52 t3 51 ts t3 s1 t5

(Q) (b)

Figure B.lO

(aJ States s1 and s2 are not connected with an end-state

(b) All states are connected with an end-state

If the states and the transitions are connected in a correct way, the net is
topologically correct; the next stage will analyze the dynamic behavior.

8.5 Checking of the dynamic behavior

The final stage of checking is an analysis of the protocol's dynamic behavior.

Checking is based upon the reaclzability tree, which contains all reachable

contexts. During its construction, three types of errors can occur: a deadlock

context, a non-safe state and a conflict context.

A deadlock context is a reachable context from which no change of state is
possible; at run time Simplexys will stop at a deadlock context. A non-safe or
multi-token state is a state that is true in a certain context, and made true
again by the execution of an on-statement. A conflict occurs if two enabled
transitions, that must fire simultaneously because of their equal triggers,
cannot fire both because they have common states in their from-lists.

Three more errors are detected as soon as all reachable contexts have been
generated: transitions that did not fire at least once, protocols that can never
terminate, and contexts from which the final context is not reachable.

8. 72 The user illlerface of 'he pro!OcoJ che('ker

{ Jl] Deadlock

A deadlock is a context that does not enable any transition. If a deadlock is
detected, some firing sequence results in that context from which no further
context switches are possible. In figure B.lla, at the initial marking transition

t1 or t2 can fire, so that either sl or s2 gets a token. This token flows to
s3 or s4, but not both states will get a token simultaneously, which is
necessary to let t5 fire. The following error message is reported in that case:

•• ERROR Deadlock at CONTEXT s3

1 ON tl FROM sO TO sl
2 ON t3 FROM sl TO s3

•• ERROR ON statement cannot fire

ON t5 FROM s3 s4 TO s5

(for figure 8.lla)

First the deadlock context is given, and the firing sequence that results in that
context. Then a transition is given that is connected with the deadlock

context, but cannot fire (this line is omitted if it is not clear which on
statement should be reported). The net shown in figure B.lla can be made
deadlock-free if s3, s4 and s5 are combined correctly, for instance as figure
B.ll b shows.

• sO • sO

tl t2 t1 t2

51 s2 sl 52

t3 t4 13

s4 53 54

t5 't5 t6

55 55

1t6

(al
117

(b)

Figure 8.11
(a) A deadlock at 15

(b) A co"ect net

8.73 The user interface of the protocol checker

[12/ Non-safe stare

A state is non-safe if it is made true by a transition that fires, while it was
already true before firing (and is not made false by another transition that
fires simultaneously because it has the same trigger). In figure 8.12a,
transition t1 fires, so that both s 1 and s2 get a token; these tokens flow

to s3 and s4. Then both t5 and t6 are enabled; firing one of them makes
s5 true, firing the other transition makes s5 true again, which will produce

the following message:

•• ERROR Multi-token STATE s5 (for figure 8.12a)

1 ON t1 FROM sO TO sl s2
2 ON t3 FROM sl TO s3
3 ON t4 FROM s2 TO s4

4 ON t5 FROM s3 TO s5
•• ERROR Extra token by ON statement
ON t6 FROM s4 TO s5

First the state that gets two tokens is specified. Second, the firing sequence

which gives that state the first token is given. The last line gives the on

statement that is enabled by that context and that gives the state the second

token when it is executed. At run time, these two tokens will merge. Stated
differently: a state that is made true, while it was already true, stays true. The
net of figure 8.12a can be made safe if s3, s4 and s5 are combined in a
correct way, for instance as figure 8.12b shows.

The Petri net shown in figure 8.12e is also correct (but tricky): state s3 is
not a multi-token state because when y fires from context (s2, s3), first the

states s2 and s3 are made false, and then states s3 and • are made true.

sO sO

tl tl

52 51 s2

t4 t4

s4 54

t6 t6

s6

(b)

Figure 8.12

(a) State s5 gets two tokens

(b) A co"ect net

(c) A co"ect net (but tricky)

sO

y

(c)

52

Y

8.74 The uscr Interface of the protocol checker

[13 J Protocol can never tenninate

A protocol cannot terminate if no firing sequence results in the final context
(the context in which only' states are true); if such a protocol is executed,
Simplexys will never halt. The net of figure 8.13 shows a protocol that does
not come to a deadlock, but cannot terminate either.

•• ERROR System cannot halt

t6 t7

Figure 8.13
This net cannot stop

[14J System cannot always tenllinate

(for figure 8.13)

Figure 8.14

sO

tl

s2

t4

54

t6

System cannot stop In

context s2

The difference between this error and the previous one is that the net in
figure 8.14 can terminate after the firing sequence tl, t3, t4, t6; thus error [13]
is not reported. No deadlock occurs either, and all transitions can fire.
However, the protocol cannot always terminate: after the firing sequence
tl, t3, t4, 15 no sequence of transitions can results in the final context .

•• ERROR System cannot halt in CONTEXT sl

ON tl FROM sO TO sl s2

ON t3 FROM s1 TO s3
ON t4 FROM s2 TO s4
ON 15 FROM s3 s4 TO s1

This message specifies the non-terminating context, and gives the firing
sequence that results in that context.

~. I ~ The user Inlerface of the -prolOcol checJ.;er

/15] Transitions that cannot fire at least once

Figure 8.15a gives a net that does not come to a deadlock, in which the final
context is always reachable, but in which not all transitions can fire at least
once. The error message that reports such a situation is:

•• ERROR Transitions can never fire
ON t4 FROM sl s3 TO •

(0)

Figure 8.15

(a) Transition t4 cannot fire

(b) All transition can fire at least once

(for figure 8.15)

(10)

8.76 The user interface of the prolocol checker

I J 6 J Conflicts

Some conflicts have already been detected during the first stage (syntax
checking), others are detected in this stage. The first type of conflicts (check
(3]) occurs when two on-statements that have equal trigger rules also have the
same from-lists. Note that from test [15] it is known that every transition can
fire.

When two transitions have equal triggers and their from-lists are not equal
but contain common states, a conflict might also occur when the on

statements are concurrently enabled, as shown in figure 8.16a. Context (s 1,

s2) enables both transitions with trigger x, and these transitions must
necessarily fire simultaneously. However, when the first one has fired, the

second one cannot fire because s2 has already been made false by the first

firing. This error is not detected earlier in the first stage (syntax checking).

•• ERROR Conflict at CONTEXT s1 s2

1 ON Y FROM sO TO sl s2
•• ERROR Conflicting ON statements
ON x FROM sl s2 TO •

ON x FROM s2 TO s3

(for figure 8.16a)

First the context that enables the conflicting on-statements is specified, and

the firing sequence that results in that context is given. Finally the conflicting

on-statements are reported. The net of figure 8.16b contains three conflicting

on-statements labeled x at context (sl, s2).

sO sO

•
y

51 52

y x

Figure 8.16

(a) A conflict between two transitions with trigger x

(b) A conflict between three transitions with trigger x

8.77 The user inlerface or the protocol checker

8.6 Properties of a correct protocol

If no errors are detected in the third stage of checking, the protocol is
correct: it represent a conflict-free, live and safe Petri net. Such a protocol

has some desirable properties. First, it will not come to a deadlock, a context
from which no further context switch is possible. Second, independently of the
sequence of on-statements that will be executed, the protocol can always
terminate. Third, conflicts between two or more enabled on-statements will
not occur and fourth, the execution of an on-statement will never make a
state true that was already true before.

However, these properties are valid for the isolated protocol only; the
protocol checker has no deep semantic knowledge about the remainder of the
rule base. Whether or not a correct protocol can terminate at run time
depends upon the semantics of the trigger rules. In other words: the structure
of the Petri net makes it always possible to continue and to terminate after

an arbitrary firing sequence, but whether this occurs at run time depends
upon the actual values of the trigger rules.

The checker does not know the exact behavior of the trigger rules. Only if
conflicts might occur, does the checker employ some extra effort to analyze
the logical equivalence of two trigger rules.

8.7 Properties of an incorrect protocol

Because the checker cannot forbid building a runnable expert system, it is
possible to construct an expert systems which contains a protocol that is not
correct; then possibly run time errors occur. Just like for a correct protocol,
whether run time errors occur again depends upon the semantics of the

trigger rules. For instance, a deadlock context may never be reached at run
time because the firing sequence leading to the deadlock context does not (or
cannot) occur.

The protocol analyzer checks for 16 types of errors; these types of errors can

result in one of the following four run time types of errors:

[17J Conflict

Conflicts have been explained above ([3] and [16]). When a conflict occurs at
run time, the inference engine will fire one or more of the conflicting on
statements, but not all of them. It depends upon the textual ordering of the
protocol which on-statements will be executed; the same conflict will always
be solved in the same way.

8.78 The u!oer interface of the prolOeol checl..er

For figure 8.l6b, there are six possible orders, with two different results. If
the middle transition fires first, the inference engine finds out that the left
and the right transition are not enabled anymore, and will not fire these.
When the inference engine first fires the left transition, then tries to fire the
middle one (which fails), it can finally fire the right transition successfuJly. (In

that case a multi-token state s3 results). Run time conflicts are not reported
to the user. Protocols as shown in figures 8.3 and 8.16 can cause conflicts,
which are reported during analysis, but for instance the protocol of figure
8.l1b can cause a conflict at context sO if tl and t2 are true at the same
time, which is not reported by the checker unless tl and t2 are logically
equivalent.

[18 J Deadlock

At a deadlock context no further change of context is possible; the inference
engine stops and reports the deadlock context. Run time deadlocks can be
caused by nets as shown in figure 8.5a, 8.6b, 8.11 a; all protocols that can
come to a deadlock are reported during analysis.

[19J Multi-token state

A state is non-safe if it is made true by firing an on-statement while it was
already true before firing. In a Petri net such a state gets two tokens. Since

multi-token states have no significance for Simplexys, the inference engine
will merge them. Nothing is reported to the user. The protocols shown in
figure 8.6a, 8.12a and 8.l6b can result in non-safe states at run time; all

possible non-safe states are reported by the checker.

[20J System cannot tenllinate

There are protocols that do not come to a deadlock but cannot terminate
anyway. This error is not recognized by the inference engine at all, and thus
cannot be reported. A change of context is still possible, but this cannot result

in the final context. Protocols that can cause this kind of error are given in

figures 8.2a, 8.lDa, 8.13 and 8.14.

8.79 Th~ user interface of the prOtOCol checker

8.8 List of warning and error messages

This section briefly recalls the protocol checker's error messages.

(2) ** ERROR No ON-statement has an empty TO list
The protocol must contain at least one on-statement with a * in its to-list

[3) ** ERROR Conflict at STATE [state that results in conflict)
[conflicting on-statements)
Do not use on-statements that have equal triggers and equal from-lists

[4)** ERROR Unreachable STATE (not in any TO list) [state)
This state can never become active because it is not connected correctly. Put
this state in the to-list of some on-statement. make it initially true. or
delete it.

[5) ** ERROR Dead-end STATE (not in any FROM list) [state)
This state cannot become false. Put it in a from-list of some transition.
replace it by a *. or delete it.

[6) ** WARNING Self loop
[on-statement that has common states in from-list and to-list)
It is tricky. but permitted to construct a protocol that contains a self loop.

[7) ** WARNING Identical ON statements
[on-statements that are identical)
These statements can be merged. but this is not necessary for correctness.

[8] •• WARNING Identical STATES [states that are identical]
These states can be merged. but this is not necessary for correctness.

[9] ** ERROR No connection with an initial STATE
[protocol part that is not connected with an initial state)
These states will never become true. Define one of the states as initially true.
or connect this part of the protocol with another part that is connected with
an initial state.

[10) ** ERROR No connection with a final STATE
[protocol part that is not connected with a final state)
These states will never become false. Replace one of the states by a'. or
connect this part of the protocol with another part that is connected with a

final state.

8.80 The user IllIcrface of the protocol checker

[11] •• ERROR Deadlock at CONTEXT [deadlock context]

[on-statements that result in that context]

•• ERROR ON statement cannot fire

[on-statement that cannot fire]

From a deadlock context no further change of context is possible

[12] •• ERROR Multi-token STATE [state that gets two tokens]

[on-statements that give this state the first token]

•• ERROR Extra token by ON statement

[on-statement that gives the second token]

[13] •• ERROR System cannot halt

Alter the protocol so that the context that contains only • states is reachable.

[14] •• ERROR System cannot halt in CONTEXT [context]

[on-statements that result in that context]

If this context is ever reached, Simplexys cannot halt.

[15] •• ERROR Transitions can never fire

[on-statements that cannot fire at least once]

[16] •• ERROR Conflict at CONTEXT [context resulting in conflict]

[on-statements that result in that context]

•• ERROR Conflicting ON statements

[on-statements that are in conflict at that context]

Conclusions

The protocol that is part of a Simplex)'s knowledge base contains the time

sequential part of the knowledge. A protocol is considered correct if it

represents a Live Safe PIT-net: if a protocol does not represent such a net,

one or more warning messages are reponed. Petri net theory has proved to

be valuable in checking Simple\')'s protocols.

The Simplexys syntax and semantics do not allow a protocol to be cyclic; it

must ha\'e a start and an end. For checking reasons, the protocol is extended

so that it represents a (cyclic) connected Petri net: liveness is defined for the

extended net. A correct protocol is live, which ensures that a transition to a

new context is always possible and th,n the protocol can always terminate.

Additionally. safeness is checked to pre\ent multiple tokens. If a protocol is

correct. Simplex)'s executes it exactly like Petri net theory describe,.

The checking algorithm is split up into three parts: syntactic, topologic and

dynamic checking. The algorithms for syntactic and lopologic checking are

implemented straightfOlwardly from Petri net theory. These checks take little

computation time, and warning messages are clear and uncomplicated.

The method of dynamic checking and the way in which errors are reported is

tuned to kno\\ ledge engineers. Since a protocol represents a rather

unrestricted type of Petri net. all possihle reachable contexts must be

generated. Although the construction of the reachahility tree is rather time

consuming. it has been demonstrated that when an error is found, reporting

the firing sequence resulting in that error i> desirahle. Moreover, additional

conflict checking that is not supported by Petri net theory is pmisihle if a

reachability tree is constructed.

(n order to make dynamic checking less time and memory consuming, it is

sequentially performed for each individual suhnet. Other methods that reduce

the complexity of the protocol hut do not affect the relevant dynamic

characteristics, are possible as well. Since these are rather complicated

methods which do not always gain results, these reduction methods have not

yet been implemented, but may be relevam to further study.

The protocol checker is combined with the semantic analyzer that checks the

remainder of the knowledge base; the prot()col checker uses some of the

algorithms of the semamic analyzer. Further integration should be studied.

The semantic analyzer can now he improved hecause all possible contexts

(generated by the protocol checker) can henceforth be known to it.

82

References

Aa. J.J.L.C.M. van der (1990).

Intelligent alarms in anesthesia: a real time expert system application. Ph. D.

thesis. Eindhoven University of Technology. 1990.

Best, E. (1987) and P.S. Thiagarajan

Some classes of live and safe Petri nets. In: Concurrency and Nets: Advances

in Petri nets. Proc. coil. on occasion of the 60th birthday of c.A. Petri,

Schloss Birlinghoven, 12 Sept. 1986. Ed. by K. Voss, H.J. Genrich, G.

Rozenberg. Berlin: Springer. 1987. P. 71-9-l

Best. E. (19t\6)

Structure theory of Petri nets: the free choice hiatus. In: Petri nets: central

models and their properties. Advances in Petri nets 1986. Part 1. Proc.

advanced course. Bad Honnef. 8-19 Sept. 1986. Ed. by W. Brauer, W. Reisig

and G. Rozenherg. Berlin: Springer, 1987. Lecture notes in computer science,

vol. 254. P. 168-205.

Blanchard. M. (1977)

Le GRAFCET pour une representation normalisee de cahier des charges

d'un automati,me logique. Automatique et Informatique Industrielles.]\;0. 61.

pp. 27-32. 1977.

Blom. lA. (19H7)

SIMPLEXYS. a real-time expert systems tool. In: Expert systems: theory and

applications. Proc. lASTED int. conf.. Geneva, 16-18 June 1987. Ed. hy M.H.

Hamza. Anaheim. Cal.: Acta Press. 1987. P. 21-25.

Blom, lA. (1990)

The SIMPLEXYS experiment: real time expert systems in patient monitoring.

Ph. D. thesis. Eindhoven University of Technology, 1990.

Feldbrugge, F., Jensen, K. (1986)
Petri net tool overview 1986. In: Petri nets: applications and relationships to

other models of concurrency. Advances in Petri nets 1986. Part 2. Proc.

advanced course, Bad Honnef, 8-19 Sept. 1986. Ed. by W. Brauer, W. Reisig

and G. Rozenberg. Berlin: Springer. 1987. Lecture notes in computer science,

vol. 255. P. 20-61.

Genrich. H.J. (19~())

Predicate/Transition i"ets. In: Petri nets: central ll10dels and their properties.

Advances in Petri nets 19~b. Part I. Proc. ad\'anced course. Bad Honnef. ~-IIJ

Sept. 1996. Ed. by W. Brauer, W. Reisig and G. Rozenberg. Berlin: Springer.

1987. Lecture notes in computer science. YO!. 254. P. 207-247.

Goltz. U. (19H6)

Synchronic distance. In: Petri nets: applications and relationships to other

models of concurrency. Advances in Petri nets 199b. Part I. Proc. advanced

course, Bad Honnef, 8-19 Sept. 19B6. Ed. hy W. Brauer, W. Reisig and G.

Rozenberg. Berlin: Springer. 1987. Lecture notes in computer science, vol.

254. P. 338-358.

Jensen, K. (198b)

Computer Tools for Construction. Modification and Analysis of Petri Nets. In:

Petri nets: applications and relationships to other models of concurrency.

Advances in Petri nets 1980. Part 2. Proc. advanced course, Bad Honnef. 8-19

Sept. 1986. Ed. by W. Brauer. W. Reisig and G. Rozenberg. Berlin: Springer,

1987. Lecture notes in computer science. vol. 255. P. 4-19.

Lammers. J.O. (1990)

Knowledge based adaptive hlood pressure control: a SIMPLEXYS expert

system application. AIO thesis. Faculty of Electrical Engineering. Eindhoven

University of Technology. IIJIJ{). EUT report 90-E-2J6.

Lautenhach. K. (1987)

Linear algehraic calculation of deadlocks and traps. In: Concurrency and

Nets: Advances in Petri nets. Proc. coil. on occasion of the 60th hirthday of

CA. Petri. Schloss Birlinghoven. 12 Sept. 1986. Ed. hy K. Voss, H.J. Genrich.

G. Rozenherg. Berlin: Springer. 191'7. P. 315-336.

Lutgens. J.M.A. (1990)

Knowledge hase correctness checking for SIMPLEXYS expert systems. M.Sc.

thesis. Division of Medical Electrical Engineering. Faculty of Electrical

Engineering. Eindhoven University of Technology, 1990. EUT Report 90-E-240

Petri, CA. (1962)

Kommunikation mit Automaten. Diss. Bonn, 1962. Schriften des Institutes

fuer Instrumentelle Mathematik der Universitaet Bonn, Nr. 2. English trans!.:

Communication with automata. Griffis Air Force Base. New York. Technical

report. RADC-TR-65-J77, vol. 1. Supp\. 1. 1966.

85 References

Petri, c.A. (1986)

Concurrency theory. In: Petri nets: central models and their properties.

Advances in Petri nets 1986. Part 1. Proc. advanced course, Bad Honnef, 8-19

Sept. 1986. Ed. by W. Brauer, W. Reisig and G. Rozenberg. Berlin: Springer,

1987. Lecture notes in computer science, vol. 254. P. 4-24.

Reisig, W. (1985)

Petri nets: an introduction. Berlin: Springer, 1985. EATCS: monographs on

theoretical computer science, vol. 4.

Reisig, W. (1986)

Place/Transition systems. In: Petri nets: central models and their properties.

Advances in Petri nets 1986. Part 1. Proc. advanced course, Bad Honnef, 8-19

Sept. 1986. Ed. by W. Brauer, W. Reisig and G. Rozenberg. Berlin: Springer,

1987. Lecture notes in computer science, vol. 254. P. 117-141.

Rozenberg, G. (1986)

Behaviour of elementary net systems. In: Petri nets: central models and their

properties. Advances in Petri nets 1986. Part 1. Proc. advanced course, Bad

Honnef, 8-19 Sept. 1986. Ed. by W. Brauer, W. Reisig and G. Rozenberg.

Berlin: Springer, 1987. Lecture notes in computer science, vol. 254. P. 60-94.

Thiagarajan, P.S. (1986)

Elementary net systems. In: Petri nets: central models and their properties.

Advances in Petri nets 1986. Part 1. Proc. advanced course, Bad Honnef, 8- 1 9

Sept. 1986. Ed. by W. Brauer, W. Reisig and G. Rozenberg. Berlin: Springer,

1987. Lecture notes in computer science, vol. 254. P. 26-59.

Thiagarajan, P.S. and K. Voss (1984).

A fresh look at free choice nets. Information·and Control, Vol 61 (1984),

p. 85-113.

Valette, R. (1986)

Nets in production systems. In: Petri nets: central models and their properties.

Advances in Petri nets 1986. Part 1. Proc. advanced course, Bad Honnef, 8- 1 9

Sept. 1986. Ed. by W. Brauer, W. Reisig and G. Rozenberg. Berlin: Springer,

1987. Lecture notes in computer science, vol. 255. P. 191-217.

Zwart, R.M.P. (1990)

Implementation and evaluation of a robust adaptive blood pressure controller

(in Dutch). M. Sc. thesis, Division of Medical Electrical Engineering, Faculty

of Electrical Engineering, Eindhoven University of Technology. 1990.

A.86 Free Choice nets

A correct Simplexys protocol represents a Live Safe Place/Transition net; this
is a rather unrestrictive net type. Before Live Safe P /T-nets were chosen to
represent correct protocols, Free Choice nets have been studied. The
difference between a Free Choice net and an ordinary P /T -net is an extra
topological property that a Free Choice net must fulfill: states and transitions
are connected in a restrictive way.

The literature [Best, 1987] states that such a restriction is appropriate: a
protocol that represents a Free Choice net is preferable to a protocol that
does not represent such a net. Furthermore, for Free Choice nets there are
efficient methods through which the desired properties liveness and safeness
can be checked [Best, 1987]. These algorithms are less time and memory
consuming then those currently implemented.

For several reasons Free Choice nets are not used for Simplexys. First, in
some cases the restriction of the way in which states and transitions should be
combined is somewhat annoying. Also, the restrictions are not easy to explain
to a knowledge engineer who is not a Petri net expert.

Second, error messages are less clear because the checking method finds
neither the exact position of the error, nor the way in which it could be
produced at run time. Third, the method of checking does not agree with the
way in which the Simplexys inference engine executes the protocol: the
checker would not take into account that transitions can fire simultaneously.
As a consequence, checking for conflicts is not possible.

These drawbacks are the cause that Free Choice Nets have not been chosen
to represent Simplexys protocols. Even the advantage that the analysis
algorithms are more efficient, so that checking is faster, is not very important:
checking of a real time expert system for medical applications is allowed to

take as much time as necessary to prove its correctness as well as possible.

A basic property of a Petri net is that both concurrency and choice are
possible (section 3.4). Concurrency means that two or more sub-processes can

operate independently and simultaneously. Choice means that in some
contexts there is a choice between two or more successor contexts. Confusion
(definition 3.11) occurs when a choice interferes with concurrency.

Free Choice nets also support choice and concurrency, but the interaction
between choice and concurrency is restricted, so that a choice is limited to
one sub-process only. Free Choice Nets are confusion-free, because additional
topological properties guarantee that choice and concurrency never interfere.

I

A.87 Free Choice nets

The assertion that is found in the literature [Thiagarajan, 1984] which states
that a confusion-free net is preferable to an ordinary net, is difficult to
understand. However, the deeper the impact of confusion is studied. the

clearer the assertion that confusion should be avoided, becomes.

The following elementary subclasses of PIT-nets are both confusion-free, but
neither supports both concurrency and choice.

Definition [A.l] S-graph and T-graph

a. A net is an S-graph

- '<I t E T: .·t , : t·; " 1
b. A net is an T-graph

- '<I s E S: ,os " ,s·: " 1

In an S-graph, the from-list and the to-list of an on-statement both contain

exactly one state. In a T-graph, each state is in the from-list of exactly one on
statement and in the to-list of exactly one other on-statement.

Free Choice nets are a restricted combination of S-graphs and T-graphs.
There is no confusion because choice (from S-graphs) and concurrency (from

T-graphs) are combined in a special way.

Definition [A.2] Free Choice Nets and Extended Free Choice Nets

a. A net is called a Free Choice net

- '<I s E S: if is': > 1 - -(s') = s
- '<I tl, 12 E T, tl < > t2: 11 n 12 .. 12> - : ·tl I = i ·t2; = 1
- 'r/ sl, s2 E S: sl' n s2' .. 12> - 3 t E T: sl' = s2' = t

- '<I s E S: s' > 1 - 'r/ t E s·: ·t = s

b. A net is called an Extended Free Choice net

- '<I s1,s2ES:s1·ns2·"12> -s1·=s2·

- 'r/ tl, t2 E T: ·tl n ·t2 .. 12> - ·tl = ·t2

c. A Free Choice net is also an Extended Free Choice net.

Note that the "extended net" that is derived from a protocol, has no relation

with the property "extended free choice". A protocol represents an Extended
Free Choice net if two transitions that have common states in their from-lists
have equal from-lists. Free Choice nets are shown for instance in figure 2.1

and figure 3.4; figure 3.5 shows a net that is not Free Choice.

Eindno~en Uni~er~it of Tecnnol0 Research Re ort5 ISSN 0167-9708
Coden: TEUEDE acu tv of lectrlca ngineering

(222) Jozwiak, L.
THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE SEPARATE REALIZATION
OF THE NEXT-STATE AND OUTPUT FUNCTIONS.
EUT Report 89-E-222. 1989. ISBN 90-6144-222-2

(223) Jozwiak, L.
THE 811 FULL-DECOMPOSITION OF SEQUENTIAL MACHINES.
EUT Report B9-E-223. 1989. ISBN 90-6144-223-0

(224)

(225)

(226)

(227)

Book of abstracts of the first Benelux-Japan Workshop on Information and
Communication Theory, Eindhoven. The Netherlands, 3-5 September 1989.
Ed. by Han Vinck.
EUT Report ~224. 1989. ISBN 90-6144-224-9

Hoeiimakers, M.J.
A PO SI81LiTY TO INCORPORATE SATURATION IN THE SIMPLE, GLOBAL MODEL
OF A SYNCHRONOUS MACHINE WITH RECTIFIER.
EUT Report 89-E-225. 1989. ISBN 90-6144-225-7

~aS~Ai' R.P. and E.M. van Veldhuizen, W.R. Rut~ers, L.H.Th. Rietlens
X MENTS ON INITIAL BEHAviOUR OF CORONA GEN RATED WITH ELECTR CAL

PULSES SUPERIMPOSED ON DC BIAS.
EUT Report 89-E-226. 1989. ISBN 90-6144-226-5

Bastings, R.H.A.
tOWARD tHE DEVELOPMENT OF AN INTELLIGENT ALARM SYSTEM

. EUT Report 89-E-227. 1989. ISBN 90-6144-227-3
IN ANESTHESIA •

(228) Hekker, J.J.
toMPOTER ANIMATED GRAPHICS AS A TEACHING TOOL FOR THE ANESTHESIA MACHINE
SIMULATOR.
EUT Report 89-E-228. 1989. ISBN 90-6144-228-1

(229) Oostrom, J.H.M. van
INTELLIGENT ALARMS IN ANESTHESIA: An implementation.
EUT Report 89-E-229. 1989. ISBN 90-6144-229-X

(230) Winter, M.R.M.
DISTEN OF A UNIVERSAL PROTOCOL SUBSYSTEM ARCHITECTURE: Specification of
functions and services.

(231)

(232)

EUT Report 89-E-230. 1989. ISBN 90-6144-230-3

Schemmann, M.F.C. and H.C. Heyker, J.J.M. Kwaspen, Th.e. van de Roer
MOUNTING AND DC TO 18 GHz CHARA TERISATION OF DOUBLE BARRIER RESONAi~T

TuNNELING DEVICES.
EUT Report 89-E-231. 1989. ISBN 90-6144-231-1

Sarma, A.D. and M.H.A.J. Herben
IDi"TAACQUISITION AND 5 I G"ALPlmCESS I NG/AIiALYSI 5 OF SCINTILLATION EVEIHS
FOR THE OLYMPUS PROPAGAT I Ct. EXPoR I MErH.
EUT Report 89-E-232. 1989. ISBN 90-6144-232-X

(233) Nederstigt, J.A.

(234)

(235)

(236)

(237)

DESIGN AND IMPLEMENTATION OF A SECOND PROTOTYPE OF THE INTELLIGENT ALARM
SYSTEM IN ANESTHESIA.
EUT Report 90-E-233. 1990. ISBN 90-6144-233-8

Philip~ensJ E.H.J.
DESiGN NG DEBUGGING TOOLS FOR SIMPLEXYS EXPERT SYSTEMS.
EUT Report 90-E-234. 1990. ISBN 90-6144-234-6

Heffel s, J.J.M.
A PATiENT SIMULATOR FOR ANESTHESIA TRAINIt~G: A mechanical lung model and a
physiological softvli!lre model.
EUT Report 90-E-235. 1990. ISBN 90-6144-235-4

J.O.
BASED ADAPTIVE BLOOD PRESSURE CONTROL: A Simplexys expert system

application.
EUT Report 90-E-236. 1990. ISBN 90-6144-236-2

Ren Qingchang
~DICTION ERROR METHOD FOR IDENTIFICATION OF A HEAT
EUT Report 90-E-237. 1990. ISBN 90-6144-237-0

EXCHANGER.

~:-:-c'.e~ ,..- ,e- -: -,. ~:'-."' .. ::, ,:: .. :'e:ec'::- -.e:..·.

~ec~l: .. ~~ E:~=:~~~e; ~~:~~~e-;~:

j 5S:; Oi 6i-S'70S
Cooen: TEUEDE

(235) Lar:-.ne~$, .:.0.
'Ht USc CF PETRI NET THEORY FOR SIMPLEXYS EXPERT SYSTEMS PROTOCOL CHECKING.
LIT Report 90-E-238. 199(,. ISBN 90-6144-238-9

(2<'0)

i'lar.(!, X.

Prtt:"1 ~ I f,ARY I tNESi I CAT IONS ON TACT I LE PERCEPT I OtJ OF GRAPH I CAL PATTERNS.
EUT Re~or~ 90-E-239. 1990. ISBN 90-6144-239-7

Lutgens, J.M.A.
KNOWLEDGE BASE CORRECTNESS CHECKING fOR SIMPLEXYS EXPERT SYSTEMS.
EUT Eeport 90-E-240. 1990. ISBN 90-6144-240-0

(241) Brinker, A.C. den
A MEMBRANE MODEL fOR SPATIOTEMPORAL COUPLING.
EUT Report 90-E-241. 1990. ISBN 90-6144-241-9

	Abstract
	Contents
	Summary
	1. Introduction
	2. Condition/event nets
	2.1 Introduction
	2.2 Graphical representation of a Petri net
	2.3 State transitions
	2.4 Other Petri net classes
	3. Place/Transition nets
	3.1 Introduction
	3.2 Basic definitions
	3.3 Eabling and firing of transitions
	3.4 Interaction between individual transitions
	3.5 Properties of P/T-nets
	4. The protocol part of a simplexys knowledge base
	4.1 The simplexys toolbox
	4.2 The simplexys knowledge base
	4.3 The correspondence of protocols and Petri nets
	5. The Petri net class that represents correct protocols
	5.1 Introduction
	5.2 Requirements for correct protocols
	5.3 Safe place/transition nets versus condition/event nets
	5.4 Liveness of the protocol
	5.5 A correct protocol represent a live safe P/T-net
	6. Analysis of Petri nets
	6.1 Introduction
	6.2 Terminology and theorems
	6.3 Decomposition of the analysis
	6.4 Analysis of strong connectedness
	6.5 Simultaneous firing of transitions
	6.6 Analysis of liveness and safeness
	6.7 Methods that reduce the protocol's complexity
	7. Realization of the protocol checker
	7.1 Introduction
	7.2 The data structure
	7.3 Checking of strong connectedness
	7.4 Checking of liveness and safeness
	7.5 Construction of the reachability tree
	7.6 The data structure of the reachability tree
	7.7 Error messages
	8. The user interface of the protocol
	8.1 Introduction
	8.2 A protocol represents a Petri Net
	8.3 Syntax checking
	8.4 Topologic checking
	8.5 Checking of the dynamic behavior
	8.6 Properties of a correct protocol
	8.7 Properties of an incorrect protocol
	8.8 List of warning and error messages
	Conclusions
	References
	A free choice nets

