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The use of photoplethysmography for assessing hypertension
Mohamed Elgendi 1,2,3, Richard Fletcher4,5, Yongbo Liang1, Newton Howard6,7, Nigel H. Lovell8, Derek Abbott 9,10,

Kenneth Lim2,3 and Rabab Ward1

The measurement of blood pressure (BP) is critical to the treatment and management of many medical conditions. High blood
pressure is associated with many chronic disease conditions, and is a major source of mortality and morbidity around the world. For
outpatient care as well as general health monitoring, there is great interest in being able to accurately and frequently measure BP
outside of a clinical setting, using mobile or wearable devices. One possible solution is photoplethysmography (PPG), which is most
commonly used in pulse oximetry in clinical settings for measuring oxygen saturation. PPG technology is becoming more readily
available, inexpensive, convenient, and easily integrated into portable devices. Recent advances include the development of
smartphones and wearable devices that collect pulse oximeter signals. In this article, we review (i) the state-of-the-art and the
literature related to PPG signals collected by pulse oximeters, (ii) various theoretical approaches that have been adopted in PPG BP
measurement studies, and (iii) the potential of PPG measurement devices as a wearable application. Past studies on changes in PPG
signals and BP are highlighted, and the correlation between PPG signals and BP are discussed. We also review the combined use of
features extracted from PPG and other physiological signals in estimating BP. Although the technology is not yet mature, it is
anticipated that in the near future, accurate, continuous BP measurements may be available from mobile and wearable devices
given their vast potential.
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INTRODUCTION

With the advancement of digital sensors, signal processing,
machine-learning algorithms, and improved physiologic models,
pulse waveform analysis using photophlethysmography (PPG) for
the assessment of blood pressure (BP) has become more
feasible.1–4 PPG signal measurements is not without its challenges;
it requires noise elimination,5–7 multi-site measurement8, multi-
photodectors development,9 event detection,10 event visualiza-
tion,11 different models,12 and a thorough global health frame-
work.13 Several disadvantages are associated with this method,
including the need to conduct an individual calibration for each
person, based on skin color and clinical factors, and the drift in
calibration over short-time intervals.14

PHOTOPLETHYSMOGRAPHY

First explored in the 1930’s, PPG is a method for measuring the
amount of light that is absorbed or reflected by blood vessels in
living tissue. Since the amount of optical absorption or reflection
depends on the amount of blood that is present in the optical
path, the PPG signal is responsive to changes in the volume of the
blood, rather than the pressure of the blood vessels. In other
words, PPG detects the change of blood volume by the
photoelectric technique, whether transmissive or reflective, to
record the volume of blood in the sensor coverage area to form a
PPG signal. Indeed, the sensor coverage area includes both veins
and arteries, and numerous capillaries. Thus, the PPG signal is a

complex mixture of the blood flow in veins and arteries of the
cardiovascular circulatory system. A raw PPG signal generally
includes pulsatile and non-pulsatile blood volume.15

The pulsatile component of a PPG signal is related to changes in
blood volume inside the arteries and is synchronous with the
heartbeat, whereas the non-pulsating component is a function of
the basic blood volume, respiration, the sympathetic nervous
system, and thermoregulation.16 In clinical practice, PPG is
routinely used to monitor cardiac-induced blood volume changes
in microvascular beds at peripheral body sites, such as the finger,
forehead, earlobe, and toe.17 Since the maximum pulsatile
component of reflected light occurs approximately in the range
between 510 and 590 nm,18 the green (565 nm) or yellow
(590 nm) light is generally used for reflective PPG sensors.19

However, the red (680 nm) or near-infrared (810 nm) light is
generally used for transmissive PPG devices, with the infrared light
having the deepest penetration.20,21 Given that the optical
absorption of hemoglobin is a function of oxygenation and
optical wavelength, the use of PPG at multiple wavelengths is also
routinely used in pulse oximetry.
Green and red infrared light are often used to obtain PPG

signals because of the difference in the wavelength; each light
penetrates human tissue differently. Infrared light has the deepest
penetration ability, and it can reflect the blood pulse from deep
tissue. Therefore, it is used more. Red and infrared light can
penetrate about 2.5 mm,22 while green light can penetrate less
than 1mm22 into tissue. Hence, the detection of blood pressure,
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atherosclerosis, blood sugar, and other physiological parameters
uses the infrared light (deeper light penetration compared with
the green light) to obtain PPG signals.
PPG technology thus represents a convenient and low-cost

technology23 that can be applied to various aspects of cardiovas-
cular monitoring, including the detection of blood oxygen
saturation, heart rate, BP, cardiac output, respiration, arterial
aging, endothelial function, microvascular blood flow, and
autonomic function.8 Several different types of PPG waveforms
have been observed and found to correlate with age and
cardiovascular pathology.24,25 Since the volume and distension
of the arteries can be related to the pressure in the arteries, the
PPG signal produces pulse waveforms that are very similar to
pressure waveforms generated by tonometry; however, PPG offers
the added advantage that it can be measured continuously using
miniature, inexpensive, and wearable optical electronics.
In 2016, Addison26 found a single feature that is correlated with

BP, called the slope transit time (STT) that requires only a single
PPG signal. The STT reflects the steep trend of rising pulse wave. It
is a slope parameter calculated from the foot to peak of the
systolic waveform, as shown in Fig. 1i. In 2018, Liang et al.27 found
that the bd area, shown in Fig. 1i, is also associated with BP.

ELECTROCARDIOGRAPHY AND PHOTOPLETHYSMOGRAPHY

The pulse arrival time (PAT) and pulse transition time (PTT)
parameters are often used interchangeably;28 however, these
propagation times are defined differently. As shown in Fig. 1ii and

Fig. 2, the PAT interval includes the PTT interval plus the pre-
ejection period (PEP), which is the additional delay time between
the electrical depolarization of the left ventricle (as indicated by
the ECG QRS complex) and the start of the mechanical ventricular
ejection. Examples shown in Fig. 2 that demonstrate calculation of
PAT and PTT durations (please note, when the PTT is divided by
the distance, the results is referred to as the pulse wave velocity).29

Although within the literature, there exists some inconsistencies
with regards to the fiducial points that are used to define the start
and end points for the PTT and PAT intervals, we can also find
some general conventions.28–30 For measurement of PAT, the
commonly utilized fiducial points are the R-wave of the ECG and
systolic peak of the PPG waveform, which is measured at a distal
site, such as the fingertip. For measurement of PTT, generally two
arterial sites are used, such as the PPG proximal systolic peak
waveform as measured from the upper arm, and the distal systolic
peak of the PPG signal as measured from the fingertip.28

Interestingly, using different PPG fiducial points differentially
impacts the accuracy of BP calculations.27

In order to avoid the variable PEP time in the estimation of
blood pressure, some recent attempts have been made to
determine PTT directly from multiple PPG signals. For example,
Nitzan et al.30 determined the PTT using PPG signals measured
from the toe and finger simultaneously. Note that the PTT
duration was calculated from a distal site (figure) to a distal site
(toe). They hypothesized that PTT measurement using PPG signals
from different sites (finger and toe) would be more accurate than
using PPG in combination with ECG signals. They reported that the

Fig. 1 Key features of blood pressure estimation using PPG and other physiological signals. (i) Using PPG signal and its derivative, (ii) using
ECG and PPG signals, (iii) using BCG signals and PPG signals, and (iv) using PCG and PPG signals. Here, PPG photoplethysmogram, APG
acceleration photoplethysmogram, BCG ballistocardiogram, PCG phonocardiogram, STT slope transit time, PTT pulse transit time, PEP pre-
ejection period, PAT pulse arrival time, TD time interval between the J peak in the BCG signal and the systolic peak in the PPG signal, VTT
vascular time interval between the first heart sound S1 and the systolic peak in the PPG signal, S1 first heart sound, S2 second heart sound
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PTT measured from the PPGtoe and PPGfinger, as shown in Fig. 2,
can be used as a replacement for the PTT calculated using ECG
and PPGtoe; however, the PTT calculated using ECG and PPGtoe

was found to have a better correlation with SBP than the PTT
calculated from PPGtoe and PPGfinger.

BALLISTOCARDIOGRAPHY AND PHOTOPLETHYSMOGRAPHY

Ballistocardiography (BCG) is a long-established technique for
evaluating the cardiovascular health of patients that records the
vibrations produced in the body during the cardiac cycle. Unlike
the measurement of ECG signals, BCG does not require the skin
contact and can easily estimate heartbeat information from
patients, which makes it suitable for long-term monitoring and
measurement.31 Each BCG beat consists mainly of five waves: H, I,
J, K, and L waves,32 which were clearly identified to represent
heart activity information, as shown in Fig. 1iii. Chen et al.33 found
that the time difference (TD) between predetermined BCG indicia
(e.g., J peak in BCG waveform) and predetermined PPG indicia
(e.g., systolic peak in PPG waveform) correlated with systolic and
diastolic blood pressure. Moreover, they used the TD to predict
the subject’s blood pressure.

PHONOCARDIOGRAPHY AND PHOTOPLETHYSMOGRAPHY

Heart sounds associated with valve movement is recorded using
the phonocardiograph (PCG) instrument. Collected sounds can
provide information about the mechanical cardiac function and
blood flow.34 In addition to the two main heart sounds,
designated as S1 and S2, the waveform of the PCG signal also
contains useful diagnostic information that can reveal abnormal-
ities in the movement of the heart wall, closure of the valves, or
leakage of blood flow.35 For the purpose of estimating BP, the PCG
signal is often used together with the PPG signal from a distal
arterial site to calculate another propagation time known as the
vascular transit time (VTT).36 The VTT is derived from the first heart
sound (known as S1) of a PCG and the systolic peak of the
corresponding PPG, as shown in Fig. 1iv.

APPLICATION OF PPG IN MOBILE AND WEARABLE HEALTH
DEVICES

With the goal of achieving long-term continuous BP estimation,
many companies and academic research groups have explored
various ways to measure BP with mobile phones or wearable
sensors. Many challenges exist in achieving this goal; however, the
clinical benefits of such technology still require further develop-
ment.37 At present, commercial mobile and wearable devices can
measure a variety of physiological parameters, including heart
rate, body temperature, skin conductance, and physical activity.
Adding the estimation of SBP and DBP is logical and expected.38 A
list of wearable BP estimation devices, as well as descriptions of
the devices and their functions, is presented in Table 1.
As shown in Table 1, the usual wearable and portable devices

are the finger probe,39,40 wristband,40–42 armband,17,43 chest
belt44, and vest.45 Bluetooth and ZigBee are the most utilized
transmission mode.

PULSE WAVE ANALYSIS METHODS

Before the emergence of smartphones, a variety of wearable
devices were developed that used PPG sensors and PPG signal
analysis to estimate blood pressure. One important consideration
is that the PPG signal amplitude critically depends on the applied
external pressure as well as the hydrostatic pressure, which is
determined by the relative height of the PPG measurement site
with respect to the heart. Several research groups have explored
this relationship in order to estimate BP using a method
analogous to the oscillometric method used in BP cuffs.
Instead of varying the externally applied pressure to perform an

oscillometric BP measurement, a clever method was demon-
strated a few years earlier in 2007 by Shaltis et al.46 to perform an
oscillometric measurement using PPG by varying the hydrostatic
pressure. This method was primarily demonstrated using a device
in the form of a wearable ring, which measured PPG on the user’s
finger, and contained a 3-axis accelerometer used to measure the
orientation of the hand and arm. By raising and lowering the arm,
it was possible to vary the hydrostatic pressure over enough range

Pulse arrival time (PAT) vs. Pulse transit time (PTT)

Fig. 2 Difference between pulse arrival time (PAT) and pulse transit time (PTT). The PAT is defined as the time taken from the pulse waveform
to traverse from the heart to a distal site. The PTT is defined as the period from relatively proximal site (e.g., arm) to a distal site (e.g., finger) or
between two distal sites (e.g., figure and toe)
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to be able to vary the PPG amplitude and thus estimate the mean
arterial pressure. While such methods may be difficult to
implement in practice, this research demonstrated that it is
possible to create oscillometric methods to measure BP which do
not require a cuff or significant electric power.
Shortly after the emergence of the conventional smartphone in

2007 (iPhone) and 2008 (Android), it was soon discovered that the
smartphone camera could be used as a photoplethysmographic
sensor to obtain a PPG waveform.47 Since 2011, several
companies, such as Azumio Inc. (Palo Alto, CA, USA) began to
release mobile apps that make use of this technique to measure
heart rate and heart rate variability, with more recent efforts using
the PPG modality to target-specific heart diseases, such as atrial
fibrillation.48 Using the PPG signal derived from the phone camera,
oscillometric methods have also been attempted. However, when
a pressure cuff is not used, the main technical challenge is
determining the exact pressure applied by a finger on the phone
camera.
The iCare Health Monitor, released in 2016 by iCareFit Studio

(http://www.icarefit.com/), makes use of the smartphone camera
to acquire a finger PPG signal and estimate the BP. Although
iCareFit does not disclose its exact method for deriving BP from
the PPG signal, the mobile app instructions require the user to
press one finger on the mobile phone camera, and simultaneously
press the opposing thumb on the front touch screen of the phone,
which balances the force of the finger pressing against the back-
side camera. Using the touch screen sensor to estimate the finger
pressure, it is possible to implement the oscillometric measure-
ment method for BP.
A true oscillometric method was recently developed by

Chandrasekhar,2 which uses an external pressure sensor and
external PPG sensor embedded inside a custom phone case that
communicates with the phone over a Bluetooth connection.
Although calibration with a conventional BP cuff is required, an
acceptable performance was achieved. Using visual guidance from
the mobile app, users were able to learn the finger actuation
required by the smartphone-based device after one or two
practice trials, and subsequently, bias and precision errors of 3.3
and 8.8 mmHg for systolic BP were obtained, which achieved the
recommendation of the Association for the Advancement of
Medical Instrumentation (AAMI).

WAVE PROPAGATION METHODS

Wearable and smartphone devices have also used wave
propagation methods to estimate BP using PPG signals. For
example, in 2007, McCombie et al.29 demonstrated a wearable
device to measure PTT, which consisted of a PPG wristband
combined with a PPG ring. By measuring the PTT from the two
sites on the hand, it was possible to estimate blood pressure using
an adaptive algorithm that makes use of the Moens–Kortweg
equation and a nonlinear mechanical model of the arterial walls,
as follows:

BP ¼
K1

PTT
þ K2; (1)

where K1 and K2 are calibration constants.
The estimated BP values were compared with the continuous

BP values as measured by a commercial Finapres device from the
same hand, and the results had good qualitative although not
quantitative agreement.
In 2013, Chandrasekaran et al.49 demonstrated the measure-

ment of BP using the PPG signal collected using the phone
camera, in conjunction with the heart sound waveform collected
using the mobile phone microphone. Using these two measure-
ments, it was possible to calculate the VTT (time between the S1
wave in heart sound and systolic peak in PPG, described
previously), and subsequently use this calculation to estimate
BP. The following year, AuraLife (Newport Beach, CA) released the
first commercial mobile app, named Instant Blood Pressure (IBP),
which used this method to measure BP. While this approach
seems promising, the specific implementation in the IBP app
demonstrated poor performance when clinically tested.50 While
Aura Labs never published any validation study for their app, an
independent investigation was performed by Plante et al.50 The
findings of this clinical study showed unreliable BP estimations
and weak correlation between the estimated BP using the app
and the cuff-based BP readings. Significant concerns were raised
from the clinical community that individuals may use these apps
to assess their BP, and the app was subsequently removed from
the Apple App store.
Also in 2014, Azoi Inc.51 (San Francisco, USA) released a custom

case and mobile app for the iPhone, called Wello, which
implemented estimation of BP using the wave propagation
method. The raw signals were provided by electronic sensors
embedded in the custom phone case, which included an ECG

Table 1. A comparison between different wearable blood pressure estimation studies and devices

Year Author Wearable type Sensors Transmission mode # Subjects f r (f,SBP)

2019 Redha et al.56 Wristband PPG N/R n1= 106 Feature set 0.69

2017 Holz et al.53 Eyeglass frame and finger probe PPG N/R n1= 4 PTT 0.64–0.84

2017 Zhang et al.43 Armband ECG and PPG USB cable n1= 10 PAT N/R

2016 Plante et al.50 Mobile phone (camera+
microphone)

Heart sound
and PPG

N/R n1= 85 VTT ≈0.4

2016 Seeberg et al.44 Chest belt ECG and PPG Bluetooth n1= 16 PTT −0.56

2016 Griggs et al.42 Bicep- and wrist-worn device ECG and PPG Radio frequency n1= 8 PAT −0.7

2016 Zheng et al.17 Armband ECG and PPG Bluetooth n1= 9,
n2= 15

PAT N/R

2015 Munnoch and Jiang79 Handheld ECG and PPG Bluetooth n1= 2 PAT N/R

2014 Jung et al.39 Finger probe and chest pad ECG and PPG Bluetooth N/R PAT N/R

2014 Thomas et al.80 Wrist watch ECG and PPG Bluetooth N/R PAT −0.55

2012 Miao et al.81 Portable device ECG and PPG Bluetooth N/R N/R N/R

2009 Guo et al.40 Wrist watch and finger probe ECG and PPG ZigBee N/R PAT N/R

2008 Pandian et al.45 Vest-worn device ECG and PPG Radio frequency n1= 25 PAT N/R

r Pearson’s correlation coefficient, f PPG-based feature(s), N/R not reported, n1 number of healthy subjects, n2 number of hypertensive subjects, PAT pulse

arrival time, PTT pulse transit time, VTT vascular transit time
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sensor as well as two PPG sensors. By holding the phone with
both hands, the mobile app was able to capture two measure-
ments of PAT and use that to estimate BP. Up to our knowledge,
there is no clinical study validates the use of this product.
More recently, Wang et al.52 demonstrated a similar mobile app

which uses the PTT measurement derived from the seismic
waveform of the user’s heart as measured by the phone’s internal
accelerometer. Blood pressure estimates were computed using
the familiar Moens–Kortweg simplification using PTT, as described
in Eq. (1). Wang et al. reported good agreement between the
measured BP value and the diastolic BP value measured by an
external commercial BP cuff device, with an error range of
±6.7 mmHg.
In 2017, Holz et al.53 demonstrated that the design of eyeglass

frames with embedded PPG sensors is suitable for BP measure-
ment. This prototype device, Glabella (Microsoft Research, USA),
makes use of three miniature PPG sensors that sample the pulse
waveform at three different locations: the angular artery near the
bridge of the nose, the temporal artery on the side of the head,
and the occipital artery behind the ear. Relative blood pressure
was calculated by measurement of PTT by measuring the pulse
time from the angular artery to one of the other two locations,
with the temporal artery yielding slightly better results. PPG data
were collected from only four participants over a period of 5 days
(12+ h per day) along with three blood pressure measurements
per hour using an oscillometric BP cuff device, and the data were
fit to the linear BP estimation equation using PTT (Eq. (1)). Using a
baseline calibration, the predicted systolic BP value was found to
correlate with the measured systolic BP reasonably well, with a
correlation coefficient of r= 0.79 with an error of ±10mmHg. To
the best of our knowledge, there is no clinical study that validates
the use of this product.
It is worth noting that designing an efficient filter plays an

important role in processing PPG signals. In addition, filtering
algorithms can also produce time-shifts in the position of time
series features. In much of the literature, filtering of the PPG time
series data is common practice; however, the choice of filter is not
often discussed. Butterworth filters are particularly common for
filtering PPG data.54–57 A comparative filter study6 was conducted
and an optimal filter for short-term PPG signal was achieved. The

conclusion of this large study is that for a short duration (2 s) PPG
signal, the ChebyshevII filter is more efficient for making the
dicrotic notch more salient, compared with the Butterworth filter,
as shown in Fig. 3. The Butterworth filter is a maximally flat
magnitude filter that rolls off more slowly without ripples around
the cutoff frequency, compared with other filters, such as the
Chebyshev filter. When applied to a PPG time series, such filtering
may lead to the disappearance of the dicrotic notch, especially if
the raw PPG waveform is noisy. However, the ChebyshevII filter is
able to emphasize the difference between the systolic and
diastolic waves, making the dicrotic notch more visible, easy to
detect, and prepares the PPG morphology for an analysis, as
shown in Fig. 3.

MODELS AND MACHINE LEARNING

New types of data analysis methods have also emerged over the
past decade, and this has also been applied to the problem of BP
estimation derived from the raw PPG signals. In 2014, Choudhury
et al.58 demonstrated how PPG parameters could be fit to a
parametric Windkessel model to estimate blood pressure. The
Windkessel model describes the arterial blood flow as an electric
circuit that contains two elements: resistance and capacity.59

Choudhury et al. used linear regression to derive the resistive and
capacitive elements for a 2-element Windkessel model, and was
able to achieve moderate agreement, using PPG and BP data
collected from resting hospital patients. Banerjee et al.60 subse-
quently demonstrated the use of multi-layer neural networks to
derive the resistive and capacitive element values for the 2-
element Windkessel model using the PPG data collected from a
smartphone. The authors claimed the resulting mobile app,
named HeartSense, produced results within ±10% of sphygmo-
manometer readings; however, due to insufficient clinical valida-
tion, as of 2018, the mobile app is no longer available in the
Google Play store, and no additional information is available.
With the increasing popularity of machine-learning methods,

other research has continued to explore methods of estimating
blood pressure using features of the PPG signal alone without the
aid of any additional sensors. In 2016, Sola et al. demonstrated the
estimation of BP from the finger PPG signal using standard

Fig. 3 Filter impact on PPG morphology. The left figure shows the impulse response difference between the Butterworth (red line) and
ChebyshevII (black line) filters. The right figure shows the Butterworth bandpass filtered (red line) and the ChebyshevII bandpass (black line)
filtered PPG signals of the raw PPG signal (blue line). It is clear that the ChebyshevII filter is able to emphasize the difference between the
systolic and diastolic waves, compared to the Butterworth filter.6 PPG photoplethysmogram, dB Decibel, GHz Gigahertz
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machine-learning and linear regression.61 By including PPG
features (not explicitly stated the features used), they were able
to predict BP with an error less than 8mmHg. We note that the
published study was conducted with only three subjects, and
larger published studies are not readily available.
Following a similar approach, in 2018, Radha et al. demon-

strated the use of machine-learning neural nets to estimate BP
using a variety of PPG signal features, including time-domain,
frequency-domain, and entropy-based features.41 This neural net
approach was able to achieve an error of ±9.82 mmHg and
±3.88 mmHg for SBP and DBP, respectively, with Pearson
correlation coefficients of 0.68 and 0.74, respectively.
A recent PPG-based machine-learning study,4 which used the

GoogLeNet pretrained convolutional neural network, provided
similar or slightly better accuracy for hypertension stratification,
compared with the traditional feature extraction approach over
the same data set. Thus, the use of deep learning in hypertension
assessment using PPG signals is promising and may evolve over
time. However, it does not yet provide clinical insights as can be
seen with the traditional feature extraction followed by classical
machine-learning algorithms.

COMMERCIALIZATION

The use of PPG to estimate blood pressure has been demon-
strated primarily by research groups or small start-up companies.
However, these methods are gaining wider acceptance and
mobile phone manufacturers, such as Samsung, have begun to
integrate BP measurement capability into the stock mobile phone
software. In 2018, in partnership with UC San Francisco, Samsung
released “My BP Lab”, which is a mobile app that measures
changes in blood pressure using the finger PPG signal collected
from the mobile phone camera.62 Samsung has not disclosed the
exact method used to calculate BP; however, several of the
methods mentioned in this review are possible candidates. A
recent review63 of the BP measurement app for the Samsung S9
and S9+ demonstrated good agreement with a commercial BP
cuff device when the user is at rest. However, some discrepancy in
the readings appeared when measured shortly after exercise.
Based on the reported sample sizes and limited validation

attempts seen in publications listed in Table 1, it is difficult to
confidently understand the accuracy of the BP estimations
attained using PPG-based wearable devices. All studies, except
one, used data collected solely from normal healthy individuals.
Moreover, the sample size was very small for the majority of
studies, which does not indicate reliable findings and robust
analysis. To increase reliability and validity for this line of research,
some recommendations will be discussed later in the Future
Directions section.

DATABASES AVAILABILITY

To the best of our knowledge, there are two main publicly
available databases. The first database, called PPG-BP Database,
was recently published64 and it contains PPG signals collected
along with BP readings from patients admitted to the Guilin
People’s Hospital in Guilin, China. It includes data collected from
219 subjects, aged 21–86 years, with a median age of 58 years,
covering several diseases including hypertension, diabetes,
cerebral infarction, and insufficient brain blood supply. The
second database is the Multiparameter Intelligent Monitoring in
Intensive Care (MIMIC) Database,65 which contains thousands of
recordings of multiple physiologic signals such as arterial blood
pressure (ABP), PPG signals, and respiration, with additional
waveforms simultaneously collected.

While several papers66–68 have used the MMIC database to
assess pulse transit times, it should be noted that the PPG and
ECG signal data are not perfectly synchronized. Although multi-
parameter hospital monitors collect various physiological para-
meters “simultaneously”, the electronic hardware and software
filtering on the measured signals produce additional time delays
(up to 500 milliseconds), which can have a significant effect on the
calculation of PAT and other propagation delays.69 Therefore, it is
not recommended to use the MIMIC database to calculate PTT
or PAT.

DISCUSSION

The present review aimed to provide an overview of the current
methods of measuring BP that are cuffless and support
continuous BP estimation. In the body of literature related to
pulse morphology and pulse wave analysis, there is increasing
interest in using the PPG waveform to understand the formation
of blood pressure. It is generally accepted that the physiological
status of peripheral blood vessels, such as aging, stiffness, and
compliance, can be partially expressed in terms of peripheral
signal waveforms.23 As demonstrated by recent research, analysis
of the PPG waveform can assist in understanding the underlying
status of peripheral blood vessels under the influence of blood
propulsion and the blood recycling process. For this reason, many
parameters extracted directly from waveforms can be used to
accurately evaluate vascular status. The parameters mentioned
often in the literature include pulse width, augmentation index,
large artery stiffness index, crest time, etc. As described previously,
the waveform’s shape is influenced by the blood circulatory
system. Therefore, based on the waveform propagation and
waveform morphology theories, two different research directions
have been formed and developed to continuously estimate BP
through cuffless methods.
Based on the current literature, there is clear evidence that the

fluctuations in BP are reflected in the PPG signals. Given that the
exact relationships between PPG waveforms and BP are not yet
clear, BP estimates are difficult to achieve by the simple fitting of
models or equations. Fortunately, continued advances in machine-
learning technology will continue to provide new insights into the
exact relationship between the BP and PPG waveforms. Many
features, such as amplitude, time span, area, ratio, spectral
information, and spectral entropy information, continue to be
explored. Certainly, extracting more features70,71 from PPG wave-
forms, and using these features to create new machine-learning
models, will continue to be an obvious approach to the problem
of BP estimation.
In the body of literature relating to wave propagation theory,

physical models can now explain the process of blood pressure
propagation through the human body, and this process is
presented and widely recognized in the form of pressure waves
and ECG, BCG, PCG, and PPG signals. However, several aspects
require special attention in determining the merits of BP
estimation results, such as the transmission distance, the starting
and ending points of the transmission, PTT, etc. Numerous
problems still exist with respect to accurate positioning of sensors,
calculation of propagation distances, and the impact of the
variable PEP time on the pulse wave velocity timing. While there
exists a definite formulaic relationship between BP and PTT, as
described above, these practical challenges have resulted in a
wide variation in systolic blood pressure estimates across different
studies.
Naturally, researchers in the field have conducted a series of

studies in order to address these issues. To avoid the problems
associated with the PEP, different cardiac signals have been
utilized in studies to obtain more accurate heart valve opening
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times. Many studies have shown that PCG and BCG signals could
be more accurate in extracting the heart valve opening time than
ECG signals. Some researchers have also conducted comparative
studies on the performance of BP estimation using different
ending points in the PPG signal. The literature has also evidenced
the application of distinct linear and nonlinear mathematical
formulas to calculate BP and to obtain better approximations. The
need for individual short-term or long-term calibration has also
been confirmed by a body of literature as a means of improving
the accuracy of BP estimation. However, various limitations in
accurate BP measurement, such as repeated calibration, incon-
venient measurement locations, etc., often greatly limit the
practical application of theory. In addition, based on the analysis
of waveform propagation theory, most of the BP estimations are
focused on SBP, and DBP has no definite theoretical relationship
with any parameter derived from this theory. For this reason,
many experimental studies have experienced difficulties in
obtaining satisfactory DBP prediction results.
Figure 4 illustrates, at a qualitative level, how PAT can be used

to estimate blood pressure at different stages of hypertension.
These examples were taken from the MIMIC-II database65 and
included PPG and ECG signals, as well as the ABP which is
considered the gold standard. It can be seen that there is an
inverse relationship between the blood pressure and the PAT
duration, the higher the blood pressure, the smaller the PAT
duration, and vice versa. However, more precise correlation is not
possible given that the data in MIMIC- II do not contain proper
time synchronization across signals, and is thus not designed for
PAT/PTT analysis.
Based on this literature review, it appears that Pearson’s

correlation coefficient has been mostly adopted by researchers
and is used similarly here as well. There have been two
approaches for correlating PAT with blood pressure: the first
approach is to use the PAT as a single feature or combined with

other physiological features to classify normotensive and hyper-
tensive subjects. The second approach is to use the PAT duration
itself or combined with other features to estimate (or predict) the
actual blood pressure.
Regarding the second approach, the calculation of the

correlation coefficient is not enough to validate the estimated
BP values. The mean error (ME) and standard deviation (STD)
between predicted BP and reference BP are also needed. The
estimation of blood pressure values has been standardized by the
AAMI. To meet the AAMI criteria,72 the ME difference between the
estimated BP values and the mercury standard must be ≤5 mmHg
or the STD must be ≤ 8mmHg.
At present, some studies have shown good predictive

performance for continuous BP estimation techniques based on
machine-learning technology, as shown in Table 2. If one feature
from PPG and ECG will be used, such as PAT, the most common
linear model for estimating BP is BP ¼ β0 ´ PATð Þ þ β1 due to its
robustness to artifacts.73 A least square algorithm is usually
implemented to determine the unknown coefficients β0 and β1,
which is considered as the calibration process. If more than one
feature to be used in the estimation of BP using linear regression
than more coefficients need to be considered; however, there are
other mathematical models can be used, as shown in Table 2.
It is clear from Table 2 that there is inconsistency in

approaching this challenge, in terms of sample size, the number
of features, reporting correlation coefficients with used feature(s),
reporting the estimation error in terms ME and STD. However,
despite these challenges, this line of research is encouraging.
While BP estimation from the PPG signal is relatively new, the

use of PPG in the clinical setting is widespread. In the developed
world, the use of the pulse oximeter for anesthesia monitoring
during surgery has been the standard of care for more than
20 years,13 and the World Health Organization is now leading the
Global Pulse Oximetry Project, which aims to make the pulse
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oximeter component available in every operating room in the
world.74 This widespread use of pulse oximetry represents another
possible opportunity to employ the ubiquitous pulse oximeter as a
device for estimating BP.
Although the emerging algorithms for BP estimation and health

monitoring are increasingly complex, the processing power of
wearable and mobile technologies, as well as cloud computing
have also increased dramatically over the past decade. The ability
of wearable health devices to monitor BP and cardiovascular
health status is becoming increasingly feasible.
At present, a series of health parameters, such as body

temperature, heart rate, ECG, and PPG, can be monitored by
commercial wearable products. Soon, wearable BP products will
also likely be an acceptable form of health monitoring utilized by
most people, and their precision, wear, ease of use, and other
characteristics will continue to improve significantly.

FUTURE DIRECTIONS

The use of PPG signals as a replacement for cuff-based or invasive
BP measurement is relatively new, and most PPG analysis methods
are still relatively simple. A variety of estimation methods continue
to be explored, including those that utilize PPG signals exclusively,
and those which combine PPG with other physiological signals. As
can be seen from the tables, the estimation of BP from PTT
continues to be perhaps the most common approach, but
generally only with very small sample sizes. With the advent of
wearable devices, the real-time analysis of PPG waveforms also
enables the possibility to monitor BP on a nearly continuous
basis.75–77 In the future, the increasing adoption of wearable PPG
devices will also likely play an essential role in patient care.
Our recommendations, based on a review of BP estimation

using PPG signals, are as follows:

1. Whenever possible, use additional physiological cardiovas-
cular measurements (e.g., ECG, ABP, etc.) to PPG, in order to
increase accuracy;

2. When multiple cardiovascular signals are used, care must be
taken to ensure time synchronization across all sensors;

3. Standard and consistent use of use measurement terminol-
ogy needs to be encouraged in order to avoid confusing or
misleading research results (e.g., PAT vs. PTT);

4. Standards such as AAMI need be adopted for use in
estimating BP using PAT, PTT, or other propagation times;

5. For the purpose of validating and labeling data, a proper
FDA-approved BP measurement device needs to be used
(and calibrated regularly);

6. Additional research is required using sample sizes of n >
100 subjects, with a mixture of both normotensive and
hypertensive subjects;

7. Widespread use of BP estimation algorithms will also require
additional studies that include socioeconomic diversity
(ages, race, gender, etc.);

8. The robustness of BP estimation algorithms for ambulatory
devices needs to be tested under a variety of movement
conditions, not just sedentary;

9. The research community would benefit if published studies
also included additional clinical PPG features78 to examine
correlation with BP;

10. There is a need for more publicly available physiological
databases, in addition to PPG-BP64 and MIMIC-II65 that
contain time-synchronized physiological signals for the
purpose of calculating PTT and PAT; and

11. Increased collaboration between engineering and clinical
researchers would help enrich the validation and protocol
process, in addition to helping with access to patients, and
improving the quality and availability of research data.

CONCLUSION

Given the widespread use of blood pressure in medicine and
health care, we have provided a review of photoplethysmography
as a tool for cuffless estimation of BP, examining the use of PPG
independently, as well as in combination with other cardiovas-
cular measurements. The increasing demand for the PPG-based
wearable devices also provides an interesting direction for
continuous ambulatory measurement of BP.

Table 2. A summary of computing model and performance of the BP estimation

Year Features r (features, BP) Model/Method BP confidence interval in mmHg # Subjects Ref.

2019 10 features rs= 0.6 k-nearest neighbors N/R n1= 48, nx= 73 3

2019 PAT rs=−0.54 BP= (β0× PAT)+ β1 N/R n1= 48, nx= 73 27

2019 N/R rs= 0.78 Partial least-squares regression CIs=−0.2.3 ± 18 n1= 265 82

2018 PPG signal N/R Deep learning N/R n1= 48, nx= 73 4

2016 PPG signal N/R Neural networks CIs= 2.3 ± 2.9, CId= 1.9 ± 2.5 N/R 83

2015 PAT, AI, LASI, IPA N/R Support vector machines CIs= 12.3 ± 18.5, CId= 6.4 ± 8.5 N/R 75

2014 PAT rs=−0.67, rd=−0.61 BP= (β0× PAT)+ β1 CIs= 5.8 ± N/R, CId= 5.15 ± N/R n1= 9 84

2014 PAT N/R BP= (β0/PAT)+ β1 CIs= 0.1 ± 2.5, CId= 1.3 ± 7.4 n1= 30 85

2013 4 features N/R Neural networks CIs= 5.2 ± 5.0, CId= 2.9 ± 2.9 N/R 86

2013 21 features N/R Neural networks CIs= 3.8 ± 3.5, CId= 2.2 ± 2.1 N/R 86

2013 N/R N/R Neural networks CIs=−2.9 ± 19.4, CId=−3.7 ± 8.7 nx= 47 87

2013 PAT rs=−0.71, rd=−0.69 BP= (β0× PAT)+ β1 CIs= 0.81 ± 5.48, CId= 0.34 ± 2.94 nx= 72 73

2013 PAT, HR N/R BP= (β0× PAT)+ (β1 × HR)+ β2 CIs= 1.8 ± N/R, CId= 1.57 ± N/R n1= 10 88

2010 PTT rs=−0.84, rd=N/R BP= (β0× ln(PTT))+ β1 CIs = N/R, CId= N/R N/R 89

2010 PAT, HR, TDB N/R BP= β0+ (β1× PAT)+ (β2 × HR)+ TDB CIs=−0.002 ± 5.9, CId=−0.02 ± 4.7 nx= 10 90

2004 PAT N/R BP= (β0/PAT
2)+ β1 CIs= 0.08 ± 11.3, CId=N/R nx= 22 91

PAT pulse arrival transit time, PTT pulse transit time, HR heart rate, TDB arterial stiffness index, AI augmentation index, LASI large artery stiffness index, IPA

inflection point area ratio, β0, β1 and β2 regression coefficients, N/R not reported, n1 number of healthy subjects, nx number of unhealthy subjects

CIs and CId are the confidence interval (mean ± standard deviation) for the estimated systolic pressure and diastolic pressure, respectively. Here, rs is the

correlation coefficient for the systolic pressure while rd is correlation coefficient for the diastolic pressure
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Currently, most PPG-based BP estimation is mainly divided into
two research directions based on waveform morphology theory
and waveform propagation theory. Research based on the
waveform morphology theory, also known as pulse wave analysis,
has typically relied on parameters extracted from a single PPG
waveform. Some of these explorations have led to excellent
research findings that have enabled the implementation of
wearable designs, but many problems are present, such as the
need for a large amount of data and a certain period of pre-
training and calibration. Research based on the waveform
propagation theory, utilizing the pulse propagation delays
between multiple pulse signals, has also shown promising results.
Even so, significant problems remain, relating to the acquisition of
multiple signals, the location of sensors on the body, and
individual factors, which can directly affect the accuracy of BP
estimations. The existence of such practical problems and the
difficulty in overcoming them has made the applications of this
theory difficult.
The development of noninvasive, cuffless, and continuous BP

estimation is a promising yet challenging field. That the trend is
toward wearable BP technology is evident. In future studies, a
more comprehensive understanding of PPG information can
hopefully enable researchers to solve the abovementioned
problems and to successfully develop technologies for BP
estimation using mobile and wearable devices.
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