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Abstract 28 

 29 

1. Global change is causing ecosystems to change at unprecedented rates and the urgency to quantify 30 

ecological change is high. We therefore need all possible sources of ecological data to address key 31 

knowledge gaps. 32 

2. Ground-based photos are a form of remote sensing and an unconventional data source with a high 33 

potential to improve our understanding of ecological change. They can provide invaluable 34 

information on ecological conditions in the past and present at relevant spatiotemporal scales that 35 

is very difficult to obtain with other approaches.  36 

3. Here we review the use of ground-based photos in a set of relevant ecological research topics, such 37 

as biodiversity and community ecology, phenology, global change ecology and landscape ecology. 38 

We highlight three main photo-based methods in ecological research (repeat photography, time-39 

lapse photography and public archives), alongside which we discuss three case studies to 40 

demonstrate novel applications of these methods, to answer fundamental ecological questions. 41 

4. Synthesis: Photos can significantly support ecological research to improve our understanding of 42 

biotic responses in a rapidly changing world. Photos cover relatively large temporal and spatial 43 

scales, and can provide large amounts of information with limited time investment. To exploit their 44 

full potential, we need to invest not only in technological advances to compile, process and analyze 45 

images but also in proper data management. 46 

  47 
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Introduction 48 

Ecosystems across the globe are changing at unprecedented rates owing to global-change drivers such 49 

as climate change, land-use change, invasive species, and enhanced inputs of nutrients and other 50 

pollutants (Komatsu et al., 2019). Biodiversity and community composition in numerous ecosystems 51 

across the globe are strongly influenced by eutrophication and climate change (Hautier et al., 2020; 52 

Staude et al., 2020; Zellweger et al., 2020). Furthering our mechanistic understanding and predicting the 53 

future impacts of global change is one of the key aims of ecology, as the rate of current change, and its 54 

impacts on ecosystems and human well-being, is high (Büntgen et al., 2021; Pecl et al., 2017). Therefore, 55 

we need all possible sources of data to quantify ecological changes and address key knowledge gaps. 56 

Photos are an often-overlooked source of data in ecology, although they have occasionally served as a 57 

data source in several research fields in ecology, such as landscape ecology (e.g. to track long-term land 58 

cover changes (Danby & Hik, 2007; Harsch et al., 2009)), wildlife ecology (e.g. nesting behaviour and 59 

feeding ecology; see Cutler & Swann (1999) for a review), and species distribution monitoring of both 60 

animals (e.g. Rousselet et al., 2013) and plants (e.g. Dyrmann et al., 2021; Kotowska et al., 2021). Photos 61 

are a type of legacy remote sensing data that allow scientists to test for global environmental change 62 

effects (sensu Vellend et al., 2013), just as herbarium specimens, resurveyed vegetation plots and land 63 

survey records (De Frenne, 2015; reviewed by Vellend et al., 2013; Willis et al., 2017). They can provide 64 

additional, complementary and novel insights that are not possible to achieve with other data types. 65 

Moreover, their use can be more time- and cost-effective than traditional research methods for many 66 

applications. With rapid ongoing advances in digital photography, and the ubiquity of (phone) cameras 67 

in our daily life, the availability of image data is growing exponentially. However, their use in ecological 68 

change studies remains a marginal phenomenon, rather than a structurally recognized source of data. 69 
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Many ecological processes are impossible to fully understand without considering changes over longer 70 

time spans of several years, decades, and even centuries. Quantifying such long-term patterns is 71 

particularly challenging with conventional scientific methods, especially because research projects 72 

typically span shorter time periods (< 5 years). Local environmental knowledge, passed on from one 73 

generation to another, is susceptible to the inaccurate human perception of ecosystem changes 74 

(‘shifting baseline syndrome’; see Fernández-Llamazares et al., 2015; Pauly, 1995). Even the famous 75 

work of Alexander von Humboldt, the Tableau Physique (1807) of Mt. Chimborazo in Ecuador depicting 76 

zones of distinct vegetation types, often used as a baseline to track altitudinal vegetation shifts (e.g. 77 

Morueta-Holme et al., 2015), is known to contain partly false field data (Hestmark, 2019; Moret et al., 78 

2019). Historical photos on the other hand, can provide unbiased evidence of past conditions. 79 

Therefore, we focus our review on the use of time series of ground-based historical photographs of 80 

species, ecosystems and landscapes to monitor, understand and evaluate temporal ecological change at 81 

timescales spanning at least several weeks. In particular, we see most interesting applications in the 82 

following research areas: global change ecology, community and biodiversity ecology, phenology, 83 

landscape ecology, invasion ecology, human (disturbance) and urban ecology, and agroecology (these 84 

were selected from the list of focal topics of the British Ecological Society, see SI Appendix S1 for more 85 

information on our selection procedure based on expert knowledge).   86 

We limit our study to photos meeting the following criteria: “a ground-based image (photograph) 87 

produced by a colour/monochrome camera, from distances in the range 0.1 m - 100 m, with known 88 

location and time”. We focus on ground-based monochrome (black & white: BW) and colour (red, green, 89 

blue: RGB) photographs as particularly interesting, given their two-century long history, which makes 90 

them ideally suited to study ecological changes through time. Indeed, significantly older images are 91 

available compared to more recent techniques such as thermal, multispectral and hyperspectral imaging 92 

and laser scanning via light detection and ranging (LiDAR). 93 
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Ground-based photos also clearly complement airborne and satellite remote sensing, and have the 94 

potential to offer additional insights in terms of spatial resolution and temporal extent of the data 95 

(Vellend et al., 2013). The oldest satellite image of the earth surface was made in 1959 (by the US 96 

Explorer) and the oldest continuous satellite imagery is from the Landsat program, which has been 97 

collecting images at 30 m resolution since the 1980s. The first airborne photos (e.g., orthophotos) are, 98 

depending on the country, available since the World Wars. Archived ground-based photos, on the other 99 

hand, have the potential to go significantly farther back in time than a century for ecological research 100 

(Lanckriet et al., 2015; Pickard, 2002; Rohde & Hoffman, 2012). In a recent study on Greenland’s glacial 101 

cap, the researchers note that “… collecting historical data sets is probably more important at this point 102 

than having yet another satellite do more of the same stuff…” (Schiermeier, 2016). In terms of spatial 103 

resolution, contemporary satellite and airborne images are perfectly appropriate to track e.g. tree 104 

leafing phenology and tree line shifts across open landscapes (Mohapatra et al., 2019), but they are 105 

often not suitable to track flowering phenology of herbaceous vegetation, range shifts of individual 106 

plants, or in forests where below-canopy biodiversity is not visible from above the canopy. Ground-107 

based photography is thus often able to provide more accurate and long-term information of spatial and 108 

temporal vegetation change compared to remote sensing data (Fitzgerald et al., 2021).  109 

The overarching aim of this review is to demonstrate the high potential of photographs in ecological 110 

change research as a data source, to provide insights that could not have been generated in any other 111 

way, or as an alternative to more expensive and time-consuming data collection methods. We highlight 112 

three promising avenues for the use of photos to study changes in plant ecology: repeat photography, 113 

time-lapse photography and public archives (Figure 1). For each approach, we first discuss how they are 114 

currently used to quantify ecological change. Next, we present a fitting case study in which we 115 

demonstrate the potential of each approach to answer key questions and fill important research gaps in 116 

ecological change, and propose innovative research directions to strengthen the approaches. Finally, we 117 
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discuss possible scientific and technical advances that can further boost the potential of photographs for 118 

studying ecological change in the future. 119 

 120 

Figure 1. Conceptual figure illustrating how three different photography approaches can provide 121 

ecological knowledge at different spatial and temporal scales. The yellow boxes indicate the three 122 

approaches. The blue boxes indicate the knowledge that can be obtained. The position along the 123 

‘temporal coverage’ axis provides a (very rough) indication of the time scale at which these types of 124 

knowledge are typically assessed. Repeat photography (replicating pre-existing photos) is particularly 125 

valuable to assess long-term (decades to centuries) ecological changes at the landscape scale, such as 126 

land-use changes. Public archives such as Google Street View typically have a lower temporal coverage 127 

(decades), but a potentially very high spatial coverage (virtually global), and can for instance be used to 128 

monitor species distribution. Time-lapse photographs have a low temporal coverage (e.g. one-year 129 

study) but a high temporal resolution (e.g. every second/hour/day), and a varying spatial cover and 130 
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resolution (depending on the research questions). They can, for instance, provide valuable data on plant 131 

phenology and pollination. 132 

 133 

Three promising avenues for the use of photos in ecological change research 134 

To quantify the relative contribution of photography as a data source for ecological studies, we 135 

performed a systematic literature search. First, we selected eleven topics (listed in Fig. 2) from the 136 

journals of the British Ecological Society’s (BES, https://besjournals.onlinelibrary.wiley.com/) research 137 

topics list, for which we expected photographs to be a promising data source. Therefore, eight co-138 

authors of this paper scored each topic, based on the following question: ‘How high do you estimate the 139 

usefulness/potential of photographs as a data source to address the following research topics?’ (the full 140 

selection procedure is described in SI Appendix S1). Then, we searched the literature for each topic, 141 

with and without a set of search terms specifically related to photography (see SI Appendix S2 for 142 

search strings per topic). The list of papers related to photography was further reduced through manual 143 

screening of their titles and abstracts. Overall, the share of the literature that made use of ground-based 144 

photographs as a data source was low for all topics (1.24 % for ‘phenology’, 0.30 % for ‘global change 145 

ecology’ and < 0.20 % for all other topics; SI Appendix S2). Across all selected topics, we found 206 146 

papers using photos as a data source, from which several belonged to two or more topics (SI Appendix 147 

S2).  148 

Based on this literature search, we identified three key methodological approaches that have a high 149 

potential to improve our understanding of ecological change, and provide insights that go beyond what 150 

can be reached with more conventional methods. The three approaches are repeat photography 151 

(replicating pre-existing photos), time-lapse photography (fixed on-site camera taking photos at 152 

specified time intervals), and public archives (e.g. Google Street View, television footage, traffic or CCTV 153 
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cameras). In Fig. 2, we visualize the relative contribution of these three approaches in the retained 154 

publications, and their relative importance per research topic.  155 

 156 

Figure 2. Visualization of the relative contribution of the three main photography approaches (on the 157 

right) for each research topic (on the left). The width of each link between nodes quantifies the number 158 

of publications found for a specific topic, using a specific approach.  159 

Each of these three approaches has specific features that determine their suitability for specific research 160 

goals in ecology. We developed an evaluation framework to enable appropriate selection of 161 

photography methods to study ecological change, depending on the goal of the study (e.g. reveal land-162 

use changes or phenology shifts), on the spatial scale (e.g. global or local) and on the availability of 163 

resources in the study region (e.g. photos from public archives available?). We based our evaluation 164 

framework on eight criteria for monitoring ecological change, which are described in Box 1. The full 165 

evaluation of the three approaches is given in SI Appendix 3, and a summary is shown in Fig. 3. Below, 166 

for each approach, we first provide insight in their key characteristics, with reference to the established 167 

evaluation criteria, and discuss their current applications in ecology. Then, we present a case study to 168 
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demonstrate their potential to fill important research gaps in ecological change, and propose innovative 169 

research directions that can further strengthen the approach. Below, we mainly focus on the specific 170 

properties, opportunities, challenges and new potential research directions for each approach, and less 171 

on the technical aspects of image analysis. In Box 2, we provide an overarching comprehensive overview 172 

of the workflow that can be followed when analyzing images derived from any of the three approaches, 173 

to obtain quantitative data. 174 

Box 1: eight criteria for monitoring ecological change 175 

The first four criteria (Magurran et al., 2010; Verburg et al., 2011) describe the temporal and spatial scale 176 

of the research: temporal coverage refers to the time between the first and the last moment of data 177 

collection, while temporal resolution refers to the frequency of data collection events. Similarly, spatial 178 

coverage refers to the geographical limits of the overall area of data collection, while spatial resolution 179 

refers to the distance between data collection points (i.e. the number of data collection points per unit 180 

surface area). In addition, a consistent methodology (across space and time) is crucial to allow data 181 

comparisons (Borer et al., 2014; Magurran et al., 2010), and versatility ensures the applicability of a 182 

method in a wide array of study types (De Frenne, 2015). Resource-effectiveness (both in terms of 183 

financial costs and time investment) is often an important criterion to choose an appropriate and feasible 184 

methodology (Pieter De Frenne, 2015; Spellerberg, 2005). Finally, the environmental impact of the 185 

methods should be considered too, and preferably kept to a minimum (Spellerberg, 2005). 186 
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 187 

Figure 3. Evaluation of the three photography methods, along eight criteria (described in Box 1): 188 

spatial coverage, spatial resolution, temporal coverage, temporal resolution, methodological 189 

consistency, versatility, resource-effectiveness and environmental sustainability. The axes are scaled 190 

from 1 (very low) to 5 (very good), and scores were obtained using an incremental scoring system and 191 

averaged across eight authors of this paper. The dotted lines indicate the standard deviation of the 192 

scores. Potential challenges and opportunities to meet the criteria are described in SI Appendix 3. The 193 

photos refer to the case study for each method: (a) Repeat photography with crowdsourced pictures of 194 

landmarks can be used to investigate long term landscape changes (example of Croix des Fiancés, 195 

Belgium). Photos restored by Jean-Marie Siebertz (http://gite-ardennais.com/croixdesfiances.html); (b) 196 

Time-lapse cameras can be used to monitor possible mismatches between flowering time of spring 197 

geophytes (Galanthus nivalis) and pollinators (Bombus lapidarius) in forests with contrasting 198 

microclimates ((c) Robin Bosteels); (c) Google Street View can be used to study plant species 199 

distribution. 200 

  201 
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Repeat photography  202 

Repeat photography is the practice of replicating pre-existing photographs in the field, to enable 203 

comparisons over time and reconstruct change. It is a common method to analyze long-term landscape, 204 

land-use and vegetation changes from an ecological perspective (Nusser, 2000; Pickard, 2002; Santana-205 

Cordero & Szabo, 2019; Vellend et al., 2013). Repeat photos allow researchers to study the effect of 206 

anthropogenic and natural disturbances on a finer spatial resolution than is possible with satellite 207 

imagery (Hammond et al., 2020), and at timescales beyond those accessible by long-term ecological 208 

monitoring (Hoffman et al., 2020). They allow to obtain insights in historical ecological conditions with 209 

limited resources. 210 

Historical photographs can be retaken at the same location today and used to look back in time (Poulsen 211 

& Hoffman, 2015; Sanseverino et al., 2016), even as far as 1868 (Lanckriet et al., 2015), to assess e.g. 212 

forest cover change (Lanckriet et al., 2015; Zier & Baker, 2006), change in grass- and shrubland 213 

(Masubelele et al., 2015; Rinas et al., 2017), change in use and/or abandonment of agricultural land 214 

(Hoffman & Rohde, 2007; Shackleton et al., 2019), change in shrub and tree distribution in boreal Alaska 215 

(Brodie et al., 2019), and vegetation shifts to higher elevations (Konchar et al., 2015). Historical 216 

photographs were initially often not taken for scientific purposes. For example, Eufracio-Torres et al. 217 

(2016) used private family pictures dating back to 1925 to study vegetation changes along river banks. 218 

Repeat photography is also used on smaller time scales compared to repeat historical photographs, 219 

when new time-series are started by researchers who frequently (e.g. once a year) revisit the study 220 

site(s) (Hammond et al., 2020). For instance, (Hietz et al., 2002) used repeated photographs of branches, 221 

taken once a year in summer, to monitor the growth and survival of epiphytes over a five-year period. 222 

Repeat photography typically requires image preprocessing (e.g. feature matching or resolution 223 

matching) to enable a direct comparison of the ecological features of interest (see Box 2). After pictures 224 
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are matched, the images can be analyzed with different approaches depending on the question. Forest 225 

structure and structural complexity can be derived from close-range repeat photography and 226 

mathematical tools (such as recurrence plots and recurrence quantification analysis) (Proulx & Parrott, 227 

2009), but more and more types of analyses are advancing through machine learning. Landscape 228 

changes in forest cover or other land-use types are currently still mainly obtained through manual 229 

categorization (e.g. Fortin et al., 2019; Stockdale et al., 2019), whereas these could be assigned 230 

automatically through texture analysis and classic machine learning techniques (Jean et al., 2015) or 231 

deep learning (Bayr & Puschmann, 2019). Furthermore, the vitality and defoliation of single trees can be 232 

estimated via neural networks (Kälin et al., 2019) and many more applications will undoubtedly follow.  233 

 234 

Case study: active crowdsourcing of photographs to increase the temporal coverage and resolution of 235 

repeat photography 236 

Internet-based crowdsourcing of photographs has the potential to further increase the strengths of 237 

repeat photography. Typically, historic photographs found in libraries, archives, public collections, etc. 238 

are used to study ecological change (e.g. Eufracio-Torres et al., 2016). However, these pictures probably 239 

cover only a tiny fraction of the zillions of pictures that were taken during excursions, family walks, etc. 240 

and that are now stored in old photo books or boxes in people’s private archives. Until recently it was 241 

virtually impossible to access these pictures, but internet-based platforms and social media now allow 242 

crowdsourcing these valuable sources of information (Marcenò et al., 2021; See et al., 2016). For 243 

instance, one could think of a web-based platform, advertised via social media and in the field via fixed 244 

“poles” (e.g. with a QR code), on which people can upload their scanned old or new pictures of an area 245 

or location under study and also enter relevant metadata (geographic location, date and time of the day, 246 

etc.). This approach is called active crowdsourcing, and depends on users actively contributing with data 247 

through online platforms specifically designed to collect data about users or nature qualities (Muñoz et 248 
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al., 2020). Active crowdsourcing is increasingly being used in the field of cultural ecosystem services, e.g. 249 

to identify preferred locations within the landscape (Ridding et al., 2018), but this approach could be 250 

extended to other research fields, and include the active sharing of georeferenced image data. An 251 

emerging tool for active crowdsourcing is public participatory geographic information systems (PPGIS), 252 

which are online mapping platforms where participants can enter specific georeferenced data (Brown & 253 

Kyttä, 2014). Such an approach would allow us to further extend the temporal coverage and resolution 254 

of repeat photographs and extend their spatial coverage and resolution. Well-known landmarks would 255 

be ideally suited to extend time series of repeated photographs through crowdsourcing, as they are 256 

popular destinations for hikers, easy to recognize and georeference, and historical photographs often 257 

exist. For instance, in the High Fens (a Belgian nature reserve), La Croix des Fiancés is a famous cross 258 

placed in memory of a young couple who lost their lives in a blizzard in 1871. Many historical 259 

photographs of this place exist (e.g. https://gite-ardennais.com/croixdesfiances.html; see Fig. 2), and 260 

the famous cross is still a popular destination for hikers nowadays. An information sign on the spot could 261 

inform visitors about the platform where they can upload old pictures, and/or ask visitors to take a 262 

picture of the cross and surrounding landscape and upload it immediately. Such initiatives could result in 263 

datasets with an exceptionally high temporal coverage and increased temporal resolution from 264 

crowdsourced historic photographs, while continuing this at present with immediate uploads of newly 265 

taken pictures. Such a dataset could be used to study temporal changes on the landscape scale, for 266 

instance, changes in forest cover, but also local changes in plant community composition, vegetation 267 

complexity or phenology of individual trees. Although citizens are becoming an increasingly important 268 

source of geographic information (e.g. See et al., 2016), we are unaware of a study that applied this 269 

promising approach to study ecological change.  270 

  271 
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Time-lapse photography 272 

Time-lapse photography, also called continuous photography, is obtained through a fixed camera (left in 273 

place on-site) that takes photos at specified time intervals (typically ranging from several seconds to 274 

days). Time-lapse images and continuous image recording techniques have been shown to document 275 

ecological changes from periods ranging from weeks (Xu et al., 2021), years (Yanoviak et al., 2017) to 276 

decennia (Kankaanpaa et al., 2018). Time-lapse photography typically has a lower temporal coverage, 277 

but a much higher temporal resolution than repeat photography. As the camera is typically fixed, it 278 

allows a very consistent comparison of images through time. Time-lapse photography can be resource 279 

intensive, depending on the number of sites where data are collected, and the number of field visits 280 

required. The recent advances in remote data transfer technologies (see case study) can improve 281 

resource effectiveness. 282 

Time-lapse photography is regularly used in the study of vegetation phenology, especially in relation to 283 

climate change. “Near-surface” remote sensing, for instance based on a network of digital cameras 284 

(“webcams”), has great potential to improve phenological monitoring. For instance, Richardson et al. 285 

(2009) used images from networked webcams to assess spatial and temporal variation in canopy 286 

phenology. Also, many networks of so-called ‘phenocams’ were started during the last decade to build 287 

databases of images to assess phenological change over larger spatial scales (Brown et al., 2016; 288 

Mariano et al., 2016; Nasahara & Nagai, 2015; Osenga et al., 2019; Seyednasrollah et al., 2019; Tang et 289 

al., 2016; Thorpe et al., 2016).  290 

Besides phenology, especially pollination is assessed through time-lapse cameras or videos (Balfour & 291 

Ratnieks, 2017; Bonelli et al., 2020; Gilpin et al., 2017; Ladd & Arroyo, 2009; Ratnayake et al., 2021), for 292 

instance to count the number of pollinator visits (Sakata et al., 2014) or to detect changes in foraging 293 

strategies (Paolo Biella et al., 2019). Furthermore, there are examples of the use of time-lapse 294 
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photography to assess pest predation in agricultural fields (Zou et al., 2017), browsing of specific plant 295 

species (Ecroyd, 1996) and foraging on plants by hummingbirds (Biella et al., 2019). Hall et al. (2020) 296 

monitored foraging behaviour of sheep in species-rich grasslands through installing time-lapse cameras 297 

on the sheep themselves. 298 

Even more than for repeat photography, the number of unique images that need to be screened or 299 

analyzed can add up quickly, easily reaching 104 - 106 even when operated on relatively short terms (e.g. 300 

one image taken every hour for three months at ten sites results in 21,600 photos). To reduce time 301 

investments, there is a growing need for software for automated image recognition (e.g. AnimalFinder 302 

(Price Tack et al., 2016), MotionMeerkat (Weinstein, 2015)) or data extraction (e.g. Correia et al., 2020; 303 

Filippa et al., 2016; Proulx & Parrott, 2009) (see Box 2). This is clearly an emerging field and exciting new 304 

developments are made. For instance, Høye et al. (2021) monitored flower-visiting insects with camera 305 

traps and used deep learning models to identify species. In addition, citizen science platforms can assist 306 

in rapidly processing large image datasets (Jones et al., 2020; Kosmala et al., 2016). 307 

Case study: combining time-lapse photography with remote data transfer technologies to study 308 

phenology and pollination 309 

An outstanding question in ecology is to what extent climate change will influence trophic interactions 310 

due to phenological change (Sutherland et al., 2013). For instance, warming temperatures could lead to 311 

advanced flowering of forest spring ephemerals (Petrauski et al., 2019), but this effect will be strongly 312 

mediated by local microclimate, e.g. with stronger effects in open forests or on south-oriented slopes. 313 

These differences in flowering time potentially have strong feedbacks on associated pollinator 314 

communities (Gezon et al., 2016; Kudo & Cooper, 2019). Recent techniques such as time-lapse 315 

photography, video monitoring and camera traps are excellently suited to help bridge this knowledge 316 

gap. Indeed, many studies already use digital time-lapse cameras to evaluate phenology and data from 317 
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these so-called Phenocam networks is made publicly available (Seyednasrollah et al., 2019). Pollinator 318 

communities have been studied with time-lapse-photography and video monitoring as well (Biella et al., 319 

2019; Sakata et al., 2014).  320 

The need to answer these research questions related to climate change is undeniable but the required 321 

equipment can be costly, especially when deployed in large numbers, and still requires manual system 322 

checks (i.e. periodically checking if the system is operating, replacing batteries, downloading data, ...). 323 

The rise of microcontrollers (e.g. Arduino) and single-board computers (e.g. Raspberry Pi (Jolles, 2021)), 324 

now enables the development of highly affordable solutions (Dolgin, 2018), that can also reduce the 325 

need for system checks when connected to a central server. Microcontrollers and single-board 326 

computers are small computers manufactured to control the functioning of instruments, such as 327 

cameras or sensors. For pollinator studies for instance, microcontrollers could be used that combine 328 

time-lapse photography with motion detection to camera trap pollinators. These microcontrollers are 329 

rapidly evolving and are often surprisingly cheap and energy efficient (Pieters et al., 2021). Many 330 

Internet of Things (IoT) communication technologies already exist to communicate between devices and 331 

upload data to a server that can be accessed from a computer, allowing remote control and online data 332 

storage (Akpakwu et al., 2017). For instance, Low Power Wide Area technologies (LPWA), such as LoRa 333 

(Vangelista et al., 2015) or SigFox (https://www.sigfox.com), are ideal for remote IoT applications 334 

because LPWA technologies allow long-range communication among IoT devices at low power 335 

consumption. However, this communication protocol is optimized for transfer of small amounts of data 336 

(e.g. microclimate sensors) but is not appropriate to transfer a continuous stream of photos. Wireless 337 

transmission of larger data volumes, like photos, can already be achieved using Bluetooth or Wi-Fi 338 

technologies, but these have evident disadvantages, such as being limited to areas with Wi-Fi coverage, 339 

having very low power efficiency or a short data transfer range. In the future, however, the upcoming 340 

5G technology will be the answer, promising the previously unattainable combination of low power 341 
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consumption and high data transfer rates (Akpakwu et al., 2017). The adoption of these technologies 342 

will strongly reduce chances of data loss and the number of field visits (e.g. to download data or to 343 

replace batteries), which can be very time consuming for researchers, especially in remote locations 344 

where undisturbed ecosystems are often located. In this way, these innovations can also allow for set-345 

ups on a larger scale and a stronger research power. As a result, the effect of temperature on phenology 346 

and possible feedbacks on the pollinator community could be identified from the researcher’s desk, 347 

using the smart combination of phenocams, insect camera traps and microclimatic sensors in micro-348 

controllers that are installed in forests with different microclimates. A similar approach in a marine 349 

ecology context, where underwater time-lapse images were combined with temperature and salinity 350 

sensors, illustrated the potential of this approach to relate phenological shifts to environmental 351 

conditions (Sbragaglia et al., 2019). The relationship between temperature, phenology and pollination 352 

can then be used to predict phenological mismatches due to climate change. 353 

 354 

Public archives 355 

Public archives of photographs can be invaluable sources of information and lead to the development of 356 

new techniques and methods for studying ecological change (e.g. Deus et al., 2016; Graham et al., 2010; 357 

reviewed by Nesse & Airt, 2018). Public archives comprise Google Street View images, television 358 

archives, footage from public cameras (e.g. traffic, CCTV and surveillance cameras), webcams from ski 359 

resorts or beaches, etc. Advantages of using public archives as data sources are that it appears to be 360 

more time- and cost effective and has a lower carbon footprint than collecting data in a traditional 361 

manner (Kotowska et al., 2021). These advantages are amplified for global-scale studies, where 362 

traditional field sampling is very laborious. 363 
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Public archives represent a huge amount of image data that can be used in many research areas, but 364 

probably the most obvious ecological application is in urban ecology since most public cameras operate 365 

in urban areas (e.g. CCTV cameras). Some recent studies assess the usefulness of Google Street View to 366 

study the invasion of alien plant species in road verges (Collette & Pither, 2015; Deus et al., 2016; 367 

Kotowska et al., 2021), to record the number of urban street trees and estimate their diameter (Berland 368 

et al., 2019), to evaluate urban green ecosystem services such as cooling, air purification and noise 369 

attenuation (Barbierato et al., 2020), and to inventory the potential habitat for native pollinators in 370 

residential front yards (Burr et al., 2018). Some public archives also document more rural landscapes. De 371 

Frenne et al. (2018), for example, compiled a time-series of trees and shrubs recorded in TV footage of a 372 

professional road cycling race (the Tour of Flanders) in spring, to study the timing of leaf-out and 373 

flowering over four decades (1980-2016). Such widespread data from Google Street View or broadcast 374 

archives could be augmented with those from internet-connected public or private cameras to monitor 375 

effects of global environmental change on vegetation on a cross-continental scale (Graham et al., 2010).  376 

Compared to repeat photography and time-lapse photography, public archive images as a data source 377 

are currently less represented in ecological studies (Fig. 2). However, given the rapid accumulation of 378 

publicly available digital data, including images, we expect the relative contribution of public archives to 379 

increase. Recently, the term iEcology (i.e. internet ecology) was introduced and defined as an emerging 380 

research approach that allows the study of ecological patterns and processes using online data 381 

generated for other purposes and stored digitally (i.e. passive crowdsourcing) (Jarić, Correia, et al., 382 

2020). Of the four main data sources in iEcology (being text, images, videos and online activity), images 383 

are the most represented, especially for studies on plants. The most common applications of iEcology 384 

have been to explore species occurrences and their spatiotemporal trends, but also trait dynamics and 385 

evolutionary trends can be explored (see Jarić, Correia, et al., 2020 for a review). For instance, ElQadi et 386 

al. (2017) mapped species distributions of bees and flowering plants in Australia, based on geo-tagged 387 
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images from social media. In addition to mapping the distribution and occurrences of known species, 388 

images uploaded on social media have also been used to identify new species (e.g. Gonella et al., 2015). 389 

Case study: combining Google Street View with citizen science to study plant species distribution at a 390 

global scale 391 

A highly promising, yet rarely explored source of spatial and temporal information is the large-scale 392 

database of Google Street View (GSV), which was established in 2007 and provides vast amounts of 393 

panoramic images at a global scale. Not only dedicated to cities and urban areas, GSV documents rural 394 

areas and remote places as well (with road access). GSV often provides multiple images of the same 395 

place, taken at different moments, allowing the assessment of temporal changes. One promising avenue 396 

for ecological change research is using this vast amount of data to study distribution of plant species on 397 

a global scale, advancing roadside ecology in particular. For example, Kotowska et al. (2021) used GSV to 398 

visually track the spread of Solidago canadensis and S. gigantea, two invasive alien plants from North 399 

America along road networks in Poland. They visually inspected transects of GSV images for the 400 

presence/absence of the invasive species. Similarly, Pardo-Primoy & Fagúndez (2019) used GSV to assess 401 

the distribution and recent spread of an invasive grass species in industrial sites in Galicia (Spain). 402 

Dyrmann et al. (2021) also showed that mapping of invasive plants along roadsides is possible based on 403 

images taken from a driving vehicle, although they did not use GSV, but used their own equipment to 404 

obtain such images. An important limitation of the GSV system is that images are not always taken on 405 

the same date, or even the same season. This reduces the probability of plants being detected (e.g. for 406 

species that are less distinct when not flowering) and makes GSV less suitable for e.g. phenology studies 407 

(Dyrmann et al., 2021; Kotowska et al., 2021).  408 

Although these example studies report that the use of GSV is much more time- and cost effective than 409 

collecting data through field sampling, the visual screening of GSV images for studies at large spatial 410 



20 
 

scales remains time consuming. Here, citizen science platforms could be of aid for identifying target 411 

species on GSV images. While this has not yet been done in plant distribution studies, successful 412 

examples from other research fields have proven its potential. Leighton et al. (2016), for instance, 413 

developed an open source web application which facilitates data extraction from Google images through 414 

a customized survey, and applied it to several case studies, such as the geographical distribution of black 415 

bear colour morphs and barn owl melanin-based ornamentation. This software could easily be adapted 416 

to allow the use of citizen scientists that can fill in such surveys for a set of GSV images from target 417 

locations. In a study on restoration planning, citizen scientists were used to identify degraded areas 418 

through Google Earth, after a short training session (Rowe et al., 2021). Google Street View could be 419 

applied in similar ways, but with an even higher spatial resolution, e.g. by training citizen scientists to 420 

recognize particular landscape features or plant species. In 2013, an extensive Street View Imagery of 421 

the Galapagos Islands was launched, together with the citizen-science initiative ‘Darwin for a day’, 422 

where the public could help identify plants and animals observed when navigating through the imagery 423 

(McCarthy, 2015). With the arrival of Street View Trekkers, more and more off-road remote areas are 424 

now also represented in Google Street View. As the density of the GSV network will keep increasing, it is 425 

likely that the value and potential of the GSV system for ecological studies will also further increase 426 

(Rousselet et al., 2013).  427 

Applying citizen science to process large amounts of images could thus enable us to study plant species 428 

distribution on a global scale for multiple conspicuous invasive species such as Reynoutria japonica, Rhus 429 

typhina and Senecio inaequidens. In addition, also the fast advances in automated image processing and 430 

identification tools (see Box 2) will allow global scale analyses of GSV images in the future. In a next 431 

step, the distribution of (invasive) plant species obtained from GSV images can be linked to change 432 

drivers or more specifically roadside vegetation management (e.g. Jakobsson et al., 2018). Apart from 433 
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studying species distribution, other promising applications of GSV images are ground truthing of remote 434 

sensing imagery (e.g. Yan & Ryu, 2021) or detection of tree vitality (Kälin et al., 2019). 435 

Box 2: from images to knowledge 436 

Translating timeseries and/or pairs of photographs into ecological knowledge requires a series of image 437 

processing steps. These can be carried out manually, based on a human interpreter (e.g. De Frenne et 438 
al., 2018; Retka et al., 2019), but also automatically when a large number of photographs needs to be 439 

processed or when features are difficult to detect visually. Image processing generally includes (1) a 440 

preprocessing step, (2) an image processing step and (3) a data extraction step. The importance and 441 
necessity of each of these steps largely depends on the endpoint of the analysis and the types of 442 

photographs to be analysed (Fig. 1 box 2). These steps can be either performed on individual images 443 

taken at different points in time ( e.g. Correia et al., 2020) or on one composite image that integrates 444 

multiple recordings in time in one image (similar as done in remote sensing applications; see e.g. Coppin 445 

et al., 2004). 446 

 447 
Fig. 1 box 2. Schematic workflow to translate images into ecological knowledge, through three steps: a 448 
preprocessing step, an image processing step and a data extraction step. Visual examples are given of what could 449 
be done in each of these steps. The black arrows indicate possible workflows, and show that not every step is 450 
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always necessary (depending on the endpoint of the analysis and the types of photographs). GCC = Green 451 
Chromatic Coordinate. 452 

Image preprocessing includes all steps that enable a direct comparison of the ecological features of 453 

interest in each photograph. If colours or vegetation indices need to be compared, colour correction 454 
might be needed (e.g. Gasparini & Schettini, 2003). For analyses of vegetation cover change, matching 455 

the spatial extent might be required as well (e.g. Michel et al., 2010). If an image overlay is needed for 456 

further analyses, both the extent and resolution need to be matched. These steps can be carried out 457 

manually (e.g. Michel et al., 2010) or automatically, via feature matching (e.g. Zhu et al., 2021) 458 

combined with down- or upsampling algorithms (e.g. Kälin et al., 2019; Monkman et al., 2019; Wang et 459 

al., 2020; Zhang et al., 2020). In general, time-lapse photography analyses require less preprocessing 460 

than repeated photography analyses as sensor type and viewpoint are generally kept constant. Finally, 461 

for some image processing steps, generating additional image data might help to boost the performance 462 

of an image classification tool (e.g. Correia et al., 2020; Kälin et al., 2019). In this so-called data 463 
augmentation step, new images are generated by mirroring, recolouring or cropping the original images. 464 

Image processing includes all steps that identify the ecological features of interest. This identification 465 

can occur on an image basis (e.g. Price Tack et al., 2016), or on an object basis (e.g. Høye et al., 2021). 466 

Object identification algorithms either aim at drawing bounding boxes around a set of objects in a 467 
photograph (e.g. Marini et al., 2018; Monkman et al., 2019) or aim at ascribing each pixel to a specific 468 

object class, i.e. image segmentation (e.g. Bayr & Puschmann, 2019; Ott et al., 2020). Although human 469 

interpreters often outperform computer-assisted classification approaches, the latter are necessary 470 

when large amounts of photographs need to be analysed. Recent advances in machine learning, and 471 

more specifically, deep learning for image recognition have led to readily available neural networks that 472 

can be applied, amongst others, for image classification, object detection and image segmentation (e.g. 473 

Correia et al., 2020). Some of these existing models enable species-level identification of fauna and flora 474 

(e.g. Mesaglio & Callaghan, 2021), the identification of functional traits (e.g. Li et al., 2020), or the 475 

annotation of plant phenophases (Reeb et al., 2022). In contrast to these object-oriented processing 476 
techniques, ecological change can also be assessed using pixel-based change detection algorithms. 477 

These pixel-based approaches, based on image overlays, aim specifically at identifying changed pixels by 478 

e.g. subtracting two photographs, pixel by pixel (see Coppin et al., 2004, for an overview).  479 

Data extraction translates the content generated during the image processing step into data that can 480 

be used for the analyses of ecological change. In analogy to the processing step, this data extraction 481 

step can also occur on a pixel basis or an object basis. This step generally involves basic mathematical 482 

operations such as counting pixels (e.g. estimating vegetation cover; e.g. Jean et al., 2015) or objects 483 

(e.g. counting the number of buds on a plant; e.g. Correia et al., 2020), estimating object dimensions 484 

(e.g. calculating the height of an object’s bounding box; e.g. Barrett & Brown, 2012), or summarizing the 485 
pixel values of a certain object (e.g. the average greenness value of a vegetation patch; e.g. Filippa et al., 486 

2016).  487 

 488 

 489 



23 
 

Future perspectives 490 

Our review clearly illustrates that close-range imaging has a lot of potential for studying ecological 491 

change at various scales. Due to ongoing methodological, technological and analytical developments in 492 

image processing software and hardware, we expect that the range of possibilities associated with 493 

photographs in ecological research will extend significantly in the near future (Jarić, Roll, et al., 2020). 494 

Below, we will discuss some key developments and the associated possibilities they create for using 495 

photos in ecological change research.  496 

First of all, we expect that baseline images will become more and more accessible, due to ongoing 497 

digitization efforts of herbaria and natural science collections (see, for example, Dornelas et al., 2018; 498 

Hedrick et al., 2020), and the development of crowdsourcing initiatives (see e.g. case study 1: invite 499 

people to upload old photos on web-based platforms). Second, contemporary image recording will likely 500 

increase due to the increasing availability of cheap microcontrollers and processors that enable the 501 

development of low-cost time-lapse or motion-triggered cameras (e.g. Steen, 2017) that can be 502 

deployed in large numbers to monitor along wide environmental gradients, potentially replacing labour-503 

intensive monitoring programs. The upcoming 5G technology will facilitate such large scale studies by 504 

enabling remote image transfer (Akpakwu et al., 2017) (see case study on time-lapse photography). In 505 

addition, technological advances in other fields such as in self-driving vehicles may further accelerate 506 

the availability of recorded images in landscapes (Barbierato et al., 2020), including remote and scarcely 507 

populated areas (Warren-Rhodes et al., 2007). 508 

This increase in availability of image data, however, will only be of interest for ecological research if 509 

image processing evolves towards automatic processing, using machine learning tools, with deep 510 

learning being the most promising. With the digitization of our society but also the development of 511 

faster computing infrastructure and the evolution of neural network algorithms, deep learning 512 
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techniques are indeed increasingly being adopted for many different purposes. Although recent 513 

advances in this field predominantly focus on applications in agriculture (see, for example, Li et al., 514 

2020), some of these advances can be applied to plant science in general, including automatic image 515 

segmentation and feature extraction (e.g. Ott et al., 2020), phenotyping (e.g. for the quantification of 516 

plant traits (Li et al., 2020) or tree dimensions (Barrett & Brown, 2012)) and automatic species 517 

identification (e.g. to study biodiversity or species ranges (Dutta et al., 2021)). Especially the concept of 518 

transfer learning, using models trained for a specific image processing task to perform a related task, 519 

potentially even in a different scientific field, is promising for the study of ecological change, where 520 

labelled image data for model training is currently still scarce (e.g. Heredia, 2017; Schindler & Steinhage, 521 

2021; Younis et al., 2020). Using this concept, models trained on a collection of freely available labelled 522 

images from trivial subjects such as cats, cars or houses (e.g. ImageNet (Deng et al., 2009) or MS COCO 523 

(Lin et al., 2014)) can be used as a basis for training a model to identify plants, species or vegetation 524 

types. With pre-training, the neural network acquires information on the structure and nature of images 525 

in general, such as recognizing edges and objects, which allows for faster learning on the target 526 

images. As a result, transfer learning diminishes the necessary amount of study-specific labelled image 527 

data, and dramatically decreases the time needed for model training, a process that can take up to a few 528 

weeks and requires high computational power. 529 

Although this technology will make photo-based phenotyping become common practice in many fields, 530 

it probably will be of limited use to study long-term changes in plant traits as photos need to fulfil 531 

several requirements depending on the trait being investigated (e.g. perpendicular to leaf surface for 532 

leaf area measurements and with a known scale to translate photo-based dimensions to real-life 533 

dimensions for measuring plant organ surfaces or lengths). There are, however, some 534 

exceptions. Phenological traits, such as leaf-out or flowering dates, can often be easily measured 535 

provided that the exact date of the photo is known. Also, the quantification of trait variability within one 536 
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image should be a possibility, both for old and new images. Finally, also studying long-term changes in 537 

count-based traits such as number of leaves or flowers should be possible based on photographs. 538 

Another important aspect that can potentially boost the future use of images in ecological research is 539 

the rising popularity of citizen-science projects. This is a form of active crowdsourcing, involving active 540 

contributions from citizens typically motivated by the desire to aid a worthy cause (See et al., 2016). 541 

Since cameras are omnipresent in our society, predominantly those of smartphones, citizens can easily 542 

gather image data with a minimum of guidance (e.g. Hampton et al., 2013; Marcenò et al., 2021). With 543 

the development of smartphone apps for ecology (Rudic et al., 2020), citizen-science projects that 544 

combine this technology with expert knowledge are now characterizing as many species possible during 545 

one or multiple day “Bioblitzes” (Nicolai et al., 2020). In a recent study, Gordoa et al. (2018) used images 546 

from free-diving underwater fish photography contests as a complementary tool for assessing littoral 547 

fish communities. The development of online tools to enable citizens to share their (preferably 548 

annotated) images in a structured way (e.g. Boho et al., 2020), will be important to increase the 549 

availability of such images for scientists. The increasing popularity of citizen-science platforms to share 550 

nature observations, such as iNaturalist (https://www.inaturalist.org/; Mesaglio & Callaghan, 2021), 551 

highlights their potential to collect large quantities of data at little cost. As such data will often be noisy, 552 

due to differences in light conditions, sensor quality, background characteristics, etc., the use of deep 553 

learning tools for automatic image segmentation and feature extraction will be key to make sense of 554 

such data in the future (Singh et al., 2018).  555 

Furthermore, ecologists should continue to investigate the possibilities of social media as an emerging 556 

source of data, and photos in particular. This is a form of passive crowdsourcing, based on online data 557 

that were generated for other purposes (Jarić, Correia, et al., 2020). Social media data are generally 558 

referred to as ‘big data’ (Crampton et al., 2013; Kitchin, 2014), and the volume of user-generated data 559 
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worldwide is overwhelming (Toivonen et al., 2019). Social media data have a high potential for providing 560 

novel insights on human-nature interactions for conservation, e.g. through analyzing species’ popularity 561 

and associated sentiment, monitoring wildlife trade online, or assessing nature-based recreational 562 

preferences (Correia et al., 2021). Online hunting photos from social media were, for instance, used to 563 

assess the factors that drive satisfaction from trophy hunting (Child & Darimont, 2015). Retka et al. 564 

(2019) used photographs from the social media platform Flickr to map cultural ecosystem hotspots in a 565 

marine protected area. Recently, Fox et al. (2020) developed a tool to harvest large datasets from Flickr 566 

in a reproducible way. In addition to identifying new research avenues for applying social media data in 567 

ecology, the establishment of new mechanisms to enable social media users to actively “donate” their 568 

data for research purposes via platforms, should be explored. When interpreting results based on social 569 

media data, researchers must carefully consider ethical issues (Zook et al., 2017). Privacy and data 570 

anonymization should be considered even if using publicly shared content (Toivonen et al., 2019). 571 

To take advantage of the true potential of the discussed methods for enhanced data acquisition and 572 

processing, it is important to take into account their concomitant requirements. This involves the 573 

widespread adoption of data standards by the ecological science community and making sure that data 574 

and developed models are findable, accessible, interoperable and reusable (c.f. principles of ‘FAIR data’; 575 

Wilkinson et al., 2016). Most importantly, for these novel techniques to be applied in ecological 576 

research, it is imperative for ecologists to follow specialized training on artificial intelligence algorithms 577 

and/or increase collaborations between the fields of ecology and computer science. 578 

 579 

Conclusions 580 

In a rapidly changing world, ecologists need to exploit all possible data sources to increase their 581 

understanding of ecosystem responses. Photography can fundamentally contribute to this 582 
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understanding, but is currently outside the toolkit of most ecologists. Different methods of photography 583 

have their own strengths and opportunities, and may provide us with insights that are difficult, or even 584 

impossible, to generate in any other way. Historical photographs are often the only data source to 585 

characterize vegetation of the past, and hence an essential tool to quantify long-term vegetation 586 

changes. The use of time-lapse cameras may provide an alternative for time consuming observational 587 

field studies, in particular when it can be combined with real-time data-upload online and automated 588 

image processing. The possibility to install global networks of these cameras, can help to reveal global 589 

trends in vegetation ecology. Public archives, such as Google Street View or traffic and surveillance 590 

cameras, contain an unprecedented amount of information at a local scale, and allow to study a variety 591 

of ecological processes, across large spatial and temporal scales, without even leaving the office. 592 

To exploit the full potential of photos for ecological change research, we need to invest not only in 593 

technological advances to process and collect images but also in proper data management. Ecologists 594 

need to treat their photos (and their data in general) as an enduring product of research, and therefore 595 

must (i) organize, document and preserve them for posterity, (ii) share them (e.g. through university 596 

libraries, professional journals, or data federations such as DataONE), and (iii) collaborate with networks 597 

of colleagues to bring together photographic data (Hampton et al., 2013).  598 

 599 
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