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• Although there is a growing understanding of the 

importance of statistical power considerations when 

designing studies and of the value of confidence inter-

vals when interpreting data, confusion exists about the 

reverse arrangement: the role of confidence intervals in 

study design and of power in interpretation. Confidence 

intervals should play an important role when setting 

sample size, and power should play no role once the 

data have been collected, but exactly the opposite 

procedure is widely practiced. In this commentary, we 

present the reasons why the calculation of power after 

a study is over is inappropriate and how confidence 

intervals can be used during both study design and 

study interpretation. 
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The increasing statistical sophistication of medical re-

searchers has heightened their awareness of the impor-

tance of having appropriate statistical power in a clinical 

experiment. Power is the probability that, given a speci-

fied true difference between two groups, the quantitative 

results of a study will be deemed statistically significant. 

Freiman and colleagues (1) sensitized researchers to the 

possibility that many so-called "negative" trials of medical 

interventions might have too few participants to produce 

statistically significant findings even if clinically important 

effects actually existed. These authors calculated the sta-

tistical power of 71 "negative" studies that compared two 

treatments. They showed that for most of the studies, the 

power to detect a 50% improvement in success rates was 

quite low. This kind of analysis has been applied in var-

ious specialty fields, with similar results (2-6). 

Studies with low statistical power have sample sizes that 

are too small, producing results that have high statistical 

variability (low precision). Confidence intervals are a con-

venient way to express that variability. Numerous articles, 

commentaries, and editorials (7-13) have appeared in the 

biomedical literature during the past decade showing how 

confidence intervals are informative data summaries that 

can be used in addition to or instead of P values in 

reporting statistical results. 

Although there is a growing understanding of the role 

of power in designing studies and the role of confidence 

intervals in study interpretation, confusion exists about 

the reverse arrangement, the role of confidence intervals 

in designing studies and of power estimates in interpret-

ing study findings. Confidence intervals should play an 

important role when setting sample size, and power 

should play no role once the data have been collected, 

but exactly the opposite is widely practiced. When "no 

significant difference" between two compared treatments 

is reported, a common question posed in journal clubs, on 

rounds, in letters to the editor, and in reviews of manu-

scripts is, "What was the power of the study to detect the 

observed difference?" A widely used instrument for as-

sessing the quality of a clinical trial penalizes studies if 

post hoc power calculations of this type are omitted (14), 

and reviews of the literature are frequently critical of the 

failure to include them (15, 16). 

Although several writers (12, 17-19) have pointed out 

the error implicit in the concept of post hoc power, such 

caveats have not had great impact. This is perhaps be-

cause the error implicit in post hoc power is created by a 

subtle inconsistency in the logic of standard statistical 

methods. This inconsistency derives from applying a pre-

experiment probability of a hypothetical group of results 

to the one result that is observed. Most discussions of this 

problem focus on purported errors in interpreting statis-

tical rules, rather than on the problems with the statistical 

framework itself. We elucidate the problems with the 

framework in the course of explaining why post hoc esti-

mates of power are of little help in interpreting results 

and why the focus of attention should be exclusively on 

confidence intervals. In addition, we show how the size of 

a confidence interval can be predicted in the planning 

stages of an experiment and how that can be a great help 

in understanding the implications of different sample size 

choices. 

Confidence Intervals 

A confidence interval can be thought of as the set of 

true but unknown differences that are statistically compat-

ible with the observed difference. The standard conven-

tion for this statistical compatibility is the two-sided 95% 

confidence interval. A confidence interval is typically re-

ported in the following way: "There was a 10% (95% CI, 

2% to 18%) difference in mortality." This means that 

even though the observed mortality difference was 10% 

(for example, 70% compared with 60%), the data are 

statistically compatible with a true mortality difference as 

small as 2% or as large as 18%. 

True differences that lie outside the 95% confidence 

interval are not impossible; they merely have less statis-

tical evidence supporting them than values within it. The 
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choice of 95% as the standard convention is somewhat 

arbitrary and corresponds to the use of a threshold of P < 

0.05 for statistical significance. However, a confidence 

interval should not be treated simply as a surrogate for a 

significance test, that is, to declare "nonsignificance" 

when the null hypothesis is included within it and to 

declare "significance" when it is not (20). The location 

and width of the confidence interval have important in-

formation (9, 11). 

Before the Experiment: The Proper Use of Statistical 

Power 

The meaning of "power" before an experiment is 

straightforward. Suppose we are evaluating a medical 

treatment that has a 45% cure rate. A surgical procedure 

is proposed but because of the surgical morbidity, we 

judge that it would have to achieve a 70% cure rate (25 

percentage points better than medical therapy) to justify 

its use. If we are designing a clinical trial to compare the 

two therapies, and the treatment difference was that big, 

80 participants would have to be randomized to each 

therapy to produce a study with a 90% chance of achiev-

ing a statistically significant difference. This "90% chance" 

is the power of the study with respect to an underlying 

cure rate difference of 25%. The jargon is that we have 

90% power to "detect" a 25% difference. Conventionally, 

power should be no lower than 80% and preferably 

around 90%, akin to a diagnostic test with a sensitivity of 

80% to 90%. For any given underlying difference, a larger 

sample size produces greater power. 

Although the role of power in the planning stage of an 

experiment may be fairly clear, it comes with baggage that 

can lead to confusion when interpreting the results of that 

experiment. Implicit in its use is the assumption that we 

will report the results of a study only as "statistically 

significant" or "not statistically significant," without fur-

ther detail. Although that is how medical research results 

are sometimes simplistically summarized, that is rarely the 

only information provided in a research report. Research-

ers typically report at least the size of the observed effect 

(for example, "an average blood pressure decrease of 10 

mm Hg") and the precise P value (for example, P = 0.03, 

not just P < 0.05). As we show in the next section, once 

that information is provided, neither power nor its con-

comitant notion of "detecting a difference" remains a 

meaningful concept. Power is exclusively a pretrial con-

cept; it is the probability of a group of possible results 

(namely, all statistically significant outcomes) under a 

specified alternative hypothesis. A study produces only 

one result. We discuss the methods that must be adopted 

after that result has been observed. 

After the Experiment: The Improper Use of Statistical 

Power 

The perspective after the experiment differs from that 

before the experiment simply because the result is known. 

That may seem obvious, but what is less apparent is that 

we cannot cross back over the divide and use pre-exper-

iment numbers to interpret the result. That would be like 

trying to convince someone that buying a lottery ticket 

was foolish (the before-experiment perspective) after they 

hit a lottery jackpot (the after-experiment perspective). 

We will show the problem with combining those per-

spectives by a close examination of the concept of "de-

tection." This concept is derived from the field of signal 

detection, whose purposes differ somewhat from those in 

medical research. In the signal detection model, we are 

concerned with deciding whether there is a message 

within random noise; it is either there or it is not. Results 

fall into one of only two possible categories: "A signal is 

detected" or "a signal is not detected." The parallel with 

the "hypothesis test" paradigm of statistics is direct; we 

report that either a statistically significant result is ob-

served (that is, the observed difference is distinguishable 

from random variation and the null hypothesis is rejected) 

or a statistically nonsignificant result is observed (that is, 

the observed difference cannot be distinguished from ran-

dom variation and the null hypothesis is accepted). 

Problems are produced when we apply this paradigm to 

medical research. We will continue with the previous ex-

ample, in which there was 90% power to "detect" a 25% 

difference between two treatments, with n = 80 in each of 

the two groups. Suppose we observed a cure rate of 60/80 

(75%) in one group and of 49/80 (61%) in the other, a 

difference of 14%. This has a P value of 0.06, not quite 

statistically significant at a = 0.05. There are two ways we 

can report this result, one in which the notion of "detec-

tion" makes some sense, and one in which it does not. 

We could say simply that a statistically nonsignificant 

result was observed (P > 0.05) without reporting the ob-

served 14% difference or the exact P value of 0.06. With 

this information, one would conclude that the true differ-

ence was probably less than 25% because there was a 

90% power chance of achieving statistical significance 

(that is, "detecting a difference") if a 25% true difference 

existed. Conversely, if statistical significance (P < 0.05) 

had been achieved, we would claim that the null hypoth-

esis was unlikely because there was only a 5% chance of 

observing such a result if the null hypothesis were true. 

Thus, all the components of the sample size calculation— 

the detectable difference, the notion of "detection," 

power, and a—remain relevant for the interpretation of 

the result if we reduce it to just one of two possible 

outcomes. However, this relevance comes at a steep price: 

It means that our degree of confidence in the "no differ

ence" conclusion is the same for every nonsignificant result, 

and our confidence in a "some difference" conclusion is the 

same for every significant result. 

This price is not one that most scientists wish to pay, 

nor should they. They want a complete report of the data: 

the actual observed difference and the exact P value or 

confidence interval. A scientist cannot properly evaluate 

the potential value of a new therapy without knowing the 

estimated size of a treatment effect and the degree of 

statistical evidence for it. However, when the actual ob-

served difference is reported, the statistical situation 

changes dramatically, and the concepts of detection and 

power are no longer helpful. In the previous example, the 

95% confidence interval for the true difference based on 

an observed 14% difference was 14% ± 15% = - 1 % to 

29%. (Note that this indicates that a 25% difference is not 

incompatible with the data. This is due to the difference 
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in conventions we use for power [one-sided, 80% to 90%] 

and confidence intervals [two-sided, 95%]). If we had 

observed no difference between the therapies, P = 1.0, we 

would report that the true difference was probably within 

the 95% confidence interval of 0 ± 15%= - 1 5 % to 

15%. A true 25% difference would be extremely implau-

sible based on that result. Depending on such factors as 

relative treatment costs, toxicity, and other background 

information, one might make very different recommenda-

tions based on those two nonsignificant results. 

The concepts of "power" or "detection" are of no help 

in distinguishing those results, because both results are 

"nonsignificant." The power of an experiment is the pre-

trial probability of all nonsignificant outcomes taken to-

gether (under a specified alternative hypothesis), and any 

attempt to apply power to a single outcome is problem-

atic. When people try to use power in that way, they 

immediately encounter the problem that there is not a 

unique power estimate to use; there is a different power 

for each underlying difference. Does one say that a non-

significant result rules out a 25% difference with 90% 

confidence (because there was 90% power for a 25% 

difference); or that it rules out a 21% difference with 80% 

confidence; or that it rules out a 15% difference with 50% 

confidence? 

To eliminate this ambiguity, some researchers calculate 

the power with respect to the observed difference, a num-

ber that is at least unique. This is what is called the "post 

hoc power." In the example, the post hoc power with 

respect to the observed difference of 14% is 45%, quite 

low. The unstated rationale for the calculation is roughly 

as follows: It is usually done when the researcher believes 

there is a treatment difference, despite the nonsignificant 

result. She uses the 45% power to prove that the study 

was too small to "detect" a 14% difference, and therefore 

the experiment's "negative" verdict is not definitive, that 

is, it does not eliminate the possibility of the 14% differ-

ence being real. 

There are two reasons why this exercise is unhelpful. 

First, it will always show that there is low power (< 50%) 

with respect to a nonsignificant difference (21), making 

tautological and uninformative the claim that a study is 

"underpowered" with respect to an observed nonsignifi-

cant result. Second, its rationale has an Alice-in-Wonder-

land feel, and any attempt to sort it out is guaranteed to 

confuse. The conundrum is the result of a direct collision 

between the incompatible pretrial and post-trial perspec-

tives. The pretrial paradigm, with its focus on "deciding" 

between the null and alternative hypotheses, dictated that 

the 14% observation, and all other nonsignificant results, 

produce acceptance of the null hypothesis of a zero true 

difference. But common sense tells us that 14% is the best 

estimate of the true difference, even if the statistical ev-

idence to distinguish it from a zero difference is not 

definitive. Knowledge of the observed difference naturally 

shifts our perspective toward estimating differences, 

rather than deciding between them, and makes equal 

treatment of all nonsignificant results impossible. Once 

the data are in, the only way to avoid confusion is to not 

compress results into dichotomous significance verdicts 

and to avoid post hoc power estimates entirely. 

The Connection with P Values 

Arguments similar to those above can and have been 

applied to P values (22), which are defined as the prob-

ability of the observed data, plus more extreme data, 

under the null hypothesis. A P value is to a type I error 

exactly as "1 - post hoc power" is to a type II error; that 

is, where " 5 % " is almost always the type I error rate set 

before the experiment; after the experiment, the P value 

is frequently described as the "observed" type I rate (23) 

or, in other words, the type I error rate with respect to 

the observed difference. The notion of the P value as an 

"observed" type I error suffers from the same logical 

problems as post hoc power. Once we know the observed 

result, the notion of an "error rate" is no longer mean-

ingful in the same way that it was before the experiment. 

Much has been written about the problem of interpreting 

the P value as an "observed error rate," either by expli-

cating and exposing it (22, 24-30) or by gently steering 

students of medical statistics away from improper inter-

pretations and toward at least usable ones (31). 

The Role of Confidence Intervals in Interpreting Results 

We have already shown in the previous examples how 

confidence intervals can be used to interpret a result. As 

mentioned earlier, the 14% result (CI; - 1 % to 29%) did 

not statistically rule out either a 0% or 25% difference. 

Often, when confronted with a result like this, an author 

will state in the discussion section that "the study may 

have had too little power to have detected a small differ-

ence," leaving ambiguous what differences the study ac-

tually ruled out and making it appear as though the 

excluded differences are a function of the design, not the 

results. Such fuzziness is unwarranted; the confidence in-

terval tells us what differences are and are not statistically 

ruled out based on what was actually observed. 

Another phrase that researchers often use to describe 

nonsignificant results is that "statistical significance was 

not achieved because of small sample size." When re-

searchers say this, they are implicitly claiming that they 

believe the observed effect to be true, despite the failure 

to statistically exclude a zero effect. Nothing is wrong with 

this statement, except that it is never justified by the data 

alone. If we somehow knew that a small sample size was 

the only reason significant results were not achieved, then 

all experiments could be done with n = 2, and we could 

always make that claim. If an author believes that an 

observed nonsignificant difference is real, then that belief 

must be founded on the combination of external evidence 

(for example, biological reasoning and other studies) with 

the evidence from this experiment. The readers can then 

judge the strength of the overall evidence. Confidence 

intervals address the only question that can be properly 

asked of the data: With the given sample size and given 

observed effect, which true effects are statistically compat-

ible with the data and which are not? 

Bayesian and Likelihood Methods 

Unfortunately, even confidence intervals do not tell us, 

"given the observed effect, how probable is it that the 

true effect is greater than 14%" or "given the data, how 

202 1 August 1994 • Annals of Internal Medicine • Volume 121 • Number 3 

Downloaded From: http://annals.org/ by a Charite Campus User  on 11/20/2012



much more evidence is there for a 14% difference as 

opposed to no difference?" These are the questions in 

which most researchers are interested, but they cannot be 

formally answered with conventional (that is, "frequen-

tist") statistical methods. They require Bayesian or likeli-

hood approaches (30, 32-37). A full exposition of these 

methods is beyond the scope of this paper, but they will 

be described briefly. Likelihood methods allow calculation 

of the relative amount of statistical evidence for any two 

statistical hypotheses, for example, the null hypothesis and 

the hypothesis that a "clinically important difference" ex-

ists. The measure of evidence is the likelihood ratio, 

defined as the probability of the observed data under one 

hypothesis divided by the probability of the data under 

another hypothesis (33, 34, 38). 

Bayesian methods add a measure of "prior belief or 

"prior evidence" to the likelihood ratio, and, via Bayes 

theorem, they estimate the posterior probabilities of var-

ious true differences, based on the data. These Bayesian 

posterior probabilities are exactly what scientists want, but 

because prior belief can vary among persons, these meth-

ods are sometimes described as "subjective" or "nonsci-

entific" and are compared unfavorably with conventional 

statistics. We will not enter into this debate, except to 

note that conventional statistics have many subjective el-

ements, like the conventions of the 95% confidence in-

terval (instead of the 90% or 99% confidence interval) or 

the P < 0.05 threshold (instead of 0.10 or 0.01). By de-

fining certain arbitrary standards as "conventions," the 

subjectivity is suppressed (25, 28). 

Even if we do not use likelihood or Bayesian methods, 

those perspectives can be enormously useful in making 

sense of conventional statistical indices. Technically, a 

95% confidence interval is the result of a procedure that 

should include the true value 95% of the time. From this 

technical perspective, we cannot say that any one confi-

dence interval has a 95% chance of including the true 

value. This subtle distinction is confusing to researchers. 

From a likelihood perspective, confidence intervals can be 

reinterpreted as we have defined them in this article—as 

the set of true values that are statistically compatible with 

the observed data. Similarly, from a Bayesian perspective, 

we can interpret a confidence interval as having a 95% 

chance of including the true value if the information from 

the experiment is far greater than information from out-

side the experiment. These are more intuitive and useful 

working definitions than the frequentist ones. A P value 

also has some useful likelihood and Bayesian interpreta-

tions. These include viewing it as a lower limit of the 

probability that the effect is in a direction opposite to the 

one observed (39, 40). 

Because medical researchers are more familiar with 

confidence intervals than likelihood ratios or Bayesian 

probabilities, we continue with a discussion of how con-

fidence intervals can be used to help plan experiments. 

Sample Size Calculation Using Predicted Confidence 

Intervals 

Precision (defined as the width of the 95% confidence 

interval) and power are linked to sample size and so are 

mathematically related to each other. For any given 

power and "clinically important difference," we can pre-

dict before an experiment approximately how precise the 

results will be. The Appendix shows the derivation of the 

following simple rule-of-thumb relations. 

Equation 1 

Predicted 95% CI = observed difference ± 0.7 A080 

= observed difference ± 0.6 A0 9 0 

where 

A0 80 = true difference for which there is 80% power 

A0 90 = true difference for which there is 90% power 

Both of these formulae yield the same result. More 

detailed discussions of this relation are found in Bristol 

(41). The importance of using predicted confidence inter-

vals is that they give medical researchers a way to discuss 

the implications of a sample size in units that have mean-

ing to them. Many clinicians or reviewing bodies do not 

know how to debate "power" but can understand and 

discuss the implications of measurement accuracy being 

within 50%. 

A typical sample size consultation often resembles a 

ritualistic dance. The investigator usually knows how 

many participants can be recruited and wants the statis-

tician to justify this sample size by calculating the differ-

ence that is "detectable" for a given number of partici-

pants rather than the reverse. The statistician typically will 

not use less than 80% power in the calculations, mainly 

because, by convention, anything lower than that will be 

questioned. Because no guidelines exist about which 

"clinically important difference" should be used in the 

calculation, often anything can pass muster. The "detect-

able difference" that is calculated is typically larger than 

most investigators would consider important or even 

likely. But this "detectable difference" is usually not com-

mented on by reviewing bodies and does not have to be 

quoted when the results of the study are analyzed, so 

researchers will often accept large differences for the pur-

pose of getting a proposal approved. The result of this 

practice is that most clinical experiments are too small, 

and the journals are filled with a plethora of reports of 

clinically important but statistically nonsignificant effects, 

keeping persons who do meta-analysis in business (42). 

Maintaining the focus on predicted confidence intervals 

can make researchers understand more clearly the real 

consequences of this sample size game. It will clearly 

show that the effect of choosing too large a "detectable 

difference" is to yield outcomes with confidence intervals 

so wide that even a zero observed effect might not rule 

out a clinically important difference. In other words, the 

results are highly likely to be inconclusive (43). 

Using the previous example, in which the sample size of 

80 in each group produced 90% power to detect a dif-

ference of 25%, we can calculate (using Equation 1) that 

a result would have a predicted precision (95% confi-

dence interval width) of about ± 0.6 X 25% = ± 15%. 

(15% also represents the smallest observed difference that 

is statistically significant.) This is a number whose impli-

cations can be easily communicated. Figure 1 (top) shows 

what that degree of imprecision means for several hypo-

thetical results: a zero difference, a difference near the 

borderline of significance (15%), and the "difference of 
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Figure 1. Predicted 95% confidence intervals. Top. Predicted 
95% confidence intervals for hypothetical findings of 0%, 15%, 
and 25% differences when the sample size is set with power of 
90% for an absolute difference of 25% between two treatments 
{see text). Bottom. Predicted 95% confidence intervals for find-
ings of 0%, 15% and 25% differences when the sample size is set 
with power of 90% for an absolute difference of 10% between 
two treatments {see text). 

interest" (25%). Even if exact equivalence is observed, 

differences up to 15% cannot be excluded. If the real 

threshold for clinical importance was 25%, this would not 

be of great concern because the confidence limits around 

the zero difference exclude a difference as large as 25%. 

But typically the real difference of interest is less than 

that used in the sample size calculation. If the smallest 

clinically important difference was actually 10%, none of 

those 95% confidence intervals would convincingly rule it 

out. 

If we used 10% as the detectable difference in the 

sample size calculation, the predicted precision would be 

± 0.6 X 10% = ± 6% (Figure 1, bottom). We see im-

mediately from the figure that the discrimination between 

findings of 0% and 15% difference is sharper. The confi-

dence interval associated with a zero difference now 

points clearly to a clinically unimportant effect, whereas 

the confidence interval around 15% makes it highly un-

likely that there is a trivial effect. This metric also allows 

us to compare various power-difference pairings. The dif-

ference between having 70% power for a 7.5% difference, 

80%) for an 8.4%) difference, or 90% for a 10%) difference 

is not obvious, and it is not apparent what should be 

reported in a proposal. When it is noted that all of these 

produce the same degree of precision, the discussion can 

focus on that, instead of which combination of power and 

difference to report. 

Pointing out that an observed zero difference cannot 

exclude differences up to 15% or that an observed 10% 

difference cannot exclude differences up to 25% often will 

give a researcher pause, whereas the choice of a 25% 

"difference of interest" may not. In our experience, ex-

pressing the implications of sample size calculations in the 

same language as is used in a published paper, instead of 

the language of power and detectable differences, helps 

researchers to understand the implications more clearly 

and take them more seriously. This, in turn, can produce 

meaningful discussions about the aims of the study, which 

power considerations rarely seem to inspire. 

We are not recommending the abandonment of con-

ventional sample size formulae in favor of ones based 

solely on predicted precision (44-47). When this is done, 

a tendency exists to make the precision exactly equal to 

the difference of interest, which produces experiments 

with 50% power (19). Rather, as several others (19, 41, 

48) have also recommended, one should use the standard 

formulae and then look at their implications in terms of 

precision. 

The Purpose of Presenting Sample Size and Power 

Calculations 

What are the reasons to present sample size calcula-

tions in a published paper, a practice that many statistical 

guidelines recommend (49)? We believe they are limited. 

One purpose is to tell us the appropriate sample size for 

future experiments. This would discourage the incorrect 

practice of justifying a sample size by matching the size of 

previous studies that have achieved statistical significance. 

If we choose sample sizes in this way, the power can be as 

low as 50% even if the previously observed differences are 

true (21). The way to use previous studies is to use the 

observed differences as a guide to the true difference as 

well as to statistical variability. Reporting sample size 

calculations can give a sense of how well the study was 

planned and executed (by matching the goals against the 

enrollment) and provides a clue to the quantitative so-

phistication of the researcher. Because the sample size 

calculation must include many factors that are dealt with 

later in the analysis, a careful and sophisticated presen-

tation of sample size considerations can increase our con-

fidence that difficult analytical issues were handled appro-

priately. 

We must emphasize that for statistical interpretation of 

the results, however, the details of a sample size calcula-

tion are of no help. Some claim they are useful because 

they show the investigator's previous opinions as to the 

most likely effect. But no guarantee exists that the differ-

ence used in the sample size calculation will reflect any-

one's opinion. What if investigators plan to have 50% 

power for a real difference of interest but then quote the 

larger difference associated with 80% power, or what if 

the sample size was based not on a difference but on the 

availability of participants? In any case, the investigator's 

previous opinions are important only insofar as they are 

based on objective evidence. If they are, this evidence 

should be presented as part of the discussion so readers 

can interpret for themselves the observed effect in light of 

previous evidence. If they are not, then the opinions are 

not important. 

Conclusion 

If low power or a hopelessly optimistic effect size is 

used in a sample size calculation, this will be reflected in 

an inability after the trial to distinguish between clinically 

important and unimportant results, which will be ex-

pressed in the form of wide confidence intervals. Thus, a 

price is paid if the previous sample size estimation pro-

cedure is treated as a pro forma exercise. The approxi-
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mate size of the confidence interval after the experiment 

can be predicted before the experiment, and this predic-

tion should supplement traditional sample size calcula-

tions and should be reported in proposals. For interpre-

tation of observed results, the concept of power has no 

place, and confidence intervals, likelihood, or Bayesian 

methods should be used instead. 

Appendix: Derivation of Equation 1 

When the standard errors of the difference are equal under 
the null and alternative hypotheses, and outcomes approximately 
Gaussian, the basis of standard sample size formula is to make 
the difference of interest, A, equal to Za/2 + Zp standard errors 
from the null hypothesis. This corresponds to the equation: 

A, _ p = (Za^ + Zp)
 x standard error 

Where: 

1 - ]8 = power 
A! _ p = difference that can be detected with power 1-/3. 
Za/2 - Z-score associated with two-sided type I error of a. 
Zp = Z-score associated with one-sided type II error of /3. 

For a one-sided power of 80% and two-sided a = 5%, Za/2 + 
Zp - 1.96 + 0.84 = 2.8. This means that when the power is 80%, 
the difference of interest, A080, is 2.8 standard errors from the 
null hypothesis. The predicted 95% confidence interval equals 
the observed difference ± 1.96 standard errors, but we can re-
place the standard error with A080/2.8: 

Predicted 95% CI = observed difference ± 1 .96-^ 
2.8 

= observed difference ± 0.7 A080 

For one-sided power = 90%, Za/2 + Zp = 1.96 + 1.28 = 3.24. 
Thus, the standard error also equals A()90/3.24. Substituting that 
into the confidence interval equation, we get: 

A() 9() 
Predicted 95% CI = observed difference ±1.96 — 

3.24 
= observed difference ± 0.6 A090 

Caveat: When sample sizes are small (total n <20) and the 
outcomes are Gaussian, then the appropriate thresholds from the 
Student f-distribution should be used in place of the Gaussian 
Za/2 and Zp. In the case of proportions, variances can differ 
substantially under the null and alternative hypotheses when both 
proportions are not between 1/4 and 3/4, and the above equa-
tions apply only approximately. See Bristol (41) for exact equa-
tions. 
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What used to be called judgement is now called prejudice, and what used to be 
called prejudice is now called a null hypothesis It is dangerous nonsense (dressed 
up as 'the scientific method'), and will cause much trouble before it is widely 
appreciated as such. 

A.W.F. Edwards 
Likelihood 
Cambridge, Cambridge University Press, 1972, p. 180 
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