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1. Summary. Instead of minimizing the maximum risk it is proposed to re

strict attention to decision procedures whose maximum risk does not exceed 

the minimax risk by more than a given amount. Subject to this restriction one 

may wish to minimize the average risk with respect to some guessed a priori 

distribution suggested by previous experience. It is shown how Wald's minimax 

theory can be modified to yield analogous results concerning such restricted 

Bayes solutions. A number of examples are discussed, and some extensions of 

the above criterion are briefly considered. 

2. Introduction. Among various possible approaches to the problem of de

fining a best decision procedure we may mention the following two extremes. 

(i) The Bayes solution. If the unknown parameter 8 is a random variable 

distributed according to a known probability distribution ;>.., and if R6(8) denotes 

the risk function of the decision procedure o, we simply minimize with respect 

too the average risk J R~(O) d;>-.(8). 

(ii) The minimax principle. Here one focuses attention on the maximum of 

the risk function and wishes to minimize sups R6(8). The reader may consult 

Wald [1] for definitions and examples of these terms. 

Of these two methods of treating the problem the first one assumes complete 
knowledge of the a priori distribution, an assumption that is usually not satisfied 

in practice. Even if extensive past experience is available, it will in most cases be 

difficult to exclude the possibility of some change in conditions. On the other 

hand, the minimax principle forces us to act as if 8 were following a particular 

a priori distribution, the one least favorable to us, even though we may feel 

pretty sure that actually 8 is distributed in quite a different manner. Thus it 

would seem that the minimax principle is suitable, if at all, only in situations 

characterized by a complete absence of past experience or other sources of 

knowledge concerning 8. 

The situations occurring in practice usually lie between the two extremes just 

described. On the one hand, one does frequently have a good idea as to the 

range of 8, and as to which values in this range are more or less likely. On the 

other hand, such information cannot be expected to be either sufficiently precise 

or sufficiently reliable to justify complete trust in the Bayes approach. 

The purpose of the present paper is to discuss an approach to the problem of 

1 Work sponsored in part by the Office of Naval Research. 
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optimal decisions that utilizes the available information but at the same time 
provides a safeguard in case this information is not correct. 

Suppose that the maximum risk of the minimax procedure is Q. This is the 

smallest possible value for the maximum of a risk function. But we may be 

willing to tolerate a somewhat bigger maximum risk Co > Q if, in case the guess 
at~ has been a good one, there results a substantial decrease in the average risk. 

This leads to the 

DEFINITION. The procedure oo is said to be a restricted Bayes solution with re

spect to the a priori distribution ~ and subject to the restriction 

(2.1) R~(O) ~ Co for all 0, 

if it minimizes J R6(0) d~(O) among all procedures satisfying (2.1). 

This definition takes into account two aspects of the risk function, its su

premum and its average with result to the distribution ~. Within a certain range 

of values each of these can be improved at the expense of the other. The proper 

balance between the two, that is, the value we select for Co , depends on the 

confidence we have in O's actually following a distribution close to~ and on the 

decrease in J R~ d~ that can be achieved by further increasing Co . 

To the above approach can also be given the following slightly different form. 

Instead of setting an upper bound for the risk, we specify a constant 0 ~ Po ~ 1 
and minimize 

(2.2) Po J Ra (0) d'A(O) + (1 - Po) sup Ra (0). 

Here it is Po that indicates the confidence we have in ~. The two principles are 

clearly equivalent; for if oo minimizes (2.2) and if sup R6 0(0) = Co, then oo is a 

restricted Bayes solution, and the converse also holds. 

The formulations given here may be applicable also to games played against 

an opponent rather than against Nature. This would be the case if one believed 

from past experience that the opponent is likely to make certain mistakes. 

One could then take advantage of these and still protect oneself in case the 

opponent has improved. 

3. Restricted Bayes solutions. The principal aim of the present section is to 

obtain sufficient conditions for a decision procedure to be a restricted Bayes 

solution. For this purpose the modified problem mentioned at the end of the last 

section turns out to be the more natural one to consider; the results concerning 
restricted Bayes solutions follow as immediate corollaries. All of the theorems 

of this section will be simple generalizations of the corresponding results in 

Wald's minimax theory. 

THEOREM 1. Let vo be a d~'stribution for which there exists a constant 0 < po ~ 1 
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and a distribution p,o such that 

(3.I) vo = PoA + (I - Po)P.o . 

Then if the Bayes solution oo of vo satisfies 
• 

(3.2) f R6 0 (e) dp.o(e) 

the procedure oo minimizes 

sup R6 0 (e) , 
0 

(3.3) Po f R6 (e) dA(e) + (I - Po) sup Ro (e). 

PROOF. Let o be any procedure. Then 

Po J Ra dA + (I - Po) sup Ro (8) ~ Po J Ro d A + (~ - po) J Ro dp,o 

~ Po f Roo dA + (1 - Po) f R6 0 dp,o = Po f R6 0 dA + (1 - Po) sup Ro 0 (e) . 

CoROLLARY. Under the assumptions of Theorem I suppose that sup Ro 0 (8) = Co. 

Then oo minimizes J R6 dA among all procedures satisfying Ro(e) ~ Co for all e. 

Since a distribution vo with the required properties does not always exist, we 

state the following generalization of Theorem 1. If v; is a sequence of a priori 

distributions with v; = PoA + (1 - po)p,; , and if o; are the associated Bayes solu

tions, then 

(3.4) 

is a sufficient condition for oo to minimize (3.3) . 

Before proceeding with this development let us discuss briefly the decomposi

tion (3.1). For a given pair of distributions A, v consider the totality of numbers 

0 ~ p ~ I such that v = pA + (I - p)p, for some p,. It is easily seen that this 

set is a closed interval 0 ~ p ~ P>-., and we shall call P>-. the A-component of v. 

It is of interest to note that under the conditions of Theorem I we have Po = P>-. 

unless Co is the minimax risk. For if Po is not the A-component of vo it follows 

that P.o must have a positive A-component. Thus any point of increase of A is 

also one of p,o and we have J Roo dA = Co . But by Theorem I this is possible 

only if Co is the minimax risk . 

As in the minimax theory the distribution vo of Theorem I is "least favorable " 

for the statistician, in a sense made precise in 

THEOREM 2. Under the assumptions of Theorem 1, the distribution vo maximizes 

the Bayes risk among all a priori distributions v that permit a representation 

v = pA + (I - p)p. with p ~ Po . 
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PRoOF. Let v = pA. + (1 - p)JJ. be any distribution With p ~ p0 • Then 

J Ro 0 d V 0 = Po J Roo d A + (1 - po) sup Ro0 (0) ~ p J Roo d A 

+ (1 - p) sup R~ 0 (0) ~ p J Roo d A + (1 - p) J Roo dJJ. 

~ J R,. (0) dv (0). 

Thus oo is a maximum solution for Nature (in Wald's interpretation of a decision 

problem as a two-person zero sum game whose players are Nature and the 

statistician), if sh~ is restricted to a priori distributions whose A.-component is at 

least Po. 

From the proof of Theorem 2 it is seen that vo not only maximizes the Bayes 

risk but also-and this is a slightly stronger result-the restricted Bayes risk, 

that is, the quantity inf J Ra dA. when o is restricted .by the condition R, ( 0) ~ Co 

for all 0. 

In Theorem 1 we gave sufficient conditions for a procedure o0 to be a restricted 

Bayes solution, and the distribution vo in terms of which these conditions were 

formulated was further characterized in Theorem 2. We must still prove the 

existence of a distribution with the desired properties, at least for some class 

of decision problems. This is easily done, along the lines of Wald's proof of 

Theorem 3.10 of [1], under the following assumptions. 

AssUMPTION 1. 

i~f s~p [Po J Ra d X + (1 - po) J Ra dJJ. J 

= s~p i~f [Po J Ra dA. + (1 - Po) J Ro dJJ.]. 

This states that the decision problem is strictly determined when Nature is 

restricted to distributions with A.-components ~ Po . 

AssUMPTION 2. There exists a least favorable distribution JJ.o, that is a distribution 

that maximizes 

AssUMPTION 3. There exists a decision procedure oo that minimizes 

s~p [Po J R, dA + (1 - po) J R, dJJ.]. 

It follows from Wald's work that 1 and 3 hold, for example, when Conditions 

3.1-3.6 of [1] are satisfied, while in general 2 requires the stronger Condition 
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(3.7). All these conditions are satisfied, for example, when we are dealing with 

discrete or absolutely continuous distributions, the problem is nonsequential, 

the loss function is bounded and the parameter space is compact. 

To prove our result, we note that 

s~p [Po J Ra d>.. + (1 - Po) J Ra dp. J = Po J Ra d>.. + (1 - Po) s~p Ra (8) • 

Therefore, we have by assumption 

Po J Ra0 d>.. + (1 - Po) sup Ra0 (8) = i~ [Po J Ra d>.. + (1 - Po) J R, dpo], 

and hence 

Po J Ra0 d>.. + (1 - Po) sup Ra,(8) - Po J Ra0 d>.. + (1 - Po) J Ra0 dp.o. 

But this implies, when Po < 1, that 

sup Ra0 (8) = J Ra0 dp.o. 

On the other hand, the result is true vacuously when Po = 1. 

4. A continuity theorem. We shall next consider the dependence of the re

stricted Bayes solution on the restricting quantity Co • The main result will be 

a continuity theorem that permits us, at least in some cases, to characterize the 

topological structure of the restricted Bayes solutions. 

Throughout this section we shall make the following two assumptions whose 

validity was proved by Wald (Theorems 3.1 and 3.2a of [1]) under very general 

conditions. 

AssUMPTION A. The space of decision functions is compact, that is, every sequence 

Oi of decision procedures possesses a subsequence oi1 that converges to some decision 

function o*. Here convergence means what Wald calls "regular convergence" (see 

pp. 65-66 of [1}). 

ASSUMPTION B. If Oi ~ o*, then for every distr{bution 'V 

J Ra, dv ~ J R,. dv. 

This convergence of integrals implies the pointwise convergence of the risk 

functions, as may be seen by letting the distributions v degenerate at single 

points 8. In some cases (for example, if the loss function is bounded) the two 

notions of convergence are equivalent. 

Let C = sup Ra>.(8) be the maximum risk of the unrestricted Bayes solution 

(for simplicity assume that o,. is unique; otherwise we would put C = infa>. 

sup1 R3>.(8), the inf taken with respect to all Bayes solutions), and let Q be the 

maximum risk of the minimax procedure. Then f. ~ C and we may exclude the 
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case Q = Cas trivial. For any Q ~ C ~ C let B'A(C) be an associated restricted 

Bayes solution, and r'A(C) = J Ra,.<e> dA the corresponding restricted Bayes 

risk. Concerning r'A(C) we have the 

LEMMA. The function r'A(C) is convex, continuous, and stricUy decreasing. 

PROOF. 

(i) r'A(C) is obviously nonincreasing. If C' < C", 0 < 'Y < 1 and 

o = 'Yo"A(C') + (1 - 'Y)B"A(C"), 

then 

J Ra dA = 'Yr'A(C') + (1 - 'Y) r'A(C") 

and 

sup Ra( 8) ~ 'YC' + (1 - 'Y )C", 

from which the convexity of r'A(C) follows. 

(ii) From well known properties of convex functions, the continuity of r'A(C) 

is now obvious except at the point C = q. But let Ci ~ Q, let Bi be the corre

sponding restricted Bayes solutions and B,1 the convergent subsequence guar-

anteed by Assumption A. If B,7 ~ B*, we have rx(C,) = I R"1 dA ~ I R"* dA. 

By monotonicity r'A(C) ~ J Ra* dA. Also, since R"1(8) ~ Ra.(8) for each 8, we 

have that sup Ra.(8) ~ lim C,1 = Q, so that sup Ra.(8) = q. But this implies 

r'A(C) ~ I R.* dA and hence r'A(C) = I R"* dA = lim r'A(Ci1). 

(iii) Before proving that rx(C) is strictly decreasing we shall now show that 

for any Q < C < C we have 

sup Ra,.<e> (8) = C • 
• 

Suppose that sup Ra,.(8) < C. If C < oo there exists 0 < 'Y < 1 so that 

o = 'Y8'Y + (1 - 'Y)B"A(C) still satisfies sup Ra(8) ~ C, but we would have 

I R, d'A < J Ra,.<e> dA. If C = oo, then c. ~ C implies that I Ra,.<c•> dA ~ 

I R&,.(c> dA and the same argument applies. 

(iv) Strict monotonicity of r'A(C) is an obvious consequence of (iii). For let 

C' < C" and suppose that r'A(C') = r'A(C"). Then B'A(C') would be a solution not 

only corresponding to C' but also to C" in contradictign to (iii). 

We can now state a closure and continuity theorem. 

THEoREM 3. If { B;} is a sequence of restricted Bayes solutions converging regularly 

to B*, then B* is a restricted Bayes solution, and sups Ra.(8) = lim,_.., sups Ra,(8). 

PRooF. Let r,, r* be the Bayes risks of B,, B* respectively. By Assumption 
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B, r• ~ r*. By the lemma, we can conclude that the sequence C, = sup8 R6;(8) is 

convergent; denote lim C, by Co. Clearly C* = sup R6*(8) ~Co, and since for 

each () R~~(O) = lim R6;(8) ~ Co, we conclude C* ~ Co = C*. The lemma now 

assures o* to be a restricted Bayes solution. 

CoROLLARY. The set of risk functions corresponding to restricted Bayes solutions 

is closed with respect to the convergence of Assumption B. 

PROOF. Let R, be the risk functions corresponding to restricted Bayes solu

tions o1 , and let R. ~ R*. By the compactness Assumption A, we may extract a 

subsequence Oi; which converges regularly to some o*. By Theorem 3, o* is a 

restricted Bayes solution, whose risk function R* is the limit of Rs, . , and hence 
1 

of Ra,. 

6. Extensions. We shall now mention briefly some extensions of the notion of 

a restricted Bayes solution. To give a first simple example, it may happen that 

we have ideas concerning the range of the parameter but not concerning a pos

sible distribution over this range. Thus it may be known that 8 r n and may 

further be indicated by other considerations that actually 8 r w where w c n. 
We may then, subject to the condition R~( 8) ~ Co for all 8 r n, wish to minimize 

supe • ., R~(O). For example, when testing the hypothesis that three means 81, 

82 , 03 are equal we may believe that the most likely alternatives are such that 

81 < 82 < 83 without however definitely being able to exclude the other possi

bilities. 

We can get further refinements as follows. Let Ao C At C · · · C Ar-t C A, 

be a nested set of families of distributions. We may be certain that the true 

distribution of {) is an element of A, (A, may of course contain all distributions 

that assign probability 1 to a single point), fairly sure that it lies in Ar-t, still 

believe that is in Ar-2 , etc. Accordingly we could select a decreasing sequence of 

constants C, > Cr-t > · · · > C1 , each C, greater than the restricted minimax 

risk at this stage, and minimize supx·cA, J R6 d"A subject to the condition supx.A; 

J Rs d"A ~ C, fori = 1, · · · , r. 

There is an extension of Theorem 1 to the present case that we give as an 

example of how the theory of the earlier sections generalizes. 

THEOREM 4. Suppose there exists Po > 0 and a distribution 

T 

Vo = PoAo + L PiAi, 
i-1 

Pi 6:: 0, 
T 

L Pi= 1, 
i..O 

with "J..., r A; and such that the Bayes solution oo of vo satisfies 

(1) sup J Rs0 d"J... = C, = J Rs0 d"A; fori = 1 · · · r ' ' -,..,A i 

and 

(2) 
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Then oo minimizes sup~cAo J Ra dA subject to 

(3) sup J Ra d'A ~ c. fori = 1, · · · , r. 
~cA i 

PROOF. Let o be any procedure satisfying (3) . Then 

t Pi sup J Ra d'A f:; L Pi J Ra d'Ai f:; L Pi J Ra 0 d'A, = L Pi sup J Ra dA. , 
i=O ~ell; ~cAi 

But fori = 1, · · · , r we have 

sup f Ra d'A ~ Ci = sup J Ra 0 dA 
>.cAi >.cAi 

and the conclusion follows. 

Of the conditions, (2) of course becomes vacuous in case A0 contains only a 

single distribution. 

6. Examples. We conclude the paper by discussing a number of examples 

which serve to illustrate the ideas and theorems. As might be expected, it is more 

difficult to obtain explicit results with the restricted Bayes approach than with 

the logically simpler minimax or Bayes principles. In fact, the minimax prin

ciple has been successfully applied, in most cases, by guessing the answer and 

then verifying it through use of the specialized form of Theorem 1. It appears 

that the restricted Bayes solutions are often much less simple in their mathe

matical structure than the minimax solutions, and will accordingly be much 

harder to guess. We suspect that the widespread application of the restricted 

Bayes approach would require numerical methods in combination with theo

retical results of the kind given above. 

EXAMPLE 1. Let X = (X1' x2 ' ... ' Xn) be random variables having the 
joint density function p9(x) = c(O)b(x)e1<z>q<B>, where 0 is an unknown real 

parameter and q(O) is a monotonely increasing function of 0. This form includes 

many of the distributions frequently used in statistics, such as the Poisson, 

binomial, and normal with known mean or variance. Consider the problem of 

testing, at a given level of significance, the hypothesis H : 0 = Oo against the 

alternatives 0 :;& Oo . We are indifferent to alternatives 01 ;;;; 0 ~ 82, where 

81 < 80 < 82 . As risk function, we shall use the probability of false acceptance. 

Thus, the risk is 1 - {3(8), where {3(0) is the power function . Suppose finally 

that past experience or other considerations suggest that, should the hypothesis 

8 = 00 be false, then one of the alternatives 0 f:; 82 is true. 

It is known [2) that an essentially complete class of tests consists in those of the 

form w(k) : reject H if t(x) ~ k or t(x) f:; f(k), wheref(k) is determined by the given 

level of significance. We may restrict attention to these tests. Denote the power of 

w(k) at alternative 0 by f3k(8) . If we had complete confidence in the presumption 

that either 0 = Oo or 8 f:; 82 , we should seek to maximize the power against the 

latter alternatives, with no regard to the power against the alternatives 0 ~ 81 . 



55

J. L. HODGES, JR., AND E. L. LEHMANN 

This leads to the known uniformly most powerful one-sided test w(- oo ). This 

test is obtainable as the Bayes test corresponding to any a priori distribution 

for 8 which assigns all of the probability to values 8 ~ 82 • However, the power 

of w(- oo ) tends to 0 as 8 tends to its lower limit, so we may get very poor 

performance if our presumption is not correct. At the other extreme, if we placed 

no reliance on the presumption, we might seek the minimax test. It is easy to 

see that the power functions all have unique minima, and are continuous in k 

for fixed 8, whence the minimax test will be w(~), where ~ is determined by 

the condition {34(81) = {3!(fM. This test then gives no better protection against 

large alternatives than against small, and thus makes no use at all of our pre

sumption that large alternatives are the ones to fear. 

The restricted Bayes approach suggests a compromi~, under which we would 

seek to maximize inf,~ 82 {3(8) subject to in£8{3(8) ~ C. It can be shown that, for 

- oo < k ~ ~. inf,~,,f3k(8) = f3k(82), while inf,f3k(8) is attained at a finite value 

of 8 ~ 81 . From these facts the Lemma of [2] enables us to conclude, for k' < 
k < k", k ~ ~~ that inf,~• 2 /3k(8) > inf,~,,f3k .. (8), while inf,f3k(8) > inf,f3k•(fJ). 

It follows that for every - oo < k ~ ~. w(k) is a restricted Bayes solution in the 

sense given. The same result holds if we assign to fJ, any a priori distribution 

under which P(fJ ;;;;; 82) = 1, and apply the restricted Bayes principle in the 

narrower sense of Section 2. 

It is easily seen that C(k) = inf,f3k(fJ) is a continuous, monotonely increasing 

function of kin the interval - oo ~ k ~ ~.The tests w(k), k ~ ~.thus provide 

essentially unique restricted Bayes solutions for all possible values of C. In this 

example, our principle provides nothing essentially new, since the admissible 

tests already form only a one-parameter family. 

EXAMPLE 2. Consider next the binomial random variable· X = number of 

successes on n independent trials, each having the probability p of success, and 

the problem of estimating p from X. Take as loss function the square of the 

error of estimate. Suppose that a theoretical examination of the experimental 

situation reveals considerations of symmetry which suggest that p = t. We 

wish to design an estimate which will take advantage of this theory, in the sense 

of providing small risk at p = !, but will not place complete reliance in the 

theory, in the sense of giving some control over the risk for all values of p. 

This problem falls within the framework of the restricted Bayes approach, if we 

give to p the a priori distribution X which assigns all of its probability to the 

value!. Our objective is then to minimize the risk at!, subject to a given maxi

mum C for the risk over 0 ~ p ~ 1. 

Denote the estimate corresponding to a value x of X by o(x), and the risk 

involved in using this estimate by Ra(p) = E[o(X) - vt The ordinary Bayes 

estimate is ~(x) = ! for every x, since this estimate reduces the risk at ! to 0, 

while every other estimate has positive risk at j. The maximum risk of~ is C = H, 
attained at p = 0 and p = 1. The minimax estimate for this problem is known 

(see [3]) to be Q.(x) = ~ 1 !" + 2 (~ + I). Thisestimatehastheconstant 

risk Q = ~~(Vn + 1)2
• 
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In getting the restricted Bayes estimates, we first observe that we need only 

consider those estimates which possess the symmetry property o{x) + o(n- x) = 
1. For, if o(x) is any estimate, the estimate o'(x) = 1 - o(n - x) will have the 

same maximum risk and the same Bayes risk as o, for any a priori distribution 

which is symmetric about p = 1/2. Thus, the estimate l(o{x) + o'(x), which 

possesses the symmetry property cited, will have the same Bayes risk as a 
and no larger maximum risk. 

Consider the ·distribution p.1 which assigns probability 1/2 to each of the points 

0 and 1. The Bayes solution o1 corresponding to the a priori distribution p'A + 
(1 - p)p.1 is easily found to be of the form: o1(0) = 1 - o1(n), Ot(X) = 1/2 fm: 

0 < x < n. By virtue of Theorem 2, o1 is a restricted Bayes estimate if it achieves 
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its maximum risk only at 0 and 1. But this is true for R(p) = (p -!)2, and hence 

by continuity (Theorem 3) must hold true for some interval (C1 , C) of values 

of C. In fact, C1 may be calculated from the condition R'1(0) = 0. Again using 

the continuity of the variation of the risk function with C, we see that for some 

interval (C2, C1), the distribution JJ.2 will consist of probability 1/2 at points a 

and 1 - a, the value of a varying continuously with C. At C = C2 , the risk 

function will develop further maxima, requiring a modification of the form of the 

distribution p., and so forth. But in any case, the distribution p. must have only 

finitely many points of positive probability, since the risk function must achieve 

its maximum at all such points, is a polynomial in p, and is not constant except 

for C = Q. 
The computing program outlined in the preceding paragraph was carried out 

numerically for the case n = 4, leading to the relation between C and R(l/2) 
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shown in the graph. The restricted Bayes estimates are (except for the extremes 

of minimax and Bayes estimates) not linear functions of X. For comparison, the 

graph also shows the minimum risk at p = 1/2 attainable for given maximum 

risk using only linear estimates. We see that, over a wide range of values of C, 

the use of nonlinear estimates permits nearly a 50 per cent reduction in the risk 

at p = 1/2. 

EXAMPLE 3. As an illustration of the application of our principle to a finite 

decision problem, consider the following genetic situation. We are concerned 

with the inheritance of a simple Mendelian trait. Two individuals F and G are 

crossed to produce n progeny, each of whom is then crossed with a known hybrid 

to produce a single offspring. Of the n third-generation individuals, R are found 

to be recessive, while the remaining n - R are either dominant or hybrid. 

Suppose it is known from other evidence that F and G-are neither both dominant 

nor both recessive. Then the number k of recessive genes which they possess 

between them is either 1, 2, or 3. Our problem is to infer the value of k from the 

observed value of R. As our risk, we take the probability of wrong inference. 

It is easily seen that R has the binomial distribution corresponding top = k/8. 

The complete class of inference procedures is obtainable as the class of . Bayes 

procedures corresponding to a priori distributions A over the three possible values 

of p. If P(p = i/8) = A; , i = 1, 2, 3, then the Bayes solution, when R is observed 

to have the value r, is to decide for that value of k for which 

is greatest. These solutions have the following structure. There exist two numbers 

a and b, such that our decision is for k == 1 if R < a, for k = 2 if a < R < b, for 

k = 3 if b < R, while if R = a, we choose between k = 1 aRd k = 2, and if 

R = b, we choose between k = 2 and k = 3 according to certain probabilities. 

Let P(choosing k = 1 I R = a) = 1r1, and P(choosing k = 21 R = b) = 11"2. 

Supp~e the proportions of domina:nt and recessive genes in the population at 

large are known to be JL and 1 - JL, respectively. Then, if F·and G are bred under 

panmixia (i.e., chosen independently and randomly from the population), we 

should have 

P(k = l):P(k = 2):P(k = 3) = 2(1 - ,JL)~:3JL(1 - JL):2/. 

The Bayes solution corresponding to this distribution for k would be the reason

able decision procedure to use if we were sure that F and G had been bred under 

panmixia. If we placed no reliance at all in the panmixia hypothesis, we might 

prefer to employ the minimax solution, which is characterized by equal proba

bilities of error corresponding to the three possible values of k. If we placed some 

reliance in the panmixia hypothesis, but not complete reliance, we might impose 

a limit on the permissible probability of error for any value of k, and subject to 

this limit seek to minimize the average probability of error under panmixia. 

The minimax, Bayes, and restricted Bayes solutions are easy to obtain numer

ically. For illustration, suppose n = 20 and JL = 0.8. The three solutions are as 

follows. 
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Solution 

mrmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M 

B 
R 

ayes .. . . .. .. . . . .. • 0 0 • •••••••••• • ••••••• 

estricted Bayes, maximum probability of 

error = 1/2 . ... . . . . . .. . . . . .. . . .. ... ... . 

a b 

3 7 

0.5 4.5 

2 5 

11"1 11"2 

0.482 0.142 
. . . . .. 

0.868 0.828 

The performance characteristic properties of the three solutions may be con

veniently compared in tabular form. 

Solution Maximum probability Average probability of 
of error error under panmixia 

Minimax . . . . . ...... .. .............. 0.354 0.354 
Restricted Bayes . .... . .... ... . . ... .. 0.500 0.239 
Bayes ..... ... ............ .. .. . . . .. . 0.931 0.234 

The restricted Bayes solution loses little efficiency as compared with the Bayes 

solution if panmixia holds, but gives considerably better protection if it does not 

hold. 
It may be remarked that, in any finite decision problem, the restricted Bayes 

solution may be found oy means of a finite number of applications of the Ney

man-Pearson fundamental lemma. Suppose there are m decisions, so that the 

risks associated with any decision procedure may be represented as a vector 

(r1 , r2 , • • • , rm) in m-dimensional Euclidean space. Except in the trivial situation 

in which the Bayes solution itself satisfies the restrictive 'condition that r, ~ C 
for every i = 1, 2, · · · , m, we may conclude from part (iii) of the proof of the 

Lemma of Section 3, that the restricted Bayes solution will have r, = C for 

at least one i. Let I(C) be the set of i such that r, = C. The restricted Bayes 

solution corresponding to C may then be obtained by minimizing L)iri , sub

ject tor.; = C for alliin I(C) . If we compute these minimizing solutions for all 

sets I, using the Neyman-Pearson lemma, we may select the restricted Bayes 

solution from among them by inspection. 
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