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THE USE OF PROBABILITY PAPER FOR THE

GRAPHICAL ANALYSIS OF POLYMQDAL

FREQUENCY DISTRIBUTIONS

By J. P. Harding, Ph.D. I

BritishMuseum, Natural History

(Text-figs. .I-6)

The mathematical analysis of bimodal distributions is very complex. Karl

Pearson (I894) investigated the problem and developed equations for the

purpose; but found them unsolvable as the 'majority [of the relations]lead to

exponential equations the solution of which seems more beyond the wit of

man than that of a numerical equation even of the ninth order'. He did indeed

evolve an equation of this order and used itto analyse a few bimodal distribu-

tions,but the arithmetic involved was very laborious. Later he (Pearson, I9I4)

gives a table for' Constants of normal curve from moments of tail about

stump' which, as he describes in the introduction, occasionally permits a rough

analysis of a distribution which isknown to be bimodal. This method ismuch

more rapid than the solution of the nomc equation, but' owing to the paucity

of material in tailsand corresponding irregularity there will be large probable

errors'. Gottschalk (I948) discusses the question and shows that in the special

case where the bimodal distribution is symmetrical comparatively simple
solutions can be found. .

The purpose of this paper is to describe by a series of examples a straight-

forward graphical method which enables one to analyse not only bimodal

distributions, both symmetrical and asymmetrical; but also more complex

distributi~ns. The last example will show how a distribution comprising three

unequal and overlapping populations can be analysed, an estimate being

obtained of each separate mean, each separate standard distribution, and the

relative proportions in which the three populations are mixed.

The method makes use of probability graph paperl devised by Hazen (I9I3)

for the analysis of the flow of water in rivers. The use of this and other

probability papers for various engineering and industrial purposes has been

described by Rissik (I94I), Doust & Josephs (I94I-42), Levi (I946) and

others; but I know of no description of its use for the analysis of bimodal or

polymodal distributions. Perhaps the methods I am describing are so obvious

to mathematicians familiar with probability graph paper, that for them

description is superfluous. To the biologist, however, the simplicity of this

1 Obtainable from Messrs Wightman Mountain, London, as 'Data sheet No. 37. Arith-
metic Probability'. A similar paper is also stocked by H.M. Stationery Office.
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powerfultool is perhapsits greatestattraction, He has longbeenawarethat
the mean and standard deviation of populations he is confronted with are often

of little biological significance; because these populations are compounded of

individuals belonging to the two sexes, to different species, or to different age-

groups, and are therefore necessarily bimodal or polymodal in character,

Hazen's probability graph paper (Fig. 1) has along the bottom a scale of

percentages reading from 0'01 % on the left to 99'99 % on the right (Fig. 4
shows the complete ruling). Along the top of the paper the same scale reads

from right to left. The scales are not evenly spaced; but are much more crowded

in the middle than at the sides, being specially arranged so that when any

normally distributed population is plotted, in a manner which will shortly be

described, the points all fall on a straight line. The position of this line

is determined by the mean and its slope by the standard deviation, and

these statistics may be estimated without laborious calculations, If a bimodal

or polymodal distribution is compounded of distributions which are them-

selves normally distributed, and with biological data this is generally true

enough for practical purposes, it will give a curve when plotted which is the

resultant of two or more straight lines. 1 These lines are usually not difficult

to find and the irrespective positions and slopes give the means and standard

deviations of the component populations.

Fig, 1 shows the analysis of 1572 cuckoos' eggs each measured to the nearest

half millimetre. The histogram to the left of the figure gives the size dis-

tribution; there are for example 156 eggs between 20'75 and 21'25 rom. in

length. The histogram is not part of the method, but is included to facilitate

description,

The data are' plotted as cumulative percentages. Take, for example, the point

P indicated by a small circle: here 4'7 % (scale along the bottom) of the sample

is less than 20'75 rom. in length, for there are 1+ 3 + 30 + 39 = 73 eggs or

4'7 % of 1572 eggs shorter than this. Alternatively, 95'3 % (scale along
the top) of the sample of eggs exceed 20'75 rom. in length, When all the

points are plotted it is found that they lie approximately in a straight line AB.

This line represents a normal distribution whose mean length is the length

corresponding to the point M at which the line cuts the vertical for 50 %.
i.e. 22'35 rom. The standard deviation is estimated from the points Sl and S2

where the line AB cuts the verticals for 15'87 and 84'13 % respectively,

Sl corresponds to a length of 21'35 rom. and S2 to 23'4 mr,n, and the standard

deviation is half the difference (23'4-21'35)/2= 1'025 rom. This is because

15'87 %of any normally distributed population is less than the mean by an
amount equal to the standard deviation or more, and another 15'87 %exceeds

the mean by this amount. The vertical lines for 15'87 and 84'I3 % are not

1 Apart from' Normal' distributions the ones most frequently encountered with biological
data are 'log-normal' and Poisson distributions, Log-normal distributions may be handled

either by plotting the logarithm of the measurement instead of the actual measurement, or by

the use oflogarithmic probability paper, and Doust & Josephs (1941-42) describe a probability
paper which is specially designed for Poisson distributions.
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marked on the paper as supplied; but are easily put in. A 10 in. slide-rule
is sufficiently accurate for plotting results.

When the number of observationsis less than about twenty-fivean alterna-

tive method of plotting is appropriate, as a frequency tabulation is of little
value with small samples and may lead to considerable grouping errors, The
data are arranged in ascendingorder of magnitude, each individual observation
is then plotted in such a way that there are equal percentage intervals between

each oDservation. In general, if there are N observations, the first in the
sequence is plotted on the 'probability' line whose value is sojN %, and the
succeeding (N-I) observations at equal intervals of IoojN %. To give a
concrete example, a sample of ten individuals gave the following measure-
ments: 20'9,20'4, 19'2,21'1,20'9,22'1,21'3, 19'8, I9'S, 20'2, These are

arranged in ascending order and given the appropriate percentage value

(Table I).

The measurements are plotted against the percentages as indicated by

the X's in Fig. I, and a straight line drawn through the points enables one to

estimate the mean and the standard deviation as 20'S and 0'9 mm. respectively.

Neither method of plotting will give precisely the same estimates of the mean

and standard deviation as the arithmetical method; but the graphical solution

gives estimates of the true values for the population which are as reliable as

any that can be obtained from the sample. If there is difficulty in placing

a straight line through the points, it is at once apparent that the sample is an

aberrant one; but there is nothing to indicate this with the usual arithmetic

procedure.

In Fig, 2 the size distribution of forty-one immature copepods is analysed.

These were all of the same species and all in the same developmental stage;

both sexes were present, probably in approximately equal numbers, but it was

impossible to tell the sex of any individual. The size distribution of the sample

is shown by the histogram on the left. When plotted on the probability paper

the points do not fall on a straight line but on a sigmoidal curve. The dotted

line GLH was not drawn to fit the points plotted from the data, but is the

resultant of the two straight lines CD and EF. The lines CD and EF were

found by assuming that the distribution was a bimodal one due to the

TABLE I

Sequence no, Measurement Percentage

I I9'2 5
2 I9'5 I5
3 I9'8 25
4 20'2 35
5

'
20'4 45

6 20'9 55
7 20'9 65
8 2I'I 75
9 2I'3 85

IO 22'I 95
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difference in the average lengths of the males and females. It is known that

the adult females are distinctly larger than the adult males and it is reasonable

to assume a similar sex difference in the immature specimens measured. It is

likely, therefore, that the smallest individuals, say those less than 0'9 nun.

long are all or nearly all males, and that those longer than about 1'0 nun. are

nearly all females. On this hypothesis the eight male individuals less than

0,88 nun. long which comprise 19'5 % of the total population will comprise

39 % of the male population (assuming that males and females are present in

equal numbers). Similarly, the six males less than 0'72 nun. long are estimated

to be 29'3 %of the male population. A few points plotted in this wayfor the

small individuals are found to fall on a straight line which is approximately

that drawn, EF. Similarly, the doubling of the percentages for the largest

size groups gives us a straight line CD or thereabouts. The resultant, GLH, of

the two straight lines can now be drawn in. For example, the position L, where

the resultant cuts the arbJtrarily chosen horizontallineJK, is placed at 64'7 %;

this being half the sum of the percentages forJ and K, 30 and 99'4 % re-

spectively. The precise position of the two lines should be adjusted by

trial and error until positions are found whose resultant curve best fits the

: data. The means and standard deviations of the two populations can then be

read off the scale. In the example, although only a small sample of forty-one

individuals was available, and although no single individual could be sexed

we are able to say, with a fair degree of confidence, that the average length of

the males is about 0'885 nun. and that of the females about 0'99 nun. and that

the standard deviations are of the order of 0'375 nun.

Fig. 3 gives the size distribution of 360 adult female copepods. The points

when plotted on probability paper lie on an asymmetrically placed sigmoidal

curve. There is a point of inflexion where the direction of curvature changes,

on the 97 %:3 % vertical. This position for the point of inflexion suggests
that there are two populations involved: a population of small individuals
comprising 97 % of the sample, and mixed with them a small population of

large individuals to make up the remaining 3 %of the sample.The linesST
and QR are accordinglydrawn in to represent these two populations. The line
ST is fitted by multiplying the percentages (read on the bottom scale) for the

smallest individuals by 100/97and the line QR by multiplying the percentages
for the largest individuals (read on the top scale) by 100/3. The resultant of
these two lines is the dotted line UV. The percentage at Z on this line, for
example, is the sum of 3 % of the percentage at X and 97 % of the percentage

at Y. In this example adjustment of the position of QR is unnecessary as
the resultant fits the data well. The sample is analysed as representing two
populations mixed in the proportions 97:3, with mean lengths of 1'223 and
1'477 nun. respectively, the standard deviations of both populations being
about 50 f1-. .

Before leaving Fig. 3 I should like to draw attention to the abnormally
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small-size group for 1'26 mm. where there are only nine individuals although

there are twenty-four in the groups on either side. This is probably a sampling

error due to the groupings being too small, there may have been some un-

conscious bias against the number for this group, in the units used for measure-

ment. This irregularity is not apparent when the data are plotted on the

probability paper. .
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Polymodal curves are not difficult to analyse if the sample is large enough
and the component populations do not overlap each other too much. Fig. 4 is

drawn to show the effect of mixing three hypothetical populations in the
r0-2
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proportions 2: 5 :3. There are two points of inflexion at S and T, and these
give the approximate proportions in which the populations are mixed, S
occurring on the 30 %and T on the 80 %vertical, the differencebetween the
two being 50 %. It is sometimes possible to analyse a polymodal curve even

though there is considerable overlapping of the populations and there are no

points of inflexion to guide one. Figs. 5 and 6 show two possible ways of

analysing such a sample. The data analysed are the lengths of 1122 fish

calculated by Ford (1928, p. 294), from the measurements of scales. Hodgson

(Buchanan-Wollaston & Hodgson, 1929) considered that this population of

fish' certainly contains two modes at 12 em. ,and about 15 em.' He had

reason to believe from experience with other samples that there was a third

mode, he thought concealed between the two. We shall see that analysis by

probability paper indicates a third, small population with a smaller mean

length than either of the main populations. The sigmoidal shape of the distri-

bution when plotted on probability paper is very similar in appearance to that

of Fig. I and the data can be analysed as a symmetrical bimodal curve in the

same way as Fig. I was. The resultant of the two lines shown fits the lengths of

the fish above 13 em. long very well and the fish below this length not quite so

well. A better fit is shown in Fig. 6 where the upper tail of the distribution is

fitted by a 20 % line. This leaves 3° % of the sample of fish to be fitted in

between. By trial and error one finds that the only way of placing this line is '

at an angle to the other two as shown in Fig. 6. The resultant of these three

lines is shown by the small x's, while the circles are plotted from Ford's data.

The agreement between the two is remarkable. The summation of the three

distributions, shown as a dotted line superimposed on the histogram, also

shows much better agreement with the sample than does the cruder analysis

of Fig. 5. Table II gives the expected frequencies calculated from the results of

Figs. 5 and 6 with the help of either Sheppard's tables or of tables of pro bits.

A X2test for goodness of fit applied to these shows that the analysis of Fig. 5

is very unlikely to be true; but that the data are quite consistent with the

analysis of Fig. 6, the probability ofax2 of 4"65 being about 0"2. In the cal-

culations ofx2 the classes for the 6"5and 18"5em. have been bracketed together.

A degree of freedom has to be subtracted for each mean, for each standard

deviation, for all but one of the component populations and (or the total. It is

not claimed that the analysis of Fig. 5 gives the only possible, or even the

best solution, indeed an attractive solution is the following:

5° % of the population with a mean 14"5 em. and S.D. 1.3

4° % of the population with a mean rr.85 em. and S.D. 1"1

10 % of the population with a mean 9.15 em. and S.D. 0"9

The x2 summation for this solution is 7.95 which gives a value for p = 0"048.

The goodness of fit is therefore not quite so good; but the ratio of the standard

deviation to the mean for each population remains constant and this might be
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in its favour. I havechosenthe solutionof Fig.5 for illustrationbecauseit is
the more instructive in that given the other two lines the 3° % line has to be

placed at an angle to them. In practice one would be guided by the biological

nature of the material. If the' three fish populations, for example, are three

broods of the same year, there is no reason why one brood may not have

hatched during a comparatively short season which might account for a small

standard deviation for the size attained by winter.

When the component populations overlap as much as they do here one

cannot expect a very precise analysis, but one is justified in saying that Ford's

data show two main populations of fish with mean lengths of about 12 and

14.5 em., and that there is in addition a small population whose mean length is

between 9 and 10 em. We may also estimate the standard deviations of the

three fish groups to be of the order of 10 %of the respective mean lengths. An

analysis which gives a satisfactory fit (Fig. 6) is only one of the simplest possible

solutions, and is not necessarily the most complete picture of the facts, which

may really conform to one of the many possible complex solutions. There may,

for example, be many other small fish groups in the sample, and if both sexes

are represented each of the three main groups are probably themselves

bimodal in character. Neither the graphical method nor any other will give

a complete and unequivocal solution; but fortunately the simplest solution is

likely to be the most significant biologically, as well as statistically.

TABLE II

Frequency calc, from Frequency calc, from
Fig. 5 Fig. 6

Class Frequency , ' " ' ,
(em,) obs, 50% 5°% Total 5°% 3°% 20% Total

Mean ." 14'5 II'2 14'5 12'1 9'9
S.D. ,'. 1'3 1'5°5, 1'3 0,8 1'3

6.5 I - I I - - 3 3
7'5 14 - 8 8 - - 13 13
8'5 39 - 31 31 - - 39 39
9'5 56 - 79 79 - I 64 65

10'5 roo 2 132 134 2 27 61 9°
II'5 17° 13 144 157 13 123 32 168
12'5 210 55 102 157 55 141 10 206

13'5 174 127 47 174 127 41 2 17°
14'5 159 168 14. 182 168 3 -

171
15'5 129 127 3 13° 127 - -

127
16'5 57 55 -

55 55 - -
55

17'5 II 13 - 13 13 - - 13
18'5 2 2 - 2 2 - 2

Total II22 562 561 II23 562 336 224 II22

X2=43'4, n=6, p= <0'001 X2=4'65, n=3, P=O'2
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