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A previously presented quantum-chemical scheme has been used to calculate the lattice energies
of borazine (B3N3H6), the low pressure polymorph of benzene (C6H6), and of borazine in the low-
pressure benzene lattice utilizing some frequently used semiempirical methods (CNDO/2, INDO,
MINDO/3, MNDO, AM1, PM3, MSINDO). With all methods the lattice energy of the title com-
pound was found to be less favourable than that of isoelectronic benzene, which offers an explanation
of the significantly lower melting point of B3N3H6. Calculation of the lattice energy of borazine in
the crystal lattice of the low-pressure modification of benzene revealed that the interactions between
the molecules in this environment are not so stabilizing as those in its own lattice. This is predomi-
nantly due to a less favourable contribution of the dispersion energy. The semiempirical results have
qualitatively been confirmed by quantum-chemical calculations on small molecular clusters at the
MP2/6-31+G*//HF/6-31+G* level of ab initio theory. In these calculations we assumed pairwise ad-
ditivity of the intermolecular interactions and calculated the energy of interaction between a reference
molecule and all those neighbours to which the shortest intermolecular distance does not exceed 3Å.
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1. Introduction

Some physical properties of liquid borazine, such
as the density, surface tension, and molecular weight,
closely resemble those of the isoelectronic benzene.
Moreover, like in the case of benzene, the first non-
vanishing electric multipole is the quadrupole moment
and, like in the case of benzene, it is possible to write
canonical forms corresponding to a delocalized π sys-
tem superimposed on the σ framework, so that, in spite
of its completely different chemical properties, the title
compound is often entitled “inorganic benzene” [1, 2].

Its remarkably lower index of refraction of n D
20 =

1.3821 [3, 4] (vs. nD
20.2 = 1.5007 of benzene [5]),
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however, reveals significantly different molecular fea-
tures. “Experimental” molecular polarizabilities can
approximately be calculated from the indices of refrac-
tion, densities, and molecular weights by means of the
Lorenz-Lorentz equation. Assuming equal densities
and molecular weights, the molecular polarizability
decreases with decreasing index of refraction. Employ-
ing experimentally determined values for the densities
of the liquids (d20, borazinea: 0.8404 g·cm−3, benzene:
0.8788 g·cm−3), the indices of refraction mentioned
above, and the molecular weights (borazine: 80.50,
benzene: 78.11) one obtains “experimental” molecular
polarizabilities of 8.84 Å3 for borazine and 10.38 Å3

for benzene. The vertical (Koopmans) ionization po-
tentials calculated at the HF/6-31+G* level of ab initio
theory are 11.128 eV for borazine and 9.173 eV for
benzene, respectivelyb. Using the experimental values

aThe formula describing the temperature dependence of the den-
sity of borazine between 238.2 and 319.9 K given in [4] is at odds
with the one published originally [8].

bEtot (borazine) = −241.1612145 a. u., Etot (benzene) =
−230.7110925 a. u.
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of the molecular polarizabilities and the calculated ion-
ization potentials together with the London formula for
the dipole contribution to the dispersion energy, one
obtaines dispersion coefficientsc of C6 = 741.3 eV·Å6

for benzene and of 652.2 eV·Å6 for borazine, which
could explain the much lower boiling point of the lat-
ter compound (borazine: 55 ◦C, benzene: 80◦C [1]).

These significantly different molecular features of
benzene and borazine are not only reflected by differ-
ences between their physical and chemical properties
but also by the crystal packing of borazin [2], that is
different from those of the modifications of benzene
studied so far experimentally [6, 7]. According to var-
ious quantum-chemical calculation methods the boron
and the nitrogen atom of the ring carry high partial
charges of opposite sign. Thus, intuitively one might
expect that electrostatics play an important role and
that the molecules are, for example, arranged copla-
narly in stacks with nitrogen above boron, and vice
versa. However, in the crystal lattice of borazine the
rings are arranged in tilted stacks [2], and the shortest
intermolecular distances involving only non-hydrogen
atoms occur between atoms of the same kind (B· · ·B;
N· · ·N). One obvious result of this packing is a much
lower melting point of −56.2 ◦C [4] compared with
that of 5.49 ◦C for benzene [5].

To find the reason for the different packing modes,
the lattice energies of benzene, borazine, and borazine
in the low-pressure benzene lattice have been calcu-
lated, applying a slightly modified version of an ap-
proach published recently [9].

2. Computational Methods

As described in two previous papers [9, 10], the lat-
tice energy (∆Elat) has been approximated as the sum
of the dispersion- (∆Edis), the electrostatic- (∆Eels), the
induction- (∆Eind), and the (closed shell) repulsion en-
ergy (∆Erep):

∆Elat = ∆Edis + ∆Eels + ∆Eind + ∆Erep. (1)

To calculate the components of the lattice energy,
common approximate expressions have been used in
this paper which are derived from perturbation the-
ory introducing in part severe approximations (e. g.,
[11 – 15]). The electrostatic contribution to the lattice

cEdis = −3/4 · IAαA
2 · R−6 = −C6 · R−6, where R is the inter-

molecular distance, IA the ionization potential of molecule A, and αA
its polarizability.

energy is approximated by a point charge (Coulomb)
model

∆Eels =
1
2

Kc ∑
a∈A

∑
b∈B�=A

qaqbr−1
ab . (2)

Here the first summation runs over all atoms a of the
reference molecule (A), and the second one covers the
atoms b of all other molecules (B �=A) of the lattice.
qa and qb are the (Mulliken) charges of atoms a and
b, calculated using the corresponding semiempirical
wave function of the isolated molecule, while rab is
their interatomic distance. Here, like in the calculation
of the other components, the coordinates used for A
can, for example, be those of the experimentally deter-
mined connected set transformed to a cartesian coor-
dinate system. The coordinates of the molecules B are
obtained from those of the connected set by applica-
tion of the corresponding space group and translational
symmetry. In cases where calculated molecular struc-
tures are used to obtain lattice energies, the coordinates
of A and B are obtained by a rigid fit of the calculated
atomic coordinates to the experimentally determined
positions.

If charges and interatomic distances are used in
atomic units, the constants Kc (627.5095 kcal mol−1

·Hartree−1) and 1/2 convert the energy from Hartrees
(atomic energy units) per molecule to kcal/mol.
Summation of the pairwise contributions to the
electrostatic energy was performed employing the
Bertaut method [16] in the version introduced by
Williams [17 – 19] (“accelerated summation”), em-
ploying a separation constant k = 0.3 [17] and includ-
ing direct as well as reciprocal space contributions.

Direct evaluation of the expression for the disper-
sion energy derived from perturbation theory is quite
time-consuming since it requires huge extended basis
sets including polarization and diffuse functions [20].
Significantly faster calculations, employing wave func-
tions obtained with semiempirical methods based on
the ZDO approximation and using a minum basis set,
yield dispersion energies which are much too posi-
tive [20, 21]. Alternatively one might use either the
London- or the Slater-Kirkwood formula at the atomic
level which requires atom-in-molecule polarizabilities.
In this paper the well-known London formula

∆Edis = −1
2

Kc
3
2

FL ∑
a∈A

∑
b∈B�=A

αaαbr−6
ab , (3a)

FL = [UAUB/(UA +UB)] (3b)
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has been used to calculate the dispersion contribution
to the lattice energy, where UA and UB are twice [22 –
26] the vertical molecular ionization potentials of
the interacting molecules approximated by the calcu-
lated energies (HF/6-31+G*) of their highest occupied
molecular orbitals (εHOMO, Koopmans’ theorem [27]),
while αa and αb are atom-in-molecule polarizabilities
obtained as described in the appendix. In all cases con-
sidered in this paper the molecules A and B belong to
the same species and, therefore, FL = 1/2UA.

Since no atomic polarizability tensors are available
(see Appendix), (4) has been used to calculate the in-
duction energy:

∆Eind = −1
2

Kc ∑
a∈A

[αa|Ea|2]. (4)

This expression differs from formula (5) used in [9] in
that in the present study αa is the scalar polarizability
of atom a, while the polarizability tensor αααa is used
in (5). Ea is the total electric field at the position of
atom a caused by all atoms not belonging to A

∆Eind = −1
2

Kc ∑
a∈A

[Et
aαααaEa]. (5)

Destabilizing contributions to the lattice energy due to
closed shell repulsion (“steric effects”) were calculated
employing an approximate expression for the exchange
repulsion energy [28]:

∆Erep = Kcτ ∑
B�=A

∑
k∈A

∑
l∈B�=A

[
∑
p∈a

∑
q∈b

ckpclqSpq(r
−1/2
ab )

]2

.

(6)

The indices k and l run over all occupied molecular or-
bitals of molecules A and B�=A, calculated with one of
the semiempirical methods. p and q refer to the corre-
sponding atomic orbitals at atoms a and b with LCAO-
MO-coefficients ckp and clq, respectively (p∈ a, q∈ b).
Spq is their overlap integral and rab the distance be-
tween atoms a and b. In a strict sense, τ is not only
a function of the interacting atoms but also of the in-
teratomic distance [12, 28]. In many cases, however,
it is approximated by a constant, sometimes even ad-
justed to fit the experimental results. Thus, Murrell et
al. [12] used values of τ = 1.016 and 1.319 for the in-
teraction between two hydrogen and two carbon atoms.
A value of 1.0 was used in this study. In the calculation
of the repulsion energy only overlap integrals between

valence shells were considered, and they were calcu-
lated employing Slater type orbitals and orbital expo-
nents optimized for molecular calculations [29]. Dif-
ferent from some of the semiempirical methods, iden-
tical exponents were used for the 2s and 2p functions.
Since the single contributions in square brackets de-
crease exponentially with the interatomic distance, ac-
celerated summation is dispensable in this case and the
sum was evaluated directly.

The selection of the molecular model for a calcu-
lation of the lattice energy is by no means a trivial
task, since there is no a priori choice for the struc-
ture of a molecule in the solid state. In the previous
studies [9, 10] the unchanged experimental values have
been used. However, if the crystal structures of inter-
est, like those used in this paper, have been determined
under quite different conditions and, maybe, at sig-
nificantly different levels of accuracy, normalization
to a common standard is useful. Therefore, molecu-
lar geometries have been used which were optimized
within the framework of the Hartree-Fock approxi-
mation, using the 6-31+G* basis set and the GAUS-
SIAN94 suite of quantum chemical routines [30]. The
optimized molecular structures were then fitted to the
experimentally determined positions [31] and the re-
sulting coordinates have been used to generate the cor-
responding crystal lattices.

None of the analytical expressions used to calculate
the lattice energies contains parameters which were ad-
justed to fit experimental lattice energies. As a result,
the calculated lattice energies might be different from
their experimentally determined counterparts, where
such values are available. However, it is not the abso-
lute value of the lattice energy that is of interest in this
study, but rather the difference between such values.

3. Results and Discussion

The results of the semiempirical calculations are
compiled in Table 1. For comparison the lattice en-
ergies calculated for the low-pressure modification of
benzene are also listed. Compared with the experi-
mental value for the heat of sublimation of benzene
(10.5 – 11.1 kcal/mol [32]), these lattice energies are
clearly too negative. It should be kept in mind, how-
ever, that using semiempirical methods it is not so
much the aim to reproduce absolute values but rather
to obtain accurate relative stabilities. All methods,
except AM1, give somewhat more negative electro-
static energies for borazine than for benzene. Omitting
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Table 1. Lattice energies and their components (in kcal/mol)
of low pressure benzene and borazine in different lattices.
Molecular geometries and ionization potentials have been
calculated at the HF/6-31+G* level. benz/benz and bo-
raz/boraz are the values for benzene and borazine in their
own lattices, while boraz/benz refers to borazine in the low-
pressure lattice of benzene.

Method ∆Edis ∆Eels ∆Eind ∆Erep ∆Elat

CNDO/2 [42]
benz/benz −22.28 −0.01 0.00 +6.95 −15.34
boraz/boraz −18.40 −0.39 −0.06 +8.20 −10.65
boraz/benz −15.67 +0.40 −0.13 +6.52 −8.88
INDO [43]
benz/benz −22.28 −0.08 +0.02 +7.03 −15.35
boraz/boraz −18.40 −0.39 −0.07 +8.27 −10.59
boraz/benz −15.67 +0.50 −0.18 +6.59 −8.76
MINDO/3 [44]
benz/benz −22.28 −0.01 0.00 +6.89 −15.40
boraz/boraz −18.40 −0.03 −0.04 +8.38 −10.09
boraz/benz −15.67 +0.39 −0.10 +6.50 −8.88
MNDO [45]
benz/benz −22.28 −1.15 −0.26 +6.60 −17.09
boraz/boraz −18.40 −1.64 −0.22 +7.44 −12.82
boraz/benz −15.67 −1.31 −0.30 +5.89 −11.39
AM1 [46]
benz/benz −22.28 −4.54 −1.05 +6.29 −21.58
boraz/boraz −18.40 −3.57 −0.87 +7.32 −15.52
boraz/benz −15.67 −3.28 −0.65 +5.79 −13.81
MSINDO [47]
benz/benz −22.28 −0.11 −0.02 +6.81 −15.60
boraz/boraz −18.40 −0.72 −0.08 +7.77 −11.43
boraz/benz −15.67 −0.42 −0.15 +6.26 −9.14

the AM1 data, the average value of this difference is
−0.36 kcal/mol. At the same time the repulsion en-
ergy increases on the average by 1.14 kcal/mol while
the stabilizing contribution of the disperion energy is
reduced by 3.88 kcal/mol. These effects add up to lat-
tice energies which are on the average 4.88 kcal/mol
less negative for borazine than for benzene. While this
explains the much lower melting point of the title com-
pound, further calculations are necessary to explain
why this compound crystallizes in a lattice different
from the typical “herringbone” packing of benzene. To
find an answer to this question, the lattice energy of
borazine in the low pressure benzene lattice was cal-
culated. When borazine in its HF/6-31+G* structure
is transferred to the benzene lattice, the shortest inter-
molecular distance is 2.318 Å, while it is 2.533 Å in the
crystal lattice of its own. To obtain a value of the lat-
tice energy which is comparable to the one calculated
for the title compound in its own lattice, the lattice con-
stants a, b and c were isotropically increased by 3.8%,
resulting in values which give a shortest intermolecu-
lar distance of 2.53 Å. For this hypothetical lattice the

Table 2. Energies of interaction (∆Eint) between an arbitrar-
ily chosen reference molecule and all those neighbours in
the crystal lattice to which the shortest intermolecular dis-
tance does not exceed 3 Å (in kcal/mol). Molecular geome-
tries have been calculated at the HF/6-31+G* level.

Mol./lat. ∆Eint ∆Eint ∆Ecor ∆Edis
HF MP2 MP2

benz/benz +3.8 −21.2 −25.0 −22.3
boraz/boraz +3.4 −18.2 −21.6 −18.4
boraz/benz +4.4 −10.2 −14.6 −15.7

electrostatic and dispersion energy are more positive
by about 0.50 and 2.73 kcal/mol than for borazine in
its own lattice. Although at the same time the repul-
sion energy is in the average reduced by 1.64 kcal/mol,
this is not sufficient to compensate for the loss of sta-
bilizing energy, especially caused by an unfavourable
increase of the dispersion energy.

To obtain an independent support for the semiem-
pirically calculated order of lattice energies, the energy
of interaction between an arbitrarily chosen reference
molecule and all neighbouring molecules up to a short-
est intermolecular distance of 3 Å has been computed
at the ab initio level. Pairwise additivity has been as-
sumed in these calculations. The energies of interac-
tion calculated at the HF level can roughly be com-
pared with the sum of ∆Eels, ∆Eind, and ∆Erep. For
all three structures these values are positive, indicat-
ing that the sum of electrostatic and induction energy is
not sufficient to stabilize these lattice fragments. Work-
ing at the MP2 level [33] an energy of interaction of
−18.2 kcal/mol was obtained for borazine in its own
lattice (Table 2). At −10.2 kcal/mol the correspond-
ing energy is much more positive for borazine in the
lattice of the low pressure modification of benzene.
Since no correction for the basis set superposition er-
ror has been applied, the MP2 values are most likely
too negative. However, it is unlikely that such a cor-
rection will change the order of stability. Thus it has
convincingly been shown that the interaction of a bo-
razine molecule with its neighbours is less favourable
in the benzene lattice than in the crystal lattice of
its own.

4. Appendix

In the case of open-chain molecules atom-in-
molecule polarizabilities can be calculated by Metz-
ger’s combination of the MINDO/3-FP method and
a partitioning of the molecular dipole moment [34].
However in the case of cyclic molecules like those
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which are of interest in this paper, this method can
only be applied if the sum of the charges of the ring
atoms is zero [34]. This is clearly not the case for
the molecules under consideration. Therefore another
method was used to obtain atom-in-molecule polariz-
abilities for both compounds. In the case of benzene it
was assumed that αmol = 6αC + 6αH. Employing the
frequently used value for the polarizability of hydro-
gen of 0.42 Å3 [35, 36] together with the experimental
molecular polarizability (v.s. αmol = 10.38 Å3) a value
of αC = 1.31 Å3 has been obtained for the polarizabilty
of the aromatic carbon atoms. Things are not so easy in
the case of borazine. One of the fundamental assump-
tions of organic chemistry is that the properties of an
atom in a molecule change gradually but not in prin-
ciple with its individual chemical environment (see for
example [37]). Based on this consideration, the polar-
izability αa of an atom a in a molecule might be ex-
panded as

αa = α0,a + δ , (7)

where α0,a is a basic value for atom a, and δ takes into
account the influence of its particular chemical envi-
ronment in the molecule under consideration. Keeping
in mind the interpretation of the polarizability of an
atom as the mobility of its electrons, it is reasonable to
assume that αa does not only increase with decreasing
electronegativity (χa) of the atom itself but also with
that of its next neighbours. Therefore, the polarizabil-
ity of a nitrogen-based hydrogen atom (H N) is expected
to be lower than that of an H atom bonded to boron
(HB). This assumption is supported by the results of
MINDO/3-FP [34] calculations on the HF/6-31+G*-
optimized structures of H2B-NH2 and H2B-NH-BH2

d.
According to these calculations the atom-in-molecule
polarizability of the hydrogen atoms bonded to boron
is about 1.3 times higher than that of the nitrogen-

dThe molecules were constrained to planarity in the optimization
process. Etot(H2BNH2) = −81.493801 a. u., Etot(H2BNHBH2) =
−106.784168 a. u.
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