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Abstract. We report the results of the Monte Carlo study of the method to determine the CKM angle
φ3 using Dalitz plot analysis of D

0 produced in B±→DK± decay. Our main goal is to find the optimal
strategy for a model-independent φ3 extraction. We find that the analysis using decays of CP-tagged D
mesons only cannot provide a completely model-independent measurement in the case of a limited data
sample. The procedure involving binned analysis of B±→DK± and ψ(3770)→ (K0Sπ

+π−)D(K
0
Sπ
+π−)D

decays is proposed which, in contrast, allows not only to reach the φ3 precision comparable to an unbinned
model-dependent fit, but also provides an unbiased measurement with currently available data.

PACS. 11.30.Er; 12.15.Hh

1 Introduction

A measurement of the angle φ3 (γ) of the unitarity trian-

gle using Dalitz plot analysis ofD
0
→K0Sπ

+π− decay from
B±→DK± process, introduced by Giri et al. [1] and the
Belle Collaboration [2] and successfully implemented by
BaBar [3] and Belle [4], presently offers the best constraints
on this quantity. However, this technique is sensitive to the
choice of the model used to describe the three-bodyD0 de-
cay. Currently, this uncertainty is estimated to be ∼ 10◦

and due to a large statistical error does not affect the pre-
cision of φ3 measurement. As the amount ofB factory data
increases, though, this uncertainty will become a major
limitation. Fortunately, a model-independent approach ex-
ists (see [1]), which uses the data of the τ -charm factory to
obtain missing information about theD0 decay amplitude.
In our previous study of the model-independent Dalitz

analysis technique [5] we have implemented a procedure
proposed by Giri et al. that uses decays of D meson in CP
eigenstate (we denote them as DCP) toK

0
Sπ
+π−. Such de-

cay can be obtained at the e+e− machine operated at the
ψ(3770) resonance, which decays to a pair of D mesons.
The antisymmetry of the wave function of theDD state in-
duces quantum correlations between the decay amplitudes
of two D mesons. In particular, if one D meson is recon-
structed in a CP eigenstate (such as π+π− or K0Sπ

0), the
other D meson is required to have the opposite CP par-
ity. The procedure we have studied involves the division of

the D
0
→K0Sπ

+π− Dalitz plots from flavor D0, DCP and
B±→DK± decay into bins. The value of φ3 is then ob-
tained by solving the system of equations that includes the
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numbers of events in these bins. We have shown that this
procedure allows to measure the phase φ3 with the statis-
tical precision only 30%–40% worse than in the unbinned
model-dependent case. We did not attempt to optimize the
precision andmainly considered a high-statistics limit with
an aim to estimate the sensitivity of the future super B
factory.
Decays ψ(3770)→D0D0 with both neutral D mesons

decaying to K0Sπ
+π− (we will refer to these decays as

(K0Sπ
+π−)2) have also been shown to include the in-

formation useful for a model-independent φ3 measure-

ment [6]. These decays, together with the CP-taggedD
0
→

K0Sπ
+π− decays, are presently available at the CLEO-c ex-

periment [7, 8]. The first analyses using data collected at
ψ(3770) resonance involve ∼ 400 pb−1 data set, while by
the end of CLEO-c operation the integrated luminosity at
the ψ(3770) will reach 750 pb−1 [9, 10]. This corresponds to

∼ 1000 CP-taggedD
0
→K0Sπ

+π− events and (K0Sπ
+π−)2

events. The actual numbers may vary by a factor of two
depending on the details of the particular analysis. In this
paper, we report on studies of the model-independent ap-
proach with a limited statistics of both ψ(3770) and B
data, using the DCP → K0Sπ

+π− and (K0Sπ
+π−)2 final

states. The technique described can be applied to other
three-body D0 final states, such as π+π−π0 state recently
used by the BaBar Collaboration for a model-dependent φ3
measurement [11], orK0SK

+K− state.
In Sect. 2 we remind the basic idea of the model-

independent technique of φ3 determination and introduce
the notation. Section 3 is devoted to the binned analysis
using DCP data sample; we propose a way to reach the
statistical sensitivity comparable to the model-dependent
technique and discuss the limitations of this approach re-
lated to a limited charm data set. In Sect. 4, we discuss how
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the (K0Sπ
+π−)2 sample can be utilized in a most efficient

way, and obtain quantitative estimate of the statistical sen-
sitivity of this approach.

2 Model-independent approach

The density of D
0
→K0Sπ

+π− Dalitz plot is given by the
absolute value of the amplitude fD squared:

pD = pD(m
2
+,m

2
−) =

∣
∣fD(m

2
+,m

2
−)
∣
∣
2
. (1)

The effects of charm mixing are not included in our for-
mulas. For the currently expected φ3 accuracy and present
limits on parameters of D0 mixing (xD, yD ∼ 0.01 [12]),
these effects can be safely neglected [13], although it is
possible to take them into account if they appear to be sig-
nificant for future precision measurements.
In the case of no CP-violation inD decay the density of

the D0 decay p̄D equals

p̄D = |f̄D|
2 = pD(m

2
−,m

2
+) . (2)

Then the density of the D decay Dalitz plot from B±→
DK± decay is expressed as

pB± =
∣
∣fD+ rBe

i(δB±φ3)f̄D
∣
∣
2

= pD+ r
2
B p̄D+2

√
pDp̄D(x±c+y±s) , (3)

where x±, y± include the value of φ3 and other related
quantities, the ratio rB of the absolute values of interfer-
ing B+→D0K+ and B+→D0K+ amplitudes (or their
charge-conjugate partners), and the strong phase differ-
ence δB between these amplitudes:

x± = rB cos(δB±φ3) ; y± = rB sin(δB±φ3) . (4)

The functions c and s are the cosine and sine of the strong
phase difference ∆δD between the symmetric Dalitz plot
points:

c=cos(δD(m
2
+,m

2
−)− δD(m

2
−,m

2
+)) = cos∆δD ;

s=sin(δD(m
2
+,m

2
−)− δD(m

2
−,m

2
+)) = sin∆δD . (5)

The phase difference ∆δD can be obtained from the sample
ofDmesons in a CP-eigenstate, either CP-even or CP-odd,
decaying to K0Sπ

+π−. The Dalitz plot density of such de-
cays is

pCP = |fD± f̄D|
2 = pD+ p̄D±2

√
pDp̄Dc (6)

(the normalization is arbitrary).
Another possibility is to use a sample where both D

mesons (we denote them as D and D′) from the ψ(3770)
meson decay into theK0Sπ

+π− state [6]. Since the ψ(3770)
is a vector, two D mesons are produced in a P -wave, and
the wave function of the two mesons is antisymmetric.
Then the four-dimensional density of two correlated Dalitz

plots is

pcorr(m
2
+,m

2
−,m

′2
+,m

′2
−)

= |fDf̄
′
D−f

′
Df̄D|

2

= pDp̄
′
D+ p̄Dp

′
D−2

√

pDp̄Dp′Dp̄
′
D(cc

′+ ss′) , (7)

This decay is sensitive to both c and s for the price of hav-
ing to deal with the four-dimensional phase space.
In a real experiment, one measures scattered data

rather than a probability density. To deal with real data,
the Dalitz plot can be divided into bins. In what follows, we
show that using appropriate binning, it is possible to reach
the statistical sensitivity of φ3 measurement equivalent to
the model-dependent approach.

3 Binned analysis with DCP data

Assume that the Dalitz plot is divided into 2N bins sym-
metrically to the exchange m2−↔m

2
+. The bins are de-

noted by the index i ranging from −N to N (excluding
0); the exchange m2+↔m

2
− corresponds to the exchange

i↔−i. Then the expected number of events in the bins of
the Dalitz plot ofD decay from B±→DK± is

〈Ni〉= hB
[

Ki+ r
2
BK−i+2

√

KiK−i(xci+ysi)
]

, (8)

where Ki is the number of events in the bins in the Dalitz
plot of the D0 in a flavor eigenstate, hB is the normal-
ization constant. Coefficients ci and si, which include the
information about the cosine and sine of the phase differ-
ence, are given by

ci =

∫

Di

√
pDp̄D cos(∆δD(m

2
+,m

2
−))dD

√∫

Di
pD dD

∫

Di
p̄D dD

, (9)

si is defined similarly with cosine substituted by sine. Here
Di is the bin region over which the integration is per-
formed. Note that ci = c−i, si =−s−i and c2i + s

2
i ≤ 1 (the

equality c2i + s
2
i = 1 being satisfied if the amplitude is con-

stant across the bin).
The coefficients Ki are obtained precisely from a very

large sample ofD0 decays in the flavor eigenstate, which is
accessible atB-factories. The expected number of events in
the Dalitz plot ofDCP decay equals to

〈Mi〉= hCP
[
Ki+K−i+2

√

KiK−ici
]
, (10)

and thus can be used to obtain the coefficient ci. As soon
as the ci and si coefficients are known, one can obtain x
and y values (hence, φ3 and other related quantities) by
a maximum likelihood fit using (8).
Note that now the quantities of interest x and y (and

consequently φ3) have two statistical errors: one due to
a finite sample of B±→DK± data, and the other due to
DCP→K0Sπ

+π− statistics. We will refer to these errors as
B-statistical andDCP-statistical, respectively.
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Obtaining si is a major problem in this analysis. If bin-
ning is fine enough, so that both the phase difference ∆δD
and the amplitude |fD| remain constant across the area of
each bin, expressions (9) reduce to ci = cos(∆δD) and si =
sin(∆δD), so si can be obtained as si = ±

√

1− c2i . Using
this equality if the amplitude varies will lead to the bias in
the x, y fit result. Since ci is obtained directly, and si is over-
estimated by the absolute value, the biaswill mainly affect y
determination, resulting in lower absolute values of y.
Our studies [5] show that the use of the equality c2i +

s2i = 1 is satisfactory for the number of bins around 200 or
more, which cannot be used with presently available DCP
data. It is therefore essential to find a relatively coarse bin-
ning (the number of bins being 10–20) which a) allows to
extract si from ci with low bias, and b) has the sensitiv-
ity to the φ3 phase comparable to the unbinned model-
dependent case.
Fortunately, both the a) and b) requirements appear

to be equivalent. To determine the B-statistical sensitivity
of a certain binning, let’s define a quantity Q – a ratio of
a statistical sensitivity to that in the unbinned case. Spe-
cifically, Q relates the number of standard deviations by
which the number of events in bins is changed by varying
parameters x and y, to the number of standard deviations
if the Dalitz plot is divided into infinitely small regions (the
unbinned case):

Q2 =

∑

i

(
1√
Fi

dFi
dx

)2

+
(
1√
Fi

dFi
dy

)2

∫

D

[(
1√
|fB |

2

d|fB|2

dx

)2

+
(

1√
|fB |

2

d|fB|2

dy

)2]

dD
,

(11)

where fB = fD+(x+ iy)f̄D, Fi =
∫

Di
|fB|2dD.

Since the precision of x and y weakly depends on the
values of x and y [5], we can take for simplicity x= y = 0.
In this case one can show that

Q2|x=y=0 =
∑

i

(c2i + s
2
i )Ni
/∑

i

Ni . (12)

Therefore, the binning which satisfies c2i + s
2
i = 1 (i.e. the

absence of bias if si is calculated as
√

1− c2i ) also has the
same sensitivity as the unbinned approach (Q = 1). The
factor Q defined this way is not necessarily the best meas-
ure of the binning quality (the binning with higher Q can
be insensitive to either x or y, which is impractical from the
point of measuring φ3), but it allows an easy calculation
and correctly reproduces the relative quality for a number
of binnings we tried in our simulation.
The optimal binning that gives the best φ3 precision is

naturally model-dependent, but our goal is to find the an-
alysis procedure that should give an unbiased result for any
reasonable variation of the D0 amplitude (i.e. the fit pro-
cedure should be model-independent). In our studies we
use the two-body amplitude obtained in the latest Belle φ3
Dalitz analysis [4].
From the consideration above it is clear that a good

approximation to the optimal binning is the one obtained
from the uniform division of the strong phase difference

∆δD. In the half of the Dalitz plot m
2
+ <m

2
− (i.e. the bin

index i > 0) the bin Di is defined by the condition

2π(i−1/2)/N <∆δD(m
2
+,m

2
−)< 2π(i+1/2)/N , (13)

and in the remaining part (i < 0) the bins are defined sym-
metrically.We will refer to this binning as ∆δD-binning. As
an example, such a binning with N = 8 is shown in Fig. 1a.
Although the phase difference variation across the bin is
small by definition, the absolute value of the amplitude can
vary significantly, so the condition c2i + s

2
i = 1 is not sat-

isfied exactly. The values of ci and si in this binning are
shown in Fig. 3c with crosses.
Figure 1b shows the division with N = 8 obtained by

continuous variation of the ∆δD-binning to maximize the
factor Q. The sensitivity factor Q increases to 0.89 com-
pared to 0.79 for ∆δD-binning.
We perform a toy MC simulation to study the statis-

tical sensitivity of the different binning options. We use
the amplitude from the Belle analysis [4] to generate de-
cays of flavor D0, DCP, and D from B

±→DK± decay to
the K0Sπ

+π− final state according to the probability dens-
ity given by (1), (6) and (3), respectively. In the present
study we use the errors of parameters x and y rather than
φ3 as a measure of the statistical power since they are
nearly independent of the actual values of φ3, strong phase
δ and amplitude ratio rB. The error of φ3 can be obtained
from these numbers given the value of rB. To obtain the
B-statistical error we use a large number of D0 and DCP
decays, while the generated number of D decays from the
B±→DK± process ranges from 102 to 105. For each num-
ber of B decay events, 100 samples are generated, and the
statistical errors of x and y are obtained from the spread of
the fitted values. A study of the error due toDCP statistics
is performed similarly, with a large number of B decays,
and the statistics of DCP decays varied. Both errors are
checked to satisfy the square root scaling.
The binning options used are ∆δD-binning with N = 8

andN = 20, as well as “optimal” binnings with maximized
Q obtained from these two with a smooth variation of the
bin shape. For comparison, we use the binnings with the
uniform division into rectangular bins (with N = 8 and

Fig. 1. Divisions of the D
0
→K0Sπ

+π− Dalitz plot. Uniform
binning of ∆δD strong phase difference with N = 8 (a), and
the binning obtained by variation of the latter to maximize the
sensitivity factor Q (b)
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N = 19 in the allowed phase space, the ones which are de-
noted as 3×3 and 5×5 in [5]).
The B- and DCP-statistical precision of different bin-

ning options, recalculated to 1000 events of both B and
DCP samples, as well as their calculated values of the factor
Q, are shown in Table 1. The factorQ reproduces the ratio

of the values
√

1/σ2x+1/σ
2
y for the binned and unbinned

approaches with the precision of 1%–2%. Note that the
“optimal” binning withN = 20 offers theB-statistical sen-
sitivity only 4% worse than an unbinned technique. While
the binning with maximized Q offers better B-statistical
sensitivity, the bestDCP-statistical precision of the options
we have studied is reached for the ∆δD-binning. However,
for the expected amount of experimental data of B and
DCP decays the B-statistical error dominates, therefore,
slightly worse precision due to DCP statistics does not af-
fect significantly the total precision.
We have considered the choice of the optimal binning

only from the point of statistical power. However, the con-
ditions to satisfy low model dependence are quite different.
Since the bins in the binning options we have considered are
sufficiently large, the requirement that the phase does not
change over the bin area is a strong model assumption. We
have performed toy MC simulation to study the model de-
pendence. While the binning was kept the same as in the
statistical power study (based on the phase difference from
the defaultD0 amplitude), the amplitude used to generate
D0, DCP and B

±→DK± decays was altered in the same
way as in the Belle study of themodel dependence in the un-
binned analysis [4]. As a result, the same bias of∆φ3 ∼ 10◦

is observed as in unbinned analysis. The magnitude of the
bias in x and y (for initial x = 0, y = 0.1) is demonstrated
in Fig. 2. This bias is apparently caused by a fixed relation
between the ci and si, and it affects mainly the y variable.
In a real analysis, one can control the model error by

testing if the amplitude used to define binning is compat-
ible with the observedDCP data. This can be done, e.g., by
dividing each bin and comparing calculated values of ci in
its parts, or by comparing the expected and observed num-
bers of events in each bin. The first results by the CLEO-c
Collaboration are available [14] that show good agreement
of experimental data with ci calculated from two-body am-
plitude for ∆δD-binning.

Table 1. Statistical precision of (x, y) determination using different binnings and with an unbinned
approach. The errors correspond to 1000 events in both the B and DCP ((K

0
Sπ
+π−)2) samples. The

D0 amplitude used is the result of the Belle analysis [4]

B-stat. err. DCP-stat. err. (K0Sπ
+π−)2-stat. err.

Binning Q σx σy σx σy σx σy

N = 8 (uniform) 0.57 0.033 0.060 0.005 0.010 0.015 0.032
N = 8 (∆δD) 0.79 0.027 0.037 0.004 0.007 0.005 0.010
N = 8 (optimal) 0.89 0.023 0.032 0.006 0.011 0.008 0.011
N = 19 (uniform) 0.69 0.027 0.055 0.004 0.011 0.013 0.019
N = 20 (∆δD) 0.82 0.027 0.035 0.005 0.007 0.004 0.008
N = 20 (optimal) 0.96 0.022 0.029 0.008 0.011 0.004 0.010

Unbinned – 0.021 0.028 – – – –

Fig. 2. ToyMCstudy of the analysis usingDCP data.Difference
between the fitted and generated a x and b y values. Result of
the toyMC studywith ∆δD binning, 10

5 B decays and 104 DCP
decays. Histogram shows the fit result with the same D0 decay
amplitude used for event generation and binning, the points with
the error bars show the case with different amplitudes

We conclude that the method of φ3 determination using
only DCP data is only asymptotically model-independent,
since for any finite bin size the calculation of si is done
using model assumptions of the ∆δD variations across the
bin. Increasing the DCP data set, however, allows to apply
a finer binning and therefore reduce the model error due to
the variation of the phase difference.

4 Binned analysis with correlated
D0→K0Sπ

+π� data

The use of ψ(3770) decays where both neutral D mesons
decay to the K0Sπ

+π− state allows to significantly in-
crease the amount of data useful to extract phase infor-
mation in D0 decay. It is also possible to detect events
of ψ(3770)→ (K0Sπ

+π−)D(K
0
Lπ
+π−)D, where K

0
L is not

reconstructed, and its momentum is obtained from kine-
matic constraints. The number of these events is approxi-
mately twice that of (K0Sπ

+π−)2. However, it is impos-
sible to simply combine these samples since the phases
of the doubly Cabibbo-suppressed components in D0→
K0Sπ

+π− and D
0
→K0Lπ

+π− amplitudes are opposite. In
the analysis ofB data onlyK0Sπ

+π− state can be used, but
it is possible to utilize K0Lπ

+π− data to better constrain
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the D
0
→K0Sπ

+π− amplitude using model assumptions
based on SU(3) symmetry [14]. In what follows, we will
consider the use ofK0Sπ

+π− data only.
In the case of a binned analysis, the number of events in

the region of the (K0Sπ
+π−)2 phase space is

〈M〉ij = hcorr
[
KiK−j+K−iKj

−2
√

KiK−iKjK−j(cicj+ sisj)
]

. (14)

Here two indices correspond to twoDmesons fromψ(3770)
decay. It is logical to use the same binning as in the case
of DCP statistics to improve the precision of the determin-
ation of ci coefficients, and to obtain si from data without
model assumptions, contrary toDCP case. Note that in the
case of using (K0Sπ

+π−)2 decays, the parameters ci and si
are treated as independent variables. The obvious advan-
tage of this approach is its being unbiased for any finite
(K0Sπ

+π−)2 statistics (not only asymptotically as in the
case ofDCP data).
Note that in contrast to DCP analysis, where the sign

of si in each bin is undetermined and has to be fixed using
model assumptions, (K0Sπ

+π−)2 analysis has only a four-
fold ambiguity: change of the sign of all ci or all si. In com-
bination with DCP analysis, where the sign of ci is fixed,
this ambiguity reduces to only two-fold. One of the two
solutions can be chosen based on a weak model assump-
tion (incorrect si sign corresponds to complex-conjugate
D decay amplitude, which violates a causality requirement
when parameterized with the Breit–Wigner amplitudes).
The coefficients ci, si can be obtained by minimizing

the negative logarithmic likelihood function

−2 logL=−2
∑

i,j

logP (Mij , 〈M〉ij) , (15)

where P (M, 〈M〉) is the Poisson probability to get M
events with the expected number of 〈M〉 events.
The number of bins in the 4-dimensional phase space is

4N 2 rather than 2N in the DCP case. Since the expected
number of events in correlatedK0Sπ

+π− data is of the same
order as for DCP, the bins will be much less populated.
This, however, does not affect the precision of the ci, si
determination since the number of free parameters is the
same and each of the parameters is constrained by many
bins.
The coefficients ci, si obtained this way can then be

used to constrain x, y with the maximum likelihood fit of
the B decay data using (8). To correctly account for the
errors of the ci, si determination, this likelihood should in-
clude distributions of these quantities, in addition to Pois-
son fluctuations in theB data bins. A more convenient way
is to use the common likelihood function, covering both B
andK0Sπ

+π− data:

−2 logL=−2
∑

i,j

logP (Mij , 〈M〉ij)

−2
∑

i

logP (Ni, 〈N〉i) , (16)

with x, y, hB, hcorr, ci and si as free parameters. This ap-
proach is also more optimal in the case of large B data

sample, since it imposes additional constraints on ci, si
values.
The toy MC simulation was performed to study the

procedure described above. Using the amplitude from the
Belle analysis [4], we generate a large number of D0→
K0Sπ

+π− decays and several sets of (K0Sπ
+π−)2 decays

(according to the probability density given by (7)) and
B decays (3). We use the same binning options as in the
DCP study. The combined negative likelihood (16) is min-
imized in the fit to each toy MC sample. We constrain c2i +
s2i < 1 in the fit to avoid entering an unphysical region with
a negative number of events in the bin. For low number
of (K0Sπ

+π−)2 decays this constraint introduces asymmet-
ric tails in the x, y distributions. For 103 events and more
this asymmetry becomes negligible. Since the number of
(K0Sπ

+π−)2 decays we expect in the experiment is of the
order of 103, we do not expect this effect to cause a signifi-
cant problem.
The number of (K0Sπ

+π−)2 and B decays in our study
of statistical sensitivity ranges from 103 to 105. The er-
rors of x and y parameters are calculated from the spread
of the fitted values. If the number of (K0Sπ

+π−)2 decays
is comparable or larger than the number of B decays, the
x and y errors can be represented as quadratic sums of
two errors, each scaled as a square root of (K0Sπ

+π−)2

Fig. 3. Toy MC study of the analysis using (K0Sπ
+π−)2 data.

Top line: difference between the fitted and generated a x and
b y values. Result of the toy MC study with ∆δD binning, 10

5

B decays and 104 (K0Sπ
+π−)2 decays. The histogram shows

the fit result with the same D0 decay amplitude used for event
generation and binning, the points with the error bars show the
case with different amplitudes. Bottom line: coefficients ci, si
obtained in the fit to toy MC sample. Different colors corres-
pond to different bins. Cases with the same amplitude (c) and
different amplitudes (d) used for event generation and binning
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and B statistics, respectively. However if the number of B
decays is large, the errors of ci and si depend also on B
decay statistics, so separating the total error into B- and
(K0Sπ

+π−)2-statistical errors becomes impossible.
The best (K0Sπ

+π−)2-statistical error is obtained for
∆δD-binning and recalculated to 1000 events yields σx =
0.005, σy = 0.010, which is only slightly worse than the
error obtained with the same amount of DCP data (see
Table 1 for comparison). We also check that significant
change of the model used to define the binning does not
lead to the systematic bias (although it does decrease the
statistical precision). Figure 3 demonstrates the precision
of the determination of ci, si coefficients in our toy MC
study and the absence of the systematic bias for both x and
y when the model is varied.
The numbers of (K0Sπ

+π−)2 and DCP decays in the
ψ(3770) data are comparable, and so are the statistical
errors due to the ψ(3770) data sample for the two ap-
proaches. However, the approach based on (K0Sπ

+π−)2

data allows to extract both ci and si without additional
model uncertainties, so it can be used to check the validity
of the constraint c2i + s

2
i = 1 and therefore to test the sen-

sitivity of the particular binning. The same binning can be
used in both (K0Sπ

+π−)2 and DCP approaches, therefore
improving the accuracy of the ci determination. Techni-
cally it can be done in a straightforward way by adding the
third term related to the number of DCP decays into the
likelihood (16).

5 Conclusion

We have studied the model-independent approach to φ3
measurement usingB±→DK± decays with the neutralD
decaying toK0Sπ

+π−. The analysis of ψ(3770)→DD̄ data
allows to extract the information about the strong phase

in theD
0
→K0Sπ

+π− decay, whereas this phase is fixed by
model assumptions in a model-dependent technique. We
consider the case with a limited ψ(3770)→DD̄ data sam-
ple which will be available from CLEO-c in the near future.
In the binned analysis, we propose a way to obtain the

binning that offers an optimal statistical precision (close
to the precision of an unbinned approach). Two different
strategies of the binned analysis are considered: using the
DCP→K0Sπ

+π− data sample, and using decays of ψ(3770)
to (K0Sπ

+π−)D(K
0
Sπ
+π−)D. The strategy using DCP de-

cays alone cannot offer a completely model-independent
measurement: it provides only the information about ci co-
efficients, while si for low DCP statistics has to be fixed
using model assumptions. However, as the DCP data sam-
ple increases, model-independence can be reached by re-
ducing the bin size. The strategy using the ψ(3770)→
(K0Sπ

+π−)D(K
0
Sπ
+π−)D sample, in contrast, allows to ob-

tain not only ci coefficients with an accuracy comparable
to DCP approach, but also si in a model-independent way.

Both strategies can use the same binning of the D
0
→

K0Sπ
+π− Dalitz plot and therefore can be used in combina-

tion to improve the accuracy due to ψ(3770) statistics.
The expected sensitivity to φ3 is obtained based on

the two-body D
0
→ K0Sπ

+π− decay amplitude meas-
ured by Belle [4]. For the CLEO-c statistics of 750 pb−1

(∼ 1000DCP and (K0Sπ
+π−)2 events) the expected errors

of the parameters x and y due to ψ(3770) statistics are
of the order of 0.01. For rB = 0.1 it gives the φ3 precision
σφ3 = σx,y/(

√
2rB)� 5◦, which is well below the expected

error due to currentB data sample (the total integrated lu-
minosity of the two B-factories, BaBar and Belle, slightly
exceeds 1 ab−1, which corresponds to ∼ 1000 B±→DK±

decays and φ3 precision of about 20
◦ for rB = 0.1). Further

improvement of φ3 precision at the super B factory [15] and
LHCb [16] will require a larger charm dataset, which can be
provided by the BES-III experiment [17, 18].
In our study, we did not consider the experimental sys-

tematic uncertainties, e.g. due to imperfect knowledge of
the detection efficiency or background composition.We be-
lieve these issues can be addressed in a similar manner as in
already completed model-dependent analyses.
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