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Abstract: The reaction of twenty-five winter wheat cultivars frequently grown in the Czech Republic
to inoculation with Oculimacula yallundae and Oculimacula acuformis was evaluated in small plot trials
from 2019 to 2021. The eyespot infection assessment was carried out visually using symptoms on stem
bases and quantitative real-time polymerase chain reaction (qPCR). The cultivars were also tested
for the presence of the resistance gene Pch1 using the STS marker Xorw1. Statistical differences were
found between cultivars and between years. The lowest mean level of eyespot infection (2019–2021)
was visually observed in cultivar Annie, which possessed resistance gene Pch1, and in cultivar Julie.
Cultivars Turandot and RGT Sacramento were the most susceptible to eyespot. The method qPCR
was able to distinguish two eyespot pathogens. O. yallundae was detected in higher concentrations in
inoculated plants compared with O. acuformis. The relationship between the eyespot symptoms and
the pathogen’s DNA content in plant tissues followed a moderate linear regression only in 2021. The
highest eyespot infection rate was in 2020 due to weather conditions suitable for the development of
the disease.
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1. Introduction

The main pathogens of stem-base diseases of cereals belong to the following genera
of fungi: Oculimacula, Rhizoctonia, Fusarium, Microdochium and Gaeumannomyces. Yield
losses due to these diseases can reach up to 40%. Eyespot is the most serious disease in
this group. It is caused by two different species: Oculimacula yallundae (Wallwork and
Spooner) Crous and W. Gams and Oculimacula acuformis (Nirenberg) Y. Marín and Crous,
which have similar life-cycles [1]. On the other hand, both fungi differ in morphology,
pathogenicity, occurrence and sensitivity to fungicides [2,3]. Eyespot pathogens have a
wide host range among cereals and grasses. Oculimacula yallundae (OY) was prevalent in
winter wheat samples infected by eyespot in the Czech Republic [4], whereas O. acuformis
(OA) was predominant in winter rye eyespot samples in Lithuania [5]. Oculimacula spp.
are supposed to survive on plant debris for more than 3 years and their occurrence varies
due to weather conditions [6,7].

Conidia produced on infected straw are the principal form of inoculum in the field [8].
The conidia are dispersed over short distances in rain splash droplets and can initiate
infections on wheat from autumn to spring. The pathogens penetrate leaf sheaths up
to the stem. The first symptoms in the form of non-specific necrosis on leaf sheaths can
be visible at the growth stage of leaf development (BBCH 13–14). Oculimacula yallundae
generally grows more rapidly through leaf sheaths than O. acufomis [9]. The colonization
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by O. acuformis increases later in the season. Later, at the growth stage of tillering and
stem elongation, typical elliptical eye-shaped spots with diffuse margins can be seen. The
increase in lesion extent appeared to stop approximately at the stage BBCH 70–71 [9].

Visual assessment of symptoms on infected wheat stem bases cannot discriminate
between OY and OA, and their presence can be masked by the less damaging pathogens of
stem base disease, especially early in the growing season [10,11]. A real-time polymerase
chain reaction assay, suitable for large scale testing, was developed and used for quantitative
detection and discrimination of OY and OA [12].

There are three characterized sources of eyespot resistance used in commercial wheat vari-
eties: the dominant resistant gene Pch1 from Aegilops ventricosa [13], Pch2 from Triticum aestivum
(cultivar Cappelle Desprez) [14] and a quantitative trait locus (QTL) Q.Pch.jic-5A [15]. The
most effective and also the most widely used resistance gene in commercial cultivars is Pch1,
a single major gene mapped to the distal end of the long arm of chromosome 7D.

The objective of this study was to evaluate the resistance of selected winter wheat
cultivars to eyespot in a small plot infection experiment using quantitative real-time PCR
(qPCR) and visual assessment. The effect of the Pch1 eyespot resistance gene in the tested
cultivars was evaluated.

2. Results
2.1. Visual Assessment of Eyespot Symptoms on Wheat Cultivars and Detection of Pch1 Gene in
Tested Cultivars

Statistically significant differences in eyespot infection were found between tested
winter wheat cultivars in years 2019–2021 using ANOVA (Table 1). The highest level of
visible eyespot symptoms was in 2020 due to weather conditions suitable for the develop-
ment of the disease. The lowest level of visible eyespot symptoms was detected in 2021.
Only two cultivars possessed the Pch1 gene of resistance to eyespot: Annie and Illusion.
Cultivar Annie had the lowest level of eyespot symptoms from the tested collection. A low
level of infection was also observed in cultivar Julie. The majority of the cultivars were
moderately resistant to moderately susceptible, and the differences were rather small (see
Table 2). Cultivars LG Orlice, Frisky, LG Mocca, Illusion, RGT Cesario, Genius, Asory and
Balitus showed a mean level of infection up to 3.0. The most infected cultivars by eyespot
were Turandot and RGT Sacramento, which had a susceptible reaction.

Table 1. The ANOVA results for the visual assessment of the wheat cultivars inoculated by eyespot
(2019–2021).

Effect SS Df MS F-Ratio p-Value

Intercept 40,036.859 1 40,036.859 34,180.563 0.000
CULTIVAR 460.611 24 19.192 16.385 0.000

YEAR 1098.175 2 549.088 468.771 0.000
CULTIVAR*YEAR 469.266 48 9.776 8.346 0.000

Error 5172.611 4416 1.171
SS—sum of squares; Df—degrees of freedom; MS—mean square.

Table 2. Evaluation of eyespot symptoms on winter wheat cultivars after Oculimacula spp. inoculation
in three-year trials in Prague-Ruzyně (2019–2021).

Cultivar Pch1 2019 2020 2021 Mean H. g.

Annie + 2.1 2.2 1.1 2.0 a
Julie - 3.2 2.3 1.4 2.3 ab

LG Orlice - 3.2 2.2 2.7 2.7 bc
Frisky - 3.2 2.9 2.2 2.8 cd

LG Mocca - 2.9 3.0 2.7 2.9 cde
Illusion + 2.8 3.6 2.3 2.9 cde

RGT Cesario - 3.4 3.7 1.8 3.0 cde
Genius - 3.2 3.7 2.0 3.0 cde
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Table 2. Cont.

Cultivar Pch1 2019 2020 2021 Mean H. g.

Asory - 2.7 4.1 2.2 3.0 cde
Balitus - 3.2 3.7 2.2 3.0 cdef

Bohemia - 3.4 3.6 2.2 3.1 cdef
Collector - 3.0 3.8 2.7 3.1 cdef
Pirueta - 3.8 3.7 1.8 3.1 cdef
Fakir - 3.8 3.3 2.1 3.1 cdefg

Dagmar - 3.6 3.8 2.0 3.1 cdefg
Johnson - 3.3 3.5 2.7 3.2 defg

Steffi - 3.6 4.0 2.0 3.2 defg
KWS Silverstone - 3.3 3.4 2.9 3.2 defg

Sally - 3.4 3.7 2.5 3.2 efg
Gaudio - 3.9 3.5 2.3 3.2 efg

Chevignon - 3.4 3.8 2.4 3.2 efg
Butterfly - 3.4 3.7 2.8 3.3 efg

KWS Elementary - 3.4 3.6 3.3 3.4 fg
RGT Sacramento - 3.5 3.8 3.2 3.5 g

Turandot - 3.5 4.1 2.4 3.5 g
Scale 0–5 (0–2 resistant, 3 moderately resistant to moderately susceptible, 4–5 susceptible); H. g.—Homogeneous
groups (the significantly different mean values were represented by different letters a–g; p = 0.05, Fisher’s
LSD test).

2.2. Real-Time PCR Evaluation of the Pathogen Content in Tested Wheat Cultivars

Oculimacula spp. quantification based on qPCR analysis showed significant differences
among tested cultivars in the case of O. yallundae during the years 2019–2021 (Figure 1).
The most resistant cultivar Annie (carrying the gene of resistance to eyespot Pch1) was set
as a control, and the relative amount of O. yallundae DNA in other cultivars measured by
qPCR was related to this control sample as fold difference (FD). The lowest DNA level
was determined in cultivar Annie (Pch1, FD 1) and in cultivars KWS Elementary (FD 2.21),
Turandot (FD 3.07), Asory (FD 3.31), Collector (FD 3.88), Pirueta (FD 4.43), Sally (FD 4.62),
Illusion (Pch1, FD 4.67) and Johnson (FD 4.68). The highest level of DNA was detected in
cultivars Gaudio (FD 20.43) and Steffi (FD 17.06).
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In the ANOVA with a multiple comparison Fisher´s LSD test (p < 0.05), homogeneous groups are
marked with the same letters.
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Oculimacula acuformis was detected with much lower intensity than O. yallundae and
differences among the cultivars were not statistically significant (Figure 2). The lowest
amount of O. acuformis DNA was detected in cultivars Collector (FD 0.34), Chevignon
(FD 0.43), Butterfly (FD 0.44) and Gaudio (0.44). The highest DNA level was found in
cultivars Steffi (FD 1.15) and Fakir (FD 1.00), which had the same DNA level as the control
cultivar, Annie. The cultivar Collector was among the least infected with O. yallundae and
O. acuformis by qPCR assessment.
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The ANOVA was not statistically significant (ns).

The relationship between the eyespot symptoms and the pathogen’s DNA content in
plant tissues followed a moderate linear regression only in 2021 (R2 = 0.3897, p = 0.001).

3. Discussion

The severity of eyespot infection assessed visually and by the molecular method qPCR
was dependent on weather patterns each year. Although conditions were constant in the
small plot experiment, the level of infection varied from year to year. The presence of the
gene of resistance to eyespot Pch1 in cultivars Annie and Illusion was found to be important
in the context of eyespot infection. The cultivar Annie was the least infected cultivar in
the tested set on average 2019–2021. The cultivar Illusion was the sixth least infected by
eyespot in an average of three years. The maximum visual assessment of cultivar Illusion
was 3.6 in 2020 when the weather conditions were the most favorable for eyespot infection
development. In general, cultivars possessing gene Pch1 have been characterized by high
resistance to eyespot in Germany [16]. In the case of cultivar Illusion, further observations
are needed in climatically different years.

Oculimacula acuformis was detected at a very low level in the small plot experiments. It
seems O. acuformis did not play an important role even in a trial plot infection, although the
amount of O. yallundae and O. acuformis inoculum was comparable. Oculimacula acuformis is
predominantly a pathogen of rye, and results of the present study showed that the impact
to this pathogen in wheat samples from 2019 to 2021 was very low. Oculimacula yallundae
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was more aggressive to the wheat samples. This is consistent with previous reports [17].
Oculimacula yallundae might grow more rapidly through leaf sheaths than O. acuformis at
the beginning of infection [9]. Oculimacula yallundae tends to cause earlier stem lesions and
colonization, while O. acuformis infection increases later in the season [18]. OA could infect
and grow more rapidly through leaf sheaths during cold winters [19], while under less cold
conditions, OY could grow through the leaf sheaths more rapidly and colonize the stem
first, so by reaching the stem earlier, the symptoms of OY are more advanced [20]. Although
the assessment of the small plot experiment was performed at the stage BBCH 73–77 and
the increase in lesion extent appeared to stop at BBCH 70–71 [9], a year with a prevalence
of OA was not observed.

The linear regression analysis indicates that the relation of visual assessment and
relative quantity obtained from qPCR showed a low correlation coefficient, which means a
weak relationship between the symptoms and pathogen DNA content in plant tissues. In
a previous study [17], the relationship between the eyespot symptoms and the pathogen
DNA content in plant tissues followed a moderate linear regression. In the current study,
qPCR results of O. yallundae DNA content in plant tissues and visual symptoms followed a
moderate linear regression only in 2021. Real-time PCR can be a useful supporting method
for testing a large amount of new breeding lines or cultivars to eyespot resistance. This
long breeding process usually ends with the registration of a new variety. According
to our results, the qPCR method can be applied to eyespot diagnostic assays, including
wheat cultivar resistance assessment. Real-time PCR is very sensitive and can distinguish
small differences among tested materials, even in years that are unfavorable to disease
development. Moreover, the level of O. yallundae and O. acuformis can be easily checked
by qPCR and it is possible to monitor the occurrence of both species in the field. This
is very important for the control strategy because both pathogens differ in morphology,
pathogenicity, occurrence and sensitivity to fungicides [2]. However, it is always necessary
to supplement the molecular results with a visual assessment.

4. Materials and Methods
4.1. Visual Assessment of Eyespot Symptoms on Wheat Cultivars and Detection of Pch1 Gene in
Tested Cultivars

The reaction of 25 selected winter wheat cultivars to inoculation with Oculimacula
yallundae and O. acuformis was studied in a small plot trial in Prague-Ruzyně (50.0864797 N,
14.3020897 E) in three farming seasons: 2018/2019, 2019/2020 and 2020/2021. All tested
cultivars were registered in the Czech Republic by the Central Institute for Supervising and
Testing in Agriculture. The resistant control was cultivar Annie, possessing gene Pch1 [21].

The inoculum for the small plot trial was prepared from a mixture of 12 isolates
of OY and 7 isolates of OA. These isolates were obtained from different locations of the
Czech Republic. Fungi were cultivated on PDA (Himedia) at 20 ◦C in the dark for 14 days.
Mycelium with agar was cut into 5 × 5 mm squares and each Erlenmeyer flask containing
sterilized barley grains was inoculated with 4 squares of one Oculimacula isolate. The barley
grains (50 g/250 mL Erlenmeyer flask) were sterilized three times for 20 min at 120 ◦C
before inoculation. The barley grains inoculated with Oculimacula spp. were incubated
under UV light at 18 ◦C for about 4–5 weeks. After this time, the inoculum was removed
from the flasks, mixed in a large container and directly applied on experimental plots in
December and in March (40 g/m2). The reaction of tested cultivars was rated at the milk
growth stage (BBCH 73–77). A 0 to 5 rating scale was used (0—no symptoms; 1—one small
spot; 2—more spots covering maximally half of the stem perimeter; 3—spots covering more
than half of the stem perimeter; 4—spot covering the whole stem perimeter; 5—broken
stem). In inoculated plots, 60 randomly selected stems were assessed.

The winter wheat cultivars from the experimental years 2019–2021 were screened with
STS marker Xorw1 [22] to identify the presence or absence of Pch1 gene, as described by
Dumalasová et al. [21].
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4.2. Real-Time PCR Evaluation of the Pathogen Content in Tested Wheat Cultivars

Samples of the lower parts of the stem base (approximately 20 mm long segments)
were collected annually in the milk-wax growth stage (end of June). Stem bases (20 pcs)
of each cultivar were thoroughly dried, homogenized to a fine powder and subsequently
processed according to the methodology published in previous work by Palicová et al. [17].
All tested winter wheat cultivars were evaluated by quantitative real-time PCR (qPCR)
by using primers: Oculimacula-R (universal reverse), Ac F-D (specific to OA) and Yall
F-H (specific to OY), and reference gene phenylalanine ammonia-lyase (primers WpalF/R)
previously published by Walsh et al. [12].

4.3. Statistical Analysis

Each experiment was set up in randomized repeats and results were expressed as
mean ± standard error (SE). The data were analyzed by the statistical software Statistica
14.0.0.15 (Statsoft Inc., Tulsa, OK, USA). A general factorial ANOVA (Analysis of Variance)
was performed at 95% confidence interval and 5% level of significance. When the p-value
was less than 0.05, the Fisher’s Least Significant Difference (LSD) test for multiple compar-
isons was carried out. The significantly different mean values were represented by different
letters. The relationship between visual eyespot symptoms and pathogens’ DNA content
in plant tissue was studied using a Regression Analysis.

5. Conclusions

Real-time PCR proved to be a sensitive method for eyespot pathogen quantification in
winter wheat varieties. It can help in a long-term breeding process, where thousands of
accessions need to be assessed and only the best ones selected. It is important to observe
the incidence of both causal agents of eyespot in the field, mainly because of their different
sensitivity to fungicides. According to the results of this study, Oculimacula yallundae was
more aggressive than O. acuformis in wheat under the studied conditions. It was confirmed
that the gene of resistance to eyespot Pch1 plays a significant role in decreasing eyespot
symptoms on stem bases in wheat cultivars.
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