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Abstract. State-of-the-art image denoising algorithms attempt to re-
cover natural image signals from their noisy observations, such that the
statistics of the denoised image follow the statistical regularities of natu-
ral images. One aspect generally missing in these approaches is that the
properties of the residual image (defined as the difference between the
noisy observation and the denoised image) have not been well exploited.
Here we demonstrate the usefulness of residual images in image denois-
ing. In particular, we show that well-known full-reference image quality
measures such as the mean-squared-error and the structural similarity
index can be estimated from the residual image without the reference
image. We also propose a procedure that has the potential to enhance
the image quality of given image denoising algorithms.
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1 Introduction

The problem of image denoising may be conveniently summarized as follows:
Given a noisy version y of an image x – for example, the image that might be
obtained when image x is sent over a noisy transmission channel – construct a
denoising operator D so that D(y) is “close” to x. There are, of course, some
concepts in the above summary that must be addressed more concretely in any
such denoising study, including: (1) “noise,” i.e., a model for the corruption by
noise is needed, and (2) “closeness”, i.e., a measure for image quality is needed.

In this paper, we are interested in denoising natural images contaminated
with additive white Gaussian noise. Let x be a greyscale image represented by
a matrix defined on a rectangular lattice I = {i = (i1, i2)}1≤i1≤m1,1≤i2≤m2 .
Also assume that x belongs to the set of natural images X , i.e., images that
are likely to be seen by the human visual system. Let N be independent white
Gaussian noise on I of zero-mean and variance σ2. More precisely, the following
assumptions are made:

1. X and N are independent random fields;
2. N(i) and N(j) are independent for i 6= j (i, j ∈ I);
3. The noise is Gaussian, i.e. N(i) ∼N (0, σ2) for all i ∈ I.
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We can then write the noise distortion model as Y = X+N ; a particular outcome
will be represented by y = x+n. For any noisy image Y , the action of a denoiser
may be viewed as separating Y into the sum of a denoised image D = D(Y )
and a residual image defined by R = Y −D. To illustrate a particular outcome,
in Fig. 1 we show the original noiseless Lena image x (512 × 512 pixels) along
with a noise image n and the resulting noisy image y = x+n. A denoised image
d = D(y) obtained by Gaussian filtering is then shown, along with the residual
image r = y − d. For the moment, we mention that in most, if not all, image
denoising studies, the noiseless image x is available for testing, enabling a direct
comparison of d and x for the evaluation of denoising operators. But what if x is
not available, as is the case in practical situations? Can one estimate the efficacy
of the denoising operator from knowledge of d and y alone? This is the essence
of no-reference quality assessment for image denoising.

Separating the noisy image y into the sum of d and r is an ill-posed problem.
In order to provide a meaningful solution, additional knowledge about the target
images d and r must be imposed. Statistical models of natural images have
attracted great interest, providing useful statistical prior knowledge about the
clean natural image, and thus helping the denoiser to distinguish the image
signal from noise. One useful aspect generally missing from state-of-the-art image
denoising algorithms is that the properties of the residual image r are not well
explored. More precisely, these algorithms attempt to approximate x with d

(by using the prior knowledge about x), but ignore the desirable property that r

should approximate n. This motivates us to study the use of r in image denoising
by looking at how well r approximates n. In the literature, most examinations
of the residual image have involved only a visual inspection of r [1]. Several
authors have employed r in the design of image denoising algorithms [7, 3, 10,
9, 11, 15]. Nevertheless, to the best of our knowledge, statistical analyses of r

(i.e., whether r is a valid sample from a particular noise distribution) and how
such statistics can be used for no-reference image quality assessment and for
improving image denoising results, have not been deeply investigated.

2 Statistical Tests on the Image Residual

Here, the idea is to apply a statistical test locally on the residual image to de-
termine whether or not it behaves like pure noise. Indeed, some assumptions on
the nature of the noise were made, and we can test if they are observed in the
residual image. We employ two kinds of hypothesis tests about the residual im-
age: (1) independence and (2) goodness-to-fit. The first test will help determine
whether or not d and r are independent and if there is any autocorrelation in r.
The second test will hopefully show if r follows a normal distribution and if the
intensity values of r are identically distributed with zero-mean and variance σ2.

2.1 Testing the Independence between d and r

We examined the use of two well-known statistical tests: Pearson’s correlation
coefficient test and the maximum-likelihood ratio test (or G-test).



The use of residuals in image denoising 3

x n y

d r

Fig. 1. x : Original noiseless Lena image. n : a noise image (σ = 35). y := x + n,
the noisy image. d := D(y), the denoised image (Gaussian filtering). r := y − d, the
residual image. Notice that y = x + n and y = d + r are two different decompositions
of the noisy image y.

Pearson’s correlation coefficient test: Given n data points (x, y) , the (bi-
ased) correlation coefficient is defined by

r =
sxy

sxsy
, (1)

where sx and sy are the (biased) sample standard deviations of, respectively, x

and y and sxy is the sample covariance of x and y. We use a criterion based on
the value

t = r

√

n− 2

1− r2
. (2)

The criterion t follows a Student-t distribution with n−2 degrees of freedom. The
test is only valid if the data is randomly sampled from a normal distribution, but
we will later test for normality as well. The main advantage of this test is that
the joint distribution does not need to be computed. As such, validity is achieved
with smaller sample sizes. In addition, the data does not need to be binned. That
being said, the correlation coefficient describes only linear dependency and lack
of robustness.
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Using the same images as in Fig. 1, an example of the correlation coefficient
between a denoised image d and its residual r is shown in Fig. 2(a). In Fig. 2(d)
we show the result of a correlation coefficient test between d and r. A 7 × 7
sliding window was used to compute the local correlation.

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a): Pearson’s correlation coefficient between d and r (black for negative cor-
relation and white for positive correlation). (b): The local mutual information map
between d and r. (c): The local Kolmogorov-Smirnov statistics of r. (d): The result of
the Pearson’s correlation coefficient test (white: reject independence hypothesis, black:
do not reject) (e): The result of the G-test (white: reject independence hypothesis,
black: do not reject) (f): The result of the K-S test (white: reject normality hypothesis,
black: do not reject). All images were cropped between (100, 100) and (400, 400).

G-test: Given n data points (x, y) and a I × J binning for these points, the
G-test is based on the mutual information

MI(x; y) =

I
∑

i=1

J
∑

j=1

pi,j ln

(

pi,j

pipj

)

, (3)

where pi,j is the sample joint probability that x is in the i-th bin and y is in
the j-th bin and pi and pj are the sample marginal probabilities that, x is in
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the i-th bin and y is in the j-th bin, respectively. The criterion G = 2nMI(x; y)
follows a chi-square distribution with r = (I −1)(J −1) degrees of freedom. The
advantage of this method over Pearson’s correlation coefficient is that it takes
account of all types of dependencies. The drawback, however, is that a large
number of samples is required to estimate the joint distribution.

Even though it is desired to compute local statistics, a sufficient amount of
data is required to obtain good estimates of the joint distribution. Following
the rule-of-thumb, #bins = n1/3, a 15× 15 window was used along with 6 bins
as a tradeoff. (The binning can be adapted according to the local range of the
intensity values.) Using the images in Fig. 1, we present an example of the mutual
information computed between a denoised image d and its residual r in Fig. 2(b).
In Fig. 2(e), a G-test has been performed between d and r.

2.2 Testing the Autocorrelation of r

Let r|Wi
denote the restriction of r over the window Wi centered at i ∈ I. For any

i, j ∈ I (i 6= j), we wish to test the autocorrelation in r|Wi
and r|Wj

. The test is
restricted to pairs of windows that are close to each other, i.e., (‖i − j‖1 < b),
where b is the radius of the search. The local autocorrelation coefficient ri,j is
computed as the correlation coefficient (see Eq. 1) between r|Wi

and r|Wj
. We

can then perform a series of hypothesis tests as in the Pearson’s correlation
coefficient test. A sample is considered to be somewhat autocorrelated if we
reject at least once the hypothesis that the local autocorrelation of r is zero.

2.3 Testing the Normality of r

Several goodness-of-fit tests are available to test the normality of a given sample.
Here we consider the Kolmogorov-Smirnov (K-S) test, applicable to any contin-
uous distribution with the requirement, however, that all parameters are known.
The K-S statistic is defined by

k = sup
x∈[0,1]

|E(x) − F (x)|, (4)

where F is the theoretical cumulative distribution function of the distribution
being tested and where E is the empirical cumulative distribution function of
the sample. The hypothesis is rejected if the test statistic, k, is greater than a
computed critical value.

Using again the residual image r from Fig. 1, the K-S test was performed
locally, using a 15× 15 sliding window. The test can reveal at the same time if
there is a departure from normality and if the mean and variance are, respec-
tively, 0 and σ2 over the entire residual image. Figure 2(c) shows the resulting
local K-S statistics. In Fig. 2(f) are presented the results of the hypothesis test.
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3 No-reference estimation of full-reference quality

measures

3.1 Estimating the covariance of the noise and the residual

The covariance between the random fields R and N ,

σR,N := E[(R−E[R]) · (N −E[N ])] = E[R ·N ], (5)

must be estimated from a knowledge of r and the statistics of the noise. Here,
· denotes the Hadamard (term-by-term) matrix product and E[R] denotes the
matrix of the expectations of each entries.

When a noisy image Y is denoised, some or nearly all the noise may be
removed, but some blurred or distorted structures of the original image may
still remain. As such, we model the denoised image and the residual as follows,

Y = X + N = (X(d) + N(d)) + (X(r) + N(r)) = D + R (6)

where X(d) and X(r) are the structure parts in, respectively, D and R and N(d)

and N(r) are the noise parts in, respectively, D and R. We assume that X(d) and
X(r) are independent from both N(d) and N(r). For purposes of estimation, we
also assume that σN(d),N(r)

≥ 0. This seems reasonable since any noise in D will
be an attenuation of the noise already present in Y = D + R. Under all of these
assumptions, one can then show that

σR,N = σX(r),N(d)
+ σX(r),N(r)

+ σN(r),N(d)
+ σ2

N(r)
= σN,N(r)

, (7)

σR,N = σR,D+R−X = E[D · R] + E[R · R]−E[R ·X ] = E[R2]−E[X2
(r)], (8)

σR,N = σR,Y −X = σR,Y − σR,X , (9)

σ2 = σ2
N = σ2

N(d)
+ σN(d),N(r)

+ σN,N(r)
. (10)

With the extra assumption that σX,R ≥ 0, i.e. structure in X may be present to
some extent in R as well, we have the result

0 ≤ σR,N ≤ min
(

E[R2], σY,R, σ2
)

. (11)

In fact, we observe experimentally that σR,N ≈ R.H.S. for almost all the denois-
ing algorithms. For this reason, we have chosen

σ̂R,N = min
(

E[R2], σY,R, σ2
)

. (12)

In addition, an estimate of σD,N may also be obtained as well, since

σD,N + σR,N = σ2. (13)
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3.2 No-reference Peak Signal-to-Noise Ratio estimate

The mean-square error (MSE) between the original image x and the denoised
image d is

MSE(x,d) =
1

m1m2

m1
∑

i1=1

m2
∑

i2=1

(xi − di)
2, (14)

where i = (i1, i2) ∈ I are the indices of the images. The peak signal-to-noise
ratio (PSNR) is computed from the mean-square error by the following formula:

PNSR(x,d) = 10 log10

(

L2

MSE(x,d)

)

, (15)

where L is the dynamic range of the images.
Observing that

MSE(x,d) = MSE(r,n) =
1

m1m2

m1
∑

i1=1

m2
∑

i2=1

(r2
i + n2

i − 2rini), (16)

our no-reference estimate is derived as follows (using Eq. 12):

M̂SE(x,d) = r2 + σ2 − 2 min
(

r2, syr, σ
2
)

, (17)

where r2 is the sample mean of r2 and syr the sample covariance of y and r.
The no-reference estimate of the PSNR follows directly from the formula (15)
applied to our estimate (17).

The results of a number of experiments comparing PSNR to its no-reference
estimate are shown in Fig. 3(a). We used three images (Lena, Boat and Barbara),
artificially adding white Gaussian noise with seven different standard deviation
values (σ = 10, 15, 25, 35, 50, 70 and 100). Ten denoising methods (Gaussian
filtering, wavelet soft-thresholding [6], stationary wavelet hard-thresholding [4],
anisotropic filter [12], total variation minimization [14], Wiener adaptive filter
[8], curvelet denoising [2], scaled mixtures of Gaussian [13], non-local means [1]
and sparse 3D transform-domain collaborative filtering [5]) were then applied to
the resulting noisy images. A last “denoising” procedure is a pathological one,
where the denoised image is the noisy image added with a Gaussian white noise
image of variance σ2 (i.e.d = y + m where σ2

M = σ2
N and σM,N = σX,M = 0).

3.3 No-reference Structural Similarity Map

The Structural Similarity (SSIM) index [16] combines information on the local
luminance, the local contrast and the local correlation between two greyscale
images. It assumes values between 1 for a perfect match between the two images
and −1 for very poor quality. The SSIM map between the images x and d is

SSIM(x,d) =

(

2x · d + c1

x2 + d
2
+ c1

)

·

(

2sx · sd + c2

s2
x + s2

d + c2

)

·

(

sxd + c3

sx · sd + c3

)

, (18)
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where x and d are the local mean map of x and d respectively, sx and sd are the
local standard deviation map of x and d respectively, sxd is the local covariance
map between x and d and · is the Hadamard matrix product. The mean is taken
over all the entries of the resulting quality map (18) in order to produce a single
SSIM index. A local map is obtained by convolving the image with a circular
Gaussian filter g:

x = g ∗ x, (19)

s2
x = g ∗ (x · x)− (g ∗ x) · (g ∗ x), (20)

sxd = g ∗ (x · d)− (g ∗ x) · (g ∗ d). (21)

The constants c1, c2 and c3 are small parameters that ensure numerical stability
of the division. They may also be chosen to model the human vision system [16].

From the knowledge of the noisy image y and a model of the noise image n,
we can obtain some information about x. Indeed, we have

y = x + n and s2
y = s2

x + 2sxn + s2
n, (22)

as well as (see Sec. 1) E[N ] = 0, σX,N = 0 and σ2
N = σ2. Therefore

x̂ = y and ŝx =
√

max(0, s2
y − σ2). (23)

The maximum in the standard deviation approximation ensures that the square
root of a non-negative number is taken. Indeed, it can happen that s2

y − σ2 < 0
in flat regions of x where the noise dominates. It remains to approximate is sxd,
the sample covariance between x and d. By assumption, sxd = syd− sdn. Using
our estimate ŝdn (Eq. 12 and 13), we finally obtain

ŝxd = max
(

0, syd − σ2 + min[r2, syr, σ
2]
)

. (24)

The positivity of ŝxd is imposed because a positive correlation between x and d

is expected. Gathering the estimates (24) and (23) in the SSIM equation (18),
we obtain the no-reference SSIM map

ŜSIM(x,d) =

(

2x̂ · d + c1

x̂
2
+ d

2
+ c1

)

·

(

2ŝx · sd + c2

ŝ2
x + s2

d + c2

)

·

(

ŝxd + c3

ŝx · sd + c3

)

. (25)

Proceeding as in the experiment for the no-reference PNSR estimate, we
present in Fig. 3(b) a scatter plot of quality indices against their estimates for
different images, noise levels and denoising algorithms. We observe a good esti-
mate of the SSIM index when the noise level is reasonable, but for high levels of
noise (σ > 50), the estimate is less accurate.

When comparing the full-reference structural similarity index map (Eq. 18)
with its no-reference estimate (Eq. 25), we found that ŝx slightly overestimates sx

in flat regions of x, creating instabilities in the correlation term. Nevertheless,
on average we obtain very promising results.
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(a) (b)

Fig. 3. (a) Scatter plot of the PNSR and its no-reference estimate. (b) Scatter plot of
the SSIM index and its no-reference estimate. In both cases, the estimates are generally
good for all denoising algorithms examined.

4 Quality Enhancement of Denoised Images

In this section we present the results of some preliminary experiments which show
that denoising a residual image and adding it to a denoised image can potentially
enhance the quality of the latter. We then show how one could implement this
scheme iteratively. Finally, we shall take advantage of the local statistical tests
designed in the previous section to suggest a better way to improve the image
quality.

4.1 Denoising the Residual

We apply a different denoiser on the residual image in attempt to separate the
remaining structure from the dominating noise. In section 4.3 we will show a
non-traditional way to perform this task based on the particular nature of the
residual. The justification of adding back this “denoised” residual to the denoised
image comes from the fact that the cleaned residual contains the structure of
the original image removed by the denoiser. Mathematically, the procedure may
be expressed as follows,

E (d) = d +D2(r) = D1(y) +D2(y −D1(y)), (26)

where D1 and D2 are two denoising algorithms.
We consider image enhancement to be achieved if the image quality obtained

by adding the denoised residual is greater than the image quality obtained by
simply denoising the image with either of the two methods. Here we show an
example where Eq. 26 is used successively. Gaussian white noise of standard
deviation σ = 15 was first added to create a noisy image. This image was then
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denoised with the Total Variation Minimization algorithm (D1). The residual
image was then denoised with the Adaptive Wiener Filter (D2). The results are
shown in Fig. 4. The PSNR and the SSIM indices for E (d) are greater than the
quality measurements obtained by processing the image with either D1(y) or
D2(y) alone.

(a) (b) (c) (d)

Fig. 4. (a): Boat denoised by Total Variation Minimization (PSNR = 28.6, SSIM
= 0.75). (b): Residual image. (c): Residual “denoised” by Adaptive Wiener Filter.
(d): Enhanced denoised image (PSNR = 29.8, SSIM = 0.77). The images were cropped
between (100, 100) and (400, 400).

In general, simply taking a traditional denoising algorithm to denoise the
residual and then adding back the result to the denoised image does not guar-
antee an improvement in the quality of the denoised image. The point, however,
is that with a good no-reference quality measure (cf. Section 3), we can at least
perform this step and then verify whether or not an improved image is obtained.

4.2 Iterative Schemes

We now present an iterative scheme of the above denoising procedure. Let Q
denote a no-reference quality measure. Then the larger that Q(d) is, the higher
the quality of d. We iterate the algorithm J times and then choose the image
with the best quality. As such, the algorithm will always produce an image of at
least the same quality as that of the denoised image.

1. Set j ← 1, d̃(0) ← y and d(0) ← 0;

2. Denoise the image: d(j) ← D1(d̃(j));
3. Compute the residual: r(j) ← y − d(j);
4. Denoise the residual: r̃(j) ← D2(r(j));

5. Add it back to the denoised image: d̃(j) ← d(j) + r̃(j);
6. While j < J , increment j ← j + 1 and go to step 2.
7. Find j that maximizes Q(d(j)) or Q(d̃(j));

8. If Q(d(j)) > Q(d̃(j)) return d(j), else return d̃(j).

In the next section, we employ this algorithm, combined with a new way to
denoise the residual.
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4.3 Using Statistical Tests to Improve the Denoising

Denoising could be further improved by using a statistical test to determine
which parts of the residual need to be added back to the denoised image. If one
of the hypothesis tests is rejected, it is likely that the residual is not Gaussian
white noise, hence we may consider that the denoising was insufficient. In this
case we perform an enhancement such as Eq. 26.

The experiment is as follows. A Gaussian filter with large amplitude was
applied to the noisy Lena image (σ = 35) of Fig. 1. A Pearson’s coefficient
correlation test and a Kolmogorov-Smirnov test were then performed on the
residual. The residual was denoised with an adaptive Wiener filter. Only the
portions of the cleaned residual where one of the hypothesis tests was rejected
were added back to the denoised image. This procedure was then iterated with
decreasing amplitudes of the Gaussian filter. The idea is to first smoothen the
flat regions of the image, and then to work on the details. This iterative scheme
produced gains in both PSNR and SSIM. Visually, as seen in Fig. 5, the results
are good, although a salt-and-pepper-like noise appears in some regions of the
image. This comes from the dichotomic nature of hypothesis tests: a pixel is
considered as either noisy or clean.

(a) (b) (c) (d)

Fig. 5. (a) r(1): Residual image of d(1). (b) d̃(1): First iteration of the denoised image
enhancing algorithm (PSNR = 25.9, SSIM = 0.63). (c) d(7): Best image obtained by
the algorithm (PSNR = 26.3, SSIM = 0.70). (d) r(7): Residual image of d(7).

5 Concluding remarks

We have demonstrated the potential of using image residuals in denoising appli-
cations. There are several interesting avenues for future research. For example,
one could try to improve the no-reference estimates of the PSNR and of the SSIM
index. In addition, there are two very useful applications of these no-reference
measures: (1) to perform image quality assessment; (2) to design better denois-
ing algorithms by optimizing the denoising parameters a posteriori or by directly
solving the problem of finding d that maximizes Q(d). Finally, the use of the
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residual and statistical tests to improve denoising algorithms requires much more
work. The goal is to design a general method for enhancing any given denoiser.
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