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Abstract

Hierarchical modeling has been used extensively for small area estimation. However, design 

weights that are required to reflect complex surveys are rarely considered in these models. We 

develop computationally efficient, Bayesian spatial smoothing models that acknowledge the 

design weights. Computation is carried out using the integrated nested Laplace approximation, 

which is fast. A simulation study is presented that considers the effects of non-response and non-

random selection of individuals. We examine the impact of ignoring the design weights and the 

benefits of spatial smoothing. The results show that, when compared with standard approaches, 

mean squared error can be greatly reduced with the proposed models. Bias reduction occurs 

through the inclusion of the design weights, with variance reduction being achieved through 

hierarchical smoothing. We analyze data from the Washington State 2006 Behavioral Risk Factor 

Surveillance System. The models are easily and quickly fitted within the R environment, using 

existing packages.
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1. Introduction

In this paper we consider spatial models for small area estimation (SAE). SAE is an 

important endeavor since many agencies require estimates of health, education and 

environmental measures in order to plan and allocate resources and target interventions. The 

data upon which SAE is based are often gathered via complex designs.
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Standard model-based approaches to the analysis often ignore the sampling mechanism and 

are therefore subject to potentially large biases. Adjusting for the sampling scheme by 

including in the model the design variables upon which sampling was based (and which are 

associated with the outcome of interest) is often not possible, because the required variables 

are unavailable, or the required model would be overly complex (Gelman, 2007). In this 

paper we consider the situation in which it is not possible to model the sampling scheme. 

Weighted design-based approaches provide a common approach to bias removal but the 

resultant estimators can be highly variable for areas in which only small sample sizes are 

collected. Hierarchical models provide a method to reduce the variance, with Fay and 

Herriot (1979) providing an early example and, notably, acknowledging the sampling 

scheme. Since this influential paper many hierarchical modeling approaches have been 

suggested, see Rao (2003) for a comprehensive summary of the literature and Pfeffermann 

(2013) for a more recent account.

In terms of spatial smoothing techniques, a number of authors allow for spatial correlation 

between areas, see for example Singh et al. (2005), Pratesi and Salvati (2008) and Pereira 

and Coelho (2010). These models are subject to bias, however, since they do not adjust for 

the sampling scheme. Pseudo-likelihood (Skinner, 1989; Pfeffermann et al., 1998) has been 

used within a hierarchical modeling framework with the scaling of the weights being a 

major issue (Potthoff et al., 1992; Longford, 1996; Asparouhov, 2006; Rabe-Hesketh and 

Skrondal, 2006). Congdon and Lloyd (2010) use such an approach and introduce residual 

spatial random effects. In this paper we describe a range of models that can acknowledge the 

sampling scheme and allow spatial smoothing. We describe a new approach based on the 

concept of “effective sample size” and “effective number of cases”. A related Bayesian 

model has recently been suggested by Ghitza and Gelman (2013), while quite a different 

approach, based on a penalized spline model, is described in Zheng and Little (2003) and 

Zheng and Little (2005). A key feature of the models we describe is that computation is fast 

and can be carried out using existing packages within the R computing environment.

The outline of this paper is as follows. We begin with a motivating example that concerns 

diabetes prevalence in the Behavioral Risk Factor Surveillance System (BRFSS) in Section 

2. In Section 3 we describe hierarchical spatial and non-spatial models, which we then 

compare with various approaches in Section 4, via an extensive simulation study. We return 

to the BRFSS data in Section 5 and conclude the paper with a discussion in Section 6. The 

supplementary materials contain more technical details and additional supporting 

information.

2. Motivating Example

The BRFSS is an annual telephone health survey conducted by the Centers for Disease 

Control and Prevention (CDC) that tracks health conditions and risk behaviors in the United 

States and its territories since 1984. In the BRFSS survey, interviewees (who must be 18 

years or older) are asked a series of questions on their health behaviors and provide general 

demographic information, such as age, race, gender and the zip code in which they live. 

Here we focus on the survey conducted in Washington State in 2006 (http://

www.doh.wa.gov/brfss), and on the question, “Have you ever been told you have 
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diabetes?”, with interviewees responding with the binary response “Yes”/“No”. Our 

objective is to estimate the number of 18 or over individuals with diabetes, by zip code, in 

Washington State. The CDC currently publishes coarser, county-level prevalence estimates 

(http://apps.nccd.cdc.gov/DDTSTRS/), using the model of Malec et al. (1997).

In 2006, the survey used land-lines only, and a disproportionate stratified random sample 

scheme with stratification by county and “phone likelihood”. Under this scheme in each 

county, based on previous surveys, blocks of 100 telephone numbers are classified into 

strata that are either “likely” or “unlikely” to yield residential numbers. Telephone numbers 

in the “likely” strata are sampled at a higher rate than their “unlikely” counterparts. Once a 

number is reached the number of eligible adults (aged 18 or over) is determined, and one of 

these is randomly selected for interview. The sample weight, Sample Wt, is calculated as the 

product of four terms

(1)

where Strat-Wt is the inverse probability of a “likely” or “unlikely” stratum being selected 

in a particular county, No-Telephones represents the number of residential telephones in the 

respondent’s household, No-Adults is the number of adults in the household, and Post-Strat-

Wt is the post-stratification correction factor, with the strata defined by the 7 age groups 18–

24, 25–34, 35–44, 45–54, 55–64, 65–74, 75+ and gender. The other source of data we use 

are population estimates for 2006.

Basic summary statistics, across 498 zip codes, are presented in Table 1. There is large 

variability in the population, sample and number of diabetes cases, across zip codes. The left 

panel of Figure 1 gives a histogram of the survey sample sizes. About 20% of the areas have 

sample sizes of 9 or less, so that the diabetes prevalence estimates are highly unstable in 

these areas. The sample weights which have a large range of 0.82 to 4991; the coefficient of 

variation (CV) of the weights is 1.11 so that the inefficiency of using the sample weights 

under the assumption that the unweighted mean is unbiased is about 55%, as calculated by 

100 × CV2/(CV2 + 1) (Korn and Graubard 1999, Section 4.4). In Section 5 we will make 

inference for the proportion with diabetes at the zip code level using a hierarchical model 

that acknowledges the sampling scheme and leverages spatial smoothing.

3. Sample Weighted Bayesian Hierarchical Models

Hierarchical models have been used extensively for SAE. In this section, we first review 

some commonly used three-stage hierarchical models, including a spatial model, without 

considering the sampling weights. We refer to the resultant estimators as unadjusted; these 

estimators can be seriously biased in the event of non-random selection of individuals or 

non-response. Subsequently, we will describe our approach to incorporating the sampling 

weights for binary data using the same set of hierarchical models. Estimates that use the 

weights will be referred to as adjusted.

We begin by introducing notation. Let Yik denote the binary variable indicating if the k-th 

individual from area i has the outcome of interest (Yik = 1) or not (Yik = 0). Common small 
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area characteristics of interest are the true total count, , or the true proportion, 

Pi = Ti/Ni, where Ni is the total population in area i, i = 1; …; I. We let si denote the set of 

individuals who are sampled from area i with yik the observed sample for k ∈ si with |si| = 

mi.

3.1. Conventional Three-Stage Bayesian Hierarchical Models

A conventional three-stage Bayesian hierarchical model for a binary outcome uses a 

binomial distribution at stage one

(2)

where , and mi is the sample size, for area i. At the second stage, we model 

between-area variation in Pi using a random effects model. Finally, the unknown 

hyperparameters at the second stage are assigned hyperprior distributions at the third stage. 

We consider two possible random effects models to account for between-area variation at 

the second stage.

Model 1: Independent Random Effects Model

In this model we assume that the log odds of the area proportion Pi are drawn, 

independently, from a normal distribution:

(3)

where β0 is the intercept and the random effects εi capture between-area variability in the 

residual log odds. This model was used by MacGibbon and Tomberlin (1989) in an SAE 

context.

Model 2: Independent and Spatial Random Effects Model

In general, we might expect that areas which are close to each other will share more 

similarities than areas that are far away, and we would like to exploit this information in 

order to provide more reliable estimates in each area. We adopt the spatial model introduced 

by Besag et al. (1991) that includes both non-spatial and spatial random effects and assigns 

the spatial random effects an intrinsic conditional autoregressive (ICAR) prior

(4)

(5)

where ne(i) is the set of neighbors of area i, ni is the number of such neighbors and , is the 

mean of the neighboring spatial random effects. In this model the nature of the spatial 

dependency is defined by the neighborhood structure. For example, a common approach, 
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that we adopt, defines areas i and i′ to be neighbors if they share a common boundary. We 

require priors for β0 and the random effects variances. A normal hyperprior is typically 

assumed for the former, and inverse gamma distributions for the latter; we follow the 

prescription described in Wakefield (2009) in which the prior specifications are related to 

the sizes of the residual odds ratios.

3.2. Bayesian Hierarchical Models with Complex Survey Weights

3.2.1. A Definition of Effective Sample Size—Our approach to acknowledging the 

design is to construct a binomial likeli hood that is based on the direct estimate of Pi and its 

associated variance. Fay and Herriot (1979) used a direct estimate within a hierarchical 

model, and our approach is in the same spirit. The direct estimator is

(6)

where wik is a weight which, in the simplest case, is given by  where πik is the 

probability that the k-th person in the i-th area is sampled. We let  be the 

estimated variance of , see for example, Särndal et al. (1992). The estimator (6) is design 

unbiased, but Bayesian modeling requires more than bias correction, we need a full 

probability model for the data. Viewing the “data” as  perhaps the first candidate 

for a likelihood would be the asymptotic normal distribution  This distribution 

will be accurate for large samples, but in small samples will be inadequate, with one reason 

being that the range is not restricted to [0,1]. Our proposal is based on a binomial 

approximation to the distribution of the effective number of cases, which we define shortly. 

We begin by defining an effective sample size  In a simple random sample, the estimated 

variance would be , where  is the estimator in (6). The effective sample size 

 is then obtained by solving  to give

(7)

Using the effective sample size rather than the actual sample size acknowledges the variable 

information that each individual supplies under complex sampling. The precision of an 

estimate from a complex sample can be higher than for a simple random sample, because of 

the better use of population data, obtained via stratification and post-stratification. However, 

the precision can also be lower, either because of correlation within clusters (which reduces 

information), or because the design was optimized for estimating a specific quantity which 

is not well correlated with the quantity of interest (see the right panel of Figure 1 for the 

effective versus observed sample sizes in the BRFSS example). The ratio of the effective 

sample to the actual sample size is the reciprocal of Kish’s “design effect” (Kish 1995), a 

standard summary of the efficiency of a sampling design.
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Our likelihood derivation goes one step further by defining an effective number of cases 

as the product of the effective sample size  and the weighted proportion  estimated via 

(6):

(8)

In the supplementary materials we describe how we overcome the difficulties in using (7) 

when mi ≠ Ni and  or . In the case of mi = Ni then Pi is known and the 

likelihood is a point mass at this value. Since the likelihood corresponds to a point there will 

be no shrinkage from the prior (as is desirable).

3.2.2. Sample Weighted Bayesian Hierarchical Models—To incorporate sample 

weights in a three-stage hierarchical model we define the first stage likelihood as

where  and  are as defined in Section 3.2.1. By construction, the sampling distribution 

of the commonly used estimator  is unbiased for the population prevalence Pi (under 

the same conditions as the estimator (6) is unbiased) and the reciprocal of the Fisher 

information is equal to the design-based variance estimate, giving an appropriate indication 

of precision. As a binomial distribution, it also respects the [0; 1] bounds on Pi.

A related approach was suggested by Raghunathan et al. (2007), in the context of combining 

data from multiple sources. For estimating a proportion, they assume the model 

, where  is again the effective sample size. The 

arcsine square root transformation stabilizes the variance but may be deficient for areas with 

small sample sizes. In addition, the model does not constrain the target proportions of 

interest to lie within [0, 1].

In terms of inference, for concreteness we focus on predicting the total count Ti for small 

area i. The point estimate of the population count is

(9)

where  is the direct estimator (6) and the variance is

(10)

In a Bayesian analysis one may summarize the posterior distribution for Ti using quantiles. 

If a point estimate is required then it is given by (9) with  replaced by the posterior mean 

or median. The posterior variance var (Ti|y) is given by (10) with  replaced by the 

posterior variance, var(Pi|y).
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3.3. Implementation

The usual implementation of Bayesian hierarchical models is via Markov chain Monte Carlo 

(MCMC). However, the large computational burden can impede the application of Bayesian 

hierarchical models in practice, and there is a need for convergence assessment which makes 

the approach difficult to automate. For these reasons, we employ the integrated nested 

Laplace approximation (INLA) which has recently been proposed as a computationally 

convenient alternative to MCMC (Rue et al., 2009). This method carries out fully Bayesian 

inference by combining Laplace approximations and numerical integration in a very 

efficient manner, see Rue et al. (2009) for details. Fong et al. (2010) provide a 

comprehensive review of implementing Bayesian GLMMs using INLA, including a 

comparison with MCMC. These authors illustrate the accuracy of INLA in a range of 

examples, and this accuracy has now been borne out in multiple publications in a variety of 

application areas, see for example Rue et al. (2009); Paul et al. (2010); Schrodle et al. (2011) 

and Riebler et al. (2012). For the approach that we advocate, based on the effective sample 

size, we use the survey package (Lumley, 2010) (to obtain the required variance estimate) in 

combination with the R implementation of INLA. Example code can be found at http://

faculty.washington.edu/jonno/cv.html. The supplementary materials contain example INLA 

and WinBUGS code, along with comparisons for a typical simulation.

INLA is particularly useful for simulation studies, as we demonstrate in the next section. In 

our simulations the gain in speed is substantial, for example, on an Intel Quad CPU Q6700 

with 2.66 GHz Process and 4.00 GB memory computer using Windows 7 it takes 1439s to 

run 205,000 iterations of MCMC while in the R implementation of INLA, the total running 

time is 5.2s.

4. Simulation Study

In this section we report the results of simulation studies, under a variety of scenarios, to 

evaluate the performance of:

Direct Estimates: using either the observed counts yi and sample sizes mi (Unadjusted) 

or the design-based estimator defined in (6) along with the appropriate variance 

estimate  (Adjusted).

Independent Normal Random Effects: The hierarchical model with independent 

normal random effects given by (3) along with a binomial first stage model based on 

(yi,mi) (Unadjusted) or  (Adjusted).

Spatial Normal Random Effects: The hierarchical model with both independent 

normal random effects and spatial ICAR random effects given by (5) along with a 

binomial first stage model based on (yi,mi) (Unadjusted) or  (Adjusted).

At the third stage of the hierarchical models, we assume an improper uniform prior for β0, 

and assign Gamma (0.5, 0.008) distributions to the precision parameters  and  This 

prior gives a 95% range for the residuals odds of (0.5,2.0) (Wakefield, 2009). In both the 

simulation study and the BRFSS example there is very little sensitivity to the priors on the 
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variance components, since the number of areas is large (an example is given in the 

supplementary materials).

In the paper we compute and report three statistics to evaluate the estimates: the squared 

bias, the variance and the mean squared error (MSE). In the supplementary materials we 

give more extensive summaries. Let S denote the total number of simulations, and Ti the 

“true” diabetes count in area i (which for each scenario is kept constant across simulations). 

The summary statistics are calculated as

In both the simulations and the BRFSS example we use (9) as the point estimate, using the 

posterior median for the Bayesian approaches. So far as the variance is concerned we can 

use  for the direct estimates and the posterior variance var(Pi|y) for the Bayesian 

approaches. Estimators with small MSE are considered superior, although amongst 

estimators with comparable MSE those with lower bias are preferred because they lead to 

interval estimates with improved calibration. We examine two types of bias that are 

commonly seen in complex surveys, selection bias and non-response bias. The former bias 

occurs when the variables upon which selection are based are associated with the outcome. 

Non-response bias occurs when sub-populations respond to the survey at different rates.

In all simulation studies, we take the geography of Washington State at the zip code level 

and focus on the prediction of a total count for each zip code, with the outcome of interest 

being labeled “Diabetes” since we base the prevalences on this variable. The design weights 

are the inverse of the sampling probabilities, and the post-stratification weights are based on 

age-gender population data for Washington State. The sample size mi is chosen to be the 

actual number of individuals who responded in the Washington 2006 BRFSS survey. For 

those zip codes that result in  or  we use the technique described in the 

supplementary materials to obtain a variance estimate, and therefore an effective sample 

size. There were 98 such areas for the 2006 BRFSS application. For the simulation study, 

the number of such areas varies across simulations.

4.1. Non-Response Bias

We examine five scenarios with different response probabilities. We consider stratified 

random sampling with stratification based on gender and three age bands, so that there are J 

= 6 groups. In all five scenarios, individuals are selected randomly within each area. 

However, a selected individual in group j and area i responds to the survey with probability 

qij.

Scenario 1: the ideal situation where every selected individual responds to the survey. The 

prevalences of diabetes pij we use across the six gender-age groups j and in area i are given 
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in Table 2. The median values are based on National Surveillance Data from the CDC 

(http://www.cdc.gov/diabetes/statistics/prev/national/menuage.htm).

Scenario 2: a more realistic sampling situation in which not every selected individual 

responds to the survey, with the response rates being different for each group j, but constant 

across areas. Table 3 gives the response rates; the groups with older people have slightly 

higher response rates, which is generally the case.

Scenario 3: we allow the response rates for each group to vary between areas via

where  The response rates in this scenario are controlled (via b) in such a way 

that the median response rates for each group correspond to those in scenario 2, with 95% 

ranges given in Table 3.

Scenario 4: the prevalence rates include spatial dependency induced by adding a spatially 

correlated area-level covariate

The spatial covariate xi is simulated from a zero mean, unit variance ICAR model, using the 

method described in Rue and Held (2005). We choose b to give the ranges in Table 2. The 

purpose of this scenario is to investigate the effect of spatial dependency in the prevalence 

when the underlying cause of the dependency is unobserved. In this case, the spatial random 

effects are being used as a surrogate for the unmeasured covariates xi.

Scenario 5: the response rates for each group vary between areas by adding a spatial 

component

where xi again is simulated from a zero mean, unit variance ICAR model with b chosen to 

give a range for the response rates qij as given in Table 3.

For scenarios 1, 2, 3 and 5 the diabetes status of each individual in the total population is 

simulated using the prevalence rates described in scenario 1. These population outcomes are 

then considered the “truth” in these scenarios 5. In scenario 4, the true prevalence rates 

exhibit spatial dependency and so a second population is generated.

4.2. Selection Bias

To investigate the effects of selection bias, let Zijk represent a binary design variable that is 

used to dictate whether the k-th individual in group j and area i will be sampled. We use the 

population simulated from scenario 1 in the simulation study for non-response, and assume 

the model
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If s ≠ 0.1 a correlation is induced between the design and outcome variables Z and Y. We 

examine the extent of the correlation by assigning s values of 0.1 (no selection bias), 0.3, 0.5 

and 0.8. Let ri denote the percentage of the population with Z = 1 in area i. We set the 

sample size mi = m × ri/∑ ri, and within each area take half of the samples with Z = 1 and 

the remainder with Z = 0. Hence, we are carrying out stratified random sampling with 

allocation proportional to ri. Oversampling individuals with certain characteristics is a 

common technique in surveys. For the simulations, the information on the variable Z is used 

only when conducting the survey (and when calculating the sample weights) and is 

considered unavailable at the time of analysis. In the supplementary material we report 

additional results in which the data on the design variables are available, and we fit various 

models using these data.

For those analyses in which Zi is unavailable at the time of analysis, the pairwise sampling 

probabilities πikk′ are also unavailable, and it is necessary to use an approximation to the 

Horvitz-Thompson variance formula to obtain  In public-use survey data, where sampling 

fractions are typically small, it is standard to approximate the variance by pretending the 

sample is taken with replacement; this approximation is typically slightly conservative.

4.3. Results

The simulation results for non-response bias are presented in Table 4. In scenarios 1 and 4, 

in which everyone responds to the survey, the unadjusted direct estimator is approximately 

unbiased by construction and therefore has the smallest squared bias. Nothing is gained by 

adjustment and there is a slight increase in the bias. However, in scenarios 2, 3, and 5 when 

non-response exists, the unadjusted estimator is highly biased. This bias can be reduced by 

post-stratification, as seen in the smaller squared bias in the adjusted direct estimates; this is 

the main purpose of post-stratification in large surveys. The reduction in bias carries over to 

the hierarchical estimators based on adjusted data; these estimators exhibit bias due to the 

shrinkage. Moving from scenario 2 to 3, the results show an increase in both the bias and 

variance under all models, due to the increased variation in the response rates in the 

simulated data. However, the effective number of cases (adjusted) approach provides a 

substantial reduction in MSE as compared to the direct estimates.

In scenarios 4 and 5, we impose spatial dependency in the data (in the prevalence rates and 

response rates, respectively) but pretend the source of the dependency is unknown to us. The 

spatial models produce estimates with the smallest MSE when compared to the other 

estimation methods. The spatial random effects can serve as a surrogate for the variables 

responsible for the dependency in the underlying prevalence. We note that in the other 

simulation scenarios where no spatial dependency is imposed, the spatial model still gives 

the minimum MSE. We speculate that less bias is imposed by the local smoothing of the 

Bayesian spatial model, compared to the global smoothing of the independent random 

effects approach. We would not expect this phenomenon to always occur, however.
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Results from the selection bias simulations are summarized in Table 5. It is clear that 

ignoring the design variable used in the sampling procedure results in substantial bias, with 

the bias being higher if the correlation between the design variable and the outcome variable 

is stronger, as expected. If the design variable is available to the analyst, then the results in 

the supplementary material show there are substantial gains in reducing MSE. Again the 

spatial model performs well, with the minimum MSE for all situations apart from s = 0.8.

The supplementary materials include an examination of the behavior of squared bias, 

variance and MSE as a function of sample size.

5. Motivating Example Revisited

We apply the unadjusted and adjusted Bayesian hierarchical models we developed in 

Section 3 to the Washington State 2006 BRFSS data introduced in Section 2. Sampling 

weights are taken to be the final weight used in the BRFSS survey, as summarized in 

equation (1). We emphasize that the design variables are unavailable so that the weights are 

the only available means for adjusting for selection bias. For those nine areas with only mi = 

1 observation, the effective sample size and effective number of observation are based on 

the variance estimation procedure described in the supplementary materials. The right panel 

of Figure 1 plots the resultant effective sample sizes versus the observed sample sizes. We 

highlight that, for some areas, the effective sample size is larger than the observed sample 

size; we will provide further explanation shortly.

Figure 2 presents the boxplots of logit-transformed estimated diabetes prevalence by zip 

code under different approaches. For the direct unadjusted approach, we employ the 

empirical logit transformation, i.e. log[(yi + 0.5)/(mi + 0.5)]. There is a large amount of 

variation in the unadjusted direct estimates due to large sampling variability, with the 

variability of the adjusted estimates being only slightly reduced. The variability of the 

estimates is significantly reduced under the hierarchical models. The location of the adjusted 

estimates is reduced relative to the unadjusted estimates in all models. The spatial random 

effects model gives estimates with slightly increased variation compared to the independent 

random effects model. In the simulation studies, the Bayesian spatial random effects models 

perform well in a range of circumstances. Further, we only see a small loss of performance 

when the weights are incorporated. Hence, we report inference based on the adjusted 

Bayesian spatial model. In a more comprehensive analysis we would identify areas with 

relatively large samples and then reduce the number of samples in this area. We would then 

compare the predictive performance of the candidate models in these areas, as compared to 

the “gold standard” of the full sample (Srebotnjak et al., 2010).

For the adjusted Bayesian spatial model 11% of the total residual variation is spatial. The 

standard deviation of the non-spatial and spatial random effects are 0.18 and 0.12 and 95% 

intervals for the non-spatial and spatial residual odds of diabetes are (0.70, 1.42) and (0.79, 

1.27), respectively. Hence, for the BRFSS diabetes outcome there is significant excess-

binomial variation, with the major component being non-spatial. Figure 3 gives the map that 

we would report, based on the adjusted spatial model. There are higher diabetes counts 

around the Puget Sound area (the channel running north-south with many small, highly 
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populated, zip codes to the east) and the central south area. These areas correspond to King, 

Snohomish and Spokane counties and the Yakima valley, which are the most populated 

counties in Washington State. The supplementary materials include a map of the estimated 

uncertainty (posterior standard deviation) of the predicted diabetes counts using the adjusted 

spatial model.

Figure 4 shows the standardized differences in the total count estimates

for the adjusted spatial model and the adjusted direct approach. We see lots of differences, 

with a magnitude that is important; the totals in Figure 3 have a 10–90% range of (30, 1591). 

There is clear spatial structure in the differences, as we might expect. The supplementary 

materials includes the analogous plot for the adjusted and unadjusted spatial models.

To illustrate the effect of our proposed method we now provide some examples that 

compare the observed sample size and the effective sample sizes. For zip code areas with 

moderate sample size and somewhat balanced samples in each age/gender group, the 

effective sample sizes and effective number of cases defined in our approach should be close 

to the raw data values, as shown in the right panel of Figure 1. We describe two 

circumstances when the effective and observed samples sizes can be quite different. The 

first circumstance is when the usual design-weighted estimate is 0 (i.e., 0 observed cases). 

For example, in zip code 98008 the observed sample size is 41 with 0 cases. The sample size 

for each age/gender group is: Female, 18–44, 12; Female, 45–74, 9; Female, 75+, 3; Male, 

18–44, 8; Male, 45–74, 7; and Male and 75+, 2. Using the Bayes smoothing method based 

on a beta-binomial model, as described in the supplementary materials, the estimated 

prevalence is modified to 0.022 which is significantly different from the raw estimate of 0 

and far more reasonable. In this case, the traditional design-based estimation approach 

therefore fails even when the sample size is moderate. A second circumstance in which the 

effective and observed sample sizes can differ is when the samples are highly unbalanced 

(i.e., most of the samples are from a particular age/gender group, with no/small samples 

from other groups). As an example we take zip code 98294. The observed sample size is 16 

with 1 case. However, of the total sample size of 16, 4 are Female 18–44, 10 are Female 45–

74, and 2 are Male with 45–74 with no individuals from the remaining age/gender groups. 

After the adjustment under our proposed method, the effective sample size for this area is 

estimated as 42.2 (the final weights for the 14 individuals range between 78 and 495) with 

an effective number of cases of 0.9. The observed ratio of effective number of cases to 

sample size gives a naive estimate of the prevalence as 0.02, which is quite different to the 

raw estimate of 0.06.

6. Conclusion

In this paper we have described a pragmatic approach to SAE that allows spatial smoothing, 

and incorporates sample weights to acknowledge the design. We have assumed that the 
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design variables are unavailable so that directly modeling of the sampling mechanism is not 

possible. By using the sample weights to adjust the data before estimation we separate the 

design-based survey computations and the model-based Bayesian shrinkage, allowing both 

components to be modified as the situation requires. The simulation study demonstrates the 

potential of the approach for bias reduction relative to an approach that ignores the weights 

and variance reduction relative to a non-hierarchical approach, under a number of difference 

scenarios. We have utilized INLA for computation due to its fast computation time and 

convenient R implementation. For the simulations and application of this paper INLA is 

very accurate but in general one should be careful since the algorithm can produce 

inaccurate inference in some situations, most notably for rare binary events (Fong et al., 

2010).

Rao and Wu (2010) have recently proposed another way of combining survey design 

information and Bayesian models, through a version of empirical likelihood with a similar 

rescaling by effective sample size. They considered only complete population mean 

estimation, but an extension of their approach to SAE would be of interest.

Often there will be areas within which no samples are collected. In such situations, under the 

Bayesian approach that we have followed, the unknown count can be treated as a missing 

value. A prediction for this count can be carried out as part of the model fitting, and is easily 

implemented in INLA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
For 2006 Washington State BRFSS data: histogram of observed sample sizes by zip code 

(left), and effective sample sizes versus observed sample sizes (right).
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Figure 2. 
Estimated diabetes prevalence by zip code under various unadjusted and adjusted models for 

the 2006 BRFSS data. The left axis is on the logit scale and the right axis is on the [0, 1] 

scale.
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Figure 3. 
The adjusted estimates of the total diabetes counts by zip code in Washington State under 

the spatial model. The red lines denote county boundaries.
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Figure 4. 
Map of the standardized difference between the adjusted spatial model and the adjusted 

direct approach.
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Table 2

Diabetes prevalence rates pij in area i, i = 1, …, I, and by age and gender group, j = 1, …, 6. In scenarios 1, 2, 

3 and 5 the rates are fixed across areas. In scenario 4 the values vary, with spatial structure, across areas, with 

the first figure in each cell denoting the median rate, and the figures in parentheses a 95% range.

Scenario 18–44
Age
45–74 75+

Female 1, 2, 3, 5
4

0.017
0.017 (0, 0.034)

0.15
0.15 (0.085, 0.21)

0.17
0.17 (0, 0.32)

Male 1, 2, 3, 5
4

0.014
0.014 (0, 0.027)

0.16
0.16 (0.089, 0.23)

0.19
0.19 (0, 0.33)
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Table 3

Response rates qij in area i, i = 1, …, I and by age and gender group, j = 1, …, 6. In scenarios 1 and 4 there is 

full response. In scenario 2 the response rates are fixed across areas but vary by group. In scenario 3 the 

response rates vary, without spatial structure, across areas, with the first figure denoting the median rate, and 

the figures in parentheses a 95% range. In scenario 5 the response rates vary, with spatial structure, across 

areas, with the first figure in each cell denoting the median rate, and the figures in parentheses a 95% range.

Scenario 18–44
Age
45–74 75+

Female 1, 4 1 1 1

2 0.55 0.65 0.8

3 0.55 (0.38, 0.70) 0.65 (0.48, 0.79) 0.80 (0.67, 0.89)

5 0.55 (0.46, 0.65) 0.65 (0.57, 0.74) 0.80 (0.74, 0.86)

Male 1, 4 1 1 1

2 0.50 0.60 0.75

3 0.50 (0.34, 0.66) 0.60 (0.43, 0.75) 0.75 (0.60, 0.86)

5 0.50 (0.41, 0.60) 0.60 (0.51, 0.69) 0.75 (0.68, 0.82)
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