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The Use of Score Tests for Inference on Variance
Components

Geert Verbeke* Geert Molenberghs'

Abstract

Whenever inference for variance components is required, the choice between one-
sided and two-sided tests is crucial. This choice is usually driven by whether or not
negative variance components are permitted. For two-sided tests, classical inferential
procedures can be followed, based on likelihood ratios, score statistics, or Wald statistics.
For one-sided tests, however, one-sided test statistics need to be developed, and their
null distribution derived. While this has received considerable attention in the context of
the likelihood ratio test, there appears to be much confusion about the related problem
for the score test. The aim of this paper is to illustrate that classical (two-sided) score
test statistics, frequently advocated in practice, cannot be used in this context, but that
well-chosen one-sided counterparts could be used instead. The relation with likelihood
ratio tests will be established, and all results are illustrated in an analysis of continuous
longitudinal data using linear mixed models.

Keywords: Boundary condition; Likelihood ratio test; Linear mixed model; One-
sided test; Score test; Variance component.

1 Introduction

In a variety of applied statistical problems, there is a need for inference on variance components.
This includes a variety of applied fields, for example, random-effects ANOVA models (Nelder
1954), linear mixed models (Verbeke and Molenberghs 2000), generalized linear and non-linear
(mixed) models (Jacgmin-Gadda and Commenges 1995), overdispersion (Cox 1983, Smith and
Heitjan 1993, Hines 1997, Lu 1997), clustering (Britton 1997) and homogeneity in stratified

analyses (Liang 1987).
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To fix ideas, we will focus on the setting of a relatively simple linear mixed model, the so-called
random-intercepts model:

Yij = a8+ b + e, (1)

where Y;; is the response for member j = 1,...,n; of cluster ¢ = 1,..., N, x;; is a vector of
known covariate values, (3 is a vector of unknown regression coefficients, b; ~ N(0,72) is a
cluster-specific random effect, assumed to be independently distributed from the residual error
components £;; ~ N(0,0?). Classical inferential procedures are based on the likelihood of the
marginal model, obtained by integrating (1) over the random effects. Grouping the Y}; into a

vector Y'; and assembling the rows x;; into a matrix X, this marginal distribution is
Y, ~ N(X;B,7°Jn, + 0 1L,), (2)

in which I, denotes the identity matrix of dimension n;, and where J,,. equals the n; x n;

matrix containing only ones.

Regarding the variance component 72 in the above model, one can take two views. In the first
view, where the focus is entirely on the resulting marginal model (2), negative values for 72
are perfectly acceptable (Nelder 1954, Verbeke and Molenberghs 2000, Sec. 5.6.2), since this
merely corresponds to the occurrence of negative within-cluster correlation p = 72/(72 + o2).
This might occur, for example, in a context of competition such as when littermates compete
for the same food resources. In such a case, the only requirement is that 72 + o2 > 0, for
V; = 72J,, + %I, to be a positive definite, marginal covariance matrix. Further discussions
on negative variance components can be found in Thompson (1962) and Searle, Casella and
McCulloch (1992). In the second view, when the link between the marginal model (2) and its
generating hierarchical model (1) is preserved, thereby including the concept of random effects
b; and perhaps even requiring inference for them, it is imperative to restrict 72 to nonnegative

values.

The first situation, which we will term the unconstrained case, is standard regarding inference



for the variance component 72. In the second situation (the constrained case), however, one

typically needs one-sided tests of the null-hypothesis
Hy: =0 versus Hy > 0. (3)

As the null-hypothesis is now on the boundary of the parameter space, classical inference no
longer holds, appropriate tailored test statistics need to be developed, and the corresponding

(asymptotic) null distributions derived.

While this has received considerable attention in the case of the likelihood ratio test (Self
and Liang 1987, Stram and Lee 1994, 1995), there is still much confusion about the related
problem for the score test. For some uses of a score test in boundary situations, see Liang
(1987), Lin (1997), Gray (1995), Jacgmin-Gadda and Commenges (1995), Dean and Lawless
(1989), Dean (1992), Dean, Ugarte and Militino (2001), Gueorguieva (2001), Militino, Ugarte
and Dean (2001), Smith and Heitjan (1993). Some authors implicitly take the unconstrained,
two-sided view, with a few happy exceptions who explicitly adopt such a view (Paul and Islam
1995). Jacgmin-Gadda and Commenges (1995), Lin (1997), le Cessie and van Houwelingen
(1995), and Dean, Ugarte, and Militino (2001) do not explicitly specify the alternative model,
thereby implicitly assuming two-sided alternatives, while clearly being in a one-sided setting.
We hope to illustrate that, when required by the scientific problem, a fully one-sided approach
is both feasible and more appropriate. Silvapulle and Silvapulle (1995) have shown how a
one-sided score test can be defined, both in the scalar as well as in the vector parameter case.
Important related work is given in Hall and Praestgaard (2001). While these authors also
focus on the restricted score tests in the context of mixed models, there are three important
differences with our take on the problem. First, Hall and Praestgaard (2001) explicitly advocate
the use of restricted score tests, thereby improving upon earlier work (Lin 1997) in terms of
efficiency. We point out that the choice between a constrained/unconstrained setting should
be tightly linked to a constrained/unconstrained alternative space. Second, since our score

test statistics follow from the work of Silvapulle and Silvapulle (1995), their analytic forms are



slightly different from those of Hall and Praestgaard (2001). Indeed, based on the results of
Silvapulle and Silvapulle (1995), who showed that the asymptotic equivalence of the likelihood
ratio and score tests holds, also in the constrained case, the null distribution of the one-sided
score tests will be derived. Finally, we put a lot of emphasis on the extension of the well-
known asymptotic equivalence of the likelihood ratio and score tests to the constrained case,
as follows from Silvapulle and Silvapulle (1995). We will argue that based on this equivalence,
the researcher has full choice between both testing procedures, and moreover, opting for a
constrained likelihood ratio tests has many computational advantages in practice. Emphasis

will be on intuitive explanation of the theoretical results, rather than on mathematical details.

In Section 2, we continue with our initial model (1), and we will show how one-sided likelihood
ratio and score tests can be constructed, and the corresponding asymptotic null distribution
will be derived heuristically. Afterwards, in Sections 3 and 4, more general results will be
discussed for the likelihood ratio test and for the score test, respectively. Note that our aim
is not to argue for or against score tests, but rather show how to properly use one-sided score
tests for variance components. Computational issues are discussed in Section 5. In Section 6,
the results will be illustrated in an analysis of continuous longitudinal measurements, using
linear mixed models, where the need for random effects is to be tested. Finally, Section 7

summarizes the main results.

2 The Random-intercepts Model

To introduce our ideas in a simple but generic setting, we continue the discussion of the
random-intercepts model (1). Under the unconstrained parameterization, i.e., the model under
which negative values for 72 are allowed, classical inferential tools are available for testing the

general two-sided hypothesis

Hy: 72 =0 versus Hyo: 7° # 0.



Wald, likelihood ratio, and score tests are then asymptotically equivalent, and the asymptotic
null distribution is well known to be x? (Cox and Hinkley 1990). Under the constrained

2

model, i.e., the model where 7= is restricted to the non-negative real numbers, the one-sided

hypothesis (3) is the only meaningful one.

Appropriate test statistics can now be obtained as follows. Suppressing dependence on the
other parameters, let 6(72) denote the log-likelihood, as a function of the random-intercepts

2

variance 72. Further, let 72 denote the maximum likelihood estimate of 72 under the uncon-

strained parameterization. We first consider the likelihood ratio test, with statistic:

2
Trr = 2In [maXHl—Ag(T)]

max g, {(72)
Two cases, graphically represented in Figure 1, can now be distinguished. Under Case A, 72
is positive, and the likelihood ratio test statistic is identical to the one that would be obtained

2. Hence, conditionally on 72 > 0, T has

under the unconstrained parameter space for 7
asymptotic null distribution equal to the classical x?. Under Case B however, we have that,
under Hi 4 as well as under Hy, £(72) is maximized at 72 = 0 yielding Tz = 0. Further note

that, under Hy, both cases occur with 50% probability. Hence, the asymptotic null distribution

of 11 g Is obtained from
P(TLR > C|H0)
= P(Typr > c|Hy,7* > 0)P(7* > 0|Hy) + P(T1r > c|Ho, 7> < 0)P(7* < 0| Hy)

1 1
= §P(X? >C)+§P(X3>C)7

where x2 denotes the distribution with all probability mass at 0. Hence, the asymptotic null
distribution of the one-sided likelihood ratio test statistic is a mixture of two chi-squared
distributions, with degrees of freedom 0 and 1, and with equal mixing proportions 1/2. This
was one of Stram and Lee's (1994, 1995) special cases. Note that, whenever 72 > 0, the
observed likelihood ratio test statistic is equal to the one under the unconstrained model, but
the p-value is half the size of the one obtained from the classical ] approximation to the null

distribution.



We now consider the score test. The usual form of the test statistic is given by

. el ) g

Te =
s [ or?
Nuisance parameters are suppressed from notation, and replaced by their MLE's. In the special

case of (2) with n; = n, straightforward algebra produces:

Nu (€ - 1)?

Ty = W~
ST 9 e -1’

with )
1 1
C = 2 )
o? Nn (Zy])
in which o2 is replaced by its maximum likelihood estimate under the null hypothesis, 52 say.

Without loss of generality, it is assumed that the fixed-effects parameters are zero. In the

reverse case, ;; needs to be replaced by appropriate residuals.

Now, score test (4) implicitly assumes a two-sided alternative. Hence, the test statistic itself
need to be redefined appropriately in order to be able to discriminate between positive and
negative alternative values for 72. The same two cases as for the likelihood ratio test can be
considered (see Figure 1). Under Case A, 72 is positive, and the positive score 9¢(7?) /072
at zero is evidence against Hy in favor of the one-sided alternative H,;. Hence, (4) can be
used as test statistic, provided that 72 > 0. This implies that, conditionally on 72 > 0 and
under Hy, our test statistic asymptotically follows the classical x? distribution. Under Case
B, however, the score at 72 = 0 is negative, and can therefore clearly not be used as evidence
against Hy in favor of H.;. Hence, whenever 72 is negative, (4) is no longer meaningful as test
statistic. Considering that a negative score at zero supports the null hypothesis, a meaningful
test statistic is obtained from replacing (4) by

Be(r2) 21 922 o
[ ar? 72—0} [_87'2872 T2 0} if7=20

Ty = - B (5)
0 if 72 < 0.

The corresponding asymptotic null distribution is now obtained from

P(Ts > c|Hy)



= P(Ts > c|Hy, 7> > 0)P(7> > 0|Hy) + P(Ts > c|Hy, 7> < 0)P(7> < 0| Hp)

1 1
= §P(X? > c) + §P(X3 > ¢),

which is identical to the null distribution derived earlier for the likelihood ratio test. This

heuristic but insightful argument will be formalized and generalized in Section 4.

Note that in this scalar case, an equivalent test consists of appropriately standardizing the
score function rather than embedding it in a quadratic form. The choice between cases A
and B then merely becomes a choice between classical two-sided versus one-sided Z-type test

procedures.

3 Likelihood Ratio Tests

When the use of the likelihood-ratio test is envisaged, it is now well known that hypotheses
such as (3) pose non-standard testing problems (Verbeke and Molenberghs 2000, pp. 64-73).
Such problems have been known for a long time (Nelder 1954, Chernoff 1954). Using results
of Self and Liang (1987) on nonstandard testing situations, Stram and Lee (1994, 1995) have
been able to show that the asymptotic null distribution for the likelihood ratio test statistic for
testing hypotheses of the type (3) is often a mixture of chi-squared distributions rather than the
classical single chi-squared distribution. For ANOVA models with independent random effects,
this was already briefly discussed by Miller (1977). This complication cannot be relieved by
considering alternative parameterizations for the variance components, contradicting the once
popular but false belief that replacing covariance matrices by their Cholesky decomposition was
able to turn the problem in a standard one. Indeed, under the null hypothesis, the Cholesky

decomposition does not map 1 to 1 onto the original parameterization.

Stram and Lee (1994, 1995) discuss likelihood ratio tests for variance components in linear

mixed models, which are generalizations of (1) to models with multiple, possibly correlated,
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random effects. These models typically appear in the analysis of continuous longitudinal data.
Let Y; denote the n;-dimensional vector of measurements available for subject 4, 2 = 1,..., N.

A general linear mixed model then assumes that Y; satisfies
Y, = XiB+Zb;+e, (6)

in which 3 is a vector of population-average regression coefficients called fixed effects, and
where b; is a vector of subject-specific regression coefficients. The b; describe how the
evolution of the ith subject deviates from the average evolution in the population. The matrices
X; and Z; are (n; X p) and (n; X ¢) matrices of known covariates. The random effects b,
and residual components e; are assumed to be independent with distributions N (0, D), and
N(0,0°1,,), respectively. Inference for linear mixed models is based on maximum likelihood or
restricted maximum likelihood estimation under the marginal model for Y}, i.e., the multivariate

normal model with mean X;3, and covariance V; = Z;DZ] + ¢*I,, (Laird and Ware 1982,
Verbeke and Molenberghs 2000).

Similar to our simpler model (1), the marginal model does not require D to be positive definite,
while a random-effects interpretation of the model does, corresponding to the unconstrained
and constrained parameterizations, respectively. As before, inference under the unconstrained
model for the variance components in DD can be based on the classical chi-squared approx-
imation to the null distribution for the likelihood ratio test statistic. Under the constrained
model, Stram and Lee (1994, 1995) have shown that the asymptotic null distribution for the
likelihood ratio test statistic for testing a null hypothesis which allows for k correlated random
effects versus an alternative of k + 1 correlated random effects (with positive semi-definite
covariance matrix Dy 1), is a mixture of a x7 and a %, ;, with equal probability 1/2. For more
general settings, e.g., comparing models with k£ and £ + £’ (k' > 1) random effects, the null
distribution is a mixture of x? random variables (Shapiro 1988, Raubertas, Lee, and Nordheim

1986), the weights of which can only be calculated analytically in a number of special cases.



4 Score Tests

Our heuristic arguments in Section 2 have suggested that employment of score tests for testing
variance components under the constrained parameterization requires replacing the classical
score test statistic by an appropriate one-sided version. This is where the general theory of
Silvapulle and Silvapulle (1995) on one-sided score tests proves very useful. They consider
models parameterized through a vector @ = (X', 1)’)’, where testing a general hypothesis of

the form
Hy:4¥y=0 versus Hy: ¢ el

is of interest. In our context, the alternative parameter space C equals the nonnegative real
numbers (e.g., when testing (3), or the set of positive semi-definite covariance matrices D
(e.g., when testing for the need of variance components in linear mixed models, Section 3). In
general, Silvapulle and Silvapulle (1995) allow C to be a closed and convex cone in Euclidean
space, with vertex at the origin. The advantage of such a general definition is that one-sided,

two-sided, and combinations of one-sided and two-sided hypotheses are included.

Silvapulle and Silvapulle (1995) consider a general class of score-type test statistics. Applying
their theory to our situation yields the following results. Let the log-likelihood function be

denoted by £(8). The associated score function equals

ol

SN(O) = 90

Assume the existence of a nonsingular matrix H (@) such that, for N — oo,
(A1) : N7'285(8) 5 N(0,H(8))
and, for all ¢ > 0,

(A2) : sup (N7 {Sn(0+N"’h) — Sx(0)} + H(O)h| = o,(1).
11| <a



Further, decompose Sy as Sy = (S, Sivy)s let Han(0), Hxy(0) and M,,(0) be the
corresponding blocks in H(8), and define 8 = (X,0'). @ can be estimated by 8, =
(S\I,O’)’, in which X is the maximum likelihood estimate of A, under ;. Finally, let Zy be

equal to Zy = Nfl/QSNw(aH). A one-sided score statistic can now be defined as
Ts = ZNH;)0m)Zy — inf{(Zx —b)Hy}(0n)(Zy —b)beC). (7)

Note that our score statistic (5) derived heuristically for the random-intercepts model is a

2

special case of the general test statistic (7). Indeed, when 77 is positive, the score at zero

is positive, and therefore in C, such that the infimum in (7) becomes zero. For 72

negative,
the score at zero is negative as well and the infimum in (7) is attained for b = 0, resulting in

Ts =0.

It follows from Silvapulle and Silvapulle (1995) that, provided regularity conditions (A1) and
(A2) hold, for N — oo, the likelihood ratio test statistic Ty satisfies T r = T + 0,(1).

Further, if the observed T} equals %, then the large-sample p-value equals

ng{tsaH¢¢(0H)7C}7 (8)

where

£(t,B,C)=P[2'B'Z—inf {(Z-bYB(Z-b)lbeC} >
and Z ~ N(0,B). Shapiro (1988, Egs. 3.1 and 3.2) has shown that 1 — {(¢, B,C) equals
a weighted sum of chi-squared probabilities. The results obtained by Stram and Lee (1994,
1995) for the linear mixed model are included in Shapiro’s results. There are a few additional
results available. For example, if the null hypothesis allows for k uncorrelated random effects
(with a diagonal covariance matrix D},) versus the alternative of £ + k' uncorrelated random
effects (with diagonal covariance matrix Dy 4 ), the null distribution is a mixture of the form

k! K
o)

m=0

Shapiro (1988) shows that, for a broad number of cases, determining the mixture's weights is

a complex and perhaps numerical task.
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The above results show that the equivalence of the score and likelihood ratio tests not only
holds in the two-sided but also in the one-sided cases. At the same time, an appropriate
definition of the one-sided score statistic is produced, and its asymptotic null distribution has
been derived. In some cases, the analytic null distribution is easily obtained through the results
of Stram and Lee (1994, 1995), summarized in Section 3, and the equivalence between the

likelihood ratio and score tests.

Finally, it should be emphasized that all above results are valid provided that the condi-
tions (A1) and (A2) are satisfied. In particular, (A2) requires that the score Sy exists in a
sufficiently small neighborhood around Hy. For example, in our random-intercepts example
(Section 2), it is crucial to have valid models for sufficiently small but negative values of 72,
even in the constrained setting. As a counterexample, if we were to test Hy : 02 = 0 versus
the one-sided alternative H,4 : 0> > 0 for the variance ¢ in a univariate normal N(0,0?)

sample of size N, the score equals

ol N 1 X
2 _ _ 2
Sx(o7) = 902 9202 + @Z_lyi’

which, evaluated at o2 = 0, yields +co. Then, the above theory does not apply here as no
negative values for o can ever vyield a valid statistical model for our sample. Hence, in this

example, condition (A2) is no longer satisfied.

5 Computational Issues

In this section, computations for likelihood ratio and score test statistics will be discussed, for
the classical unconstrained as well as the constrained cases. The relative complexity of all four
cases will be addressed. Here, we focus on the general concepts, while a particular example

using the SAS procedures MIXED and NLMIXED is deferred to the Appendix.

In principle, calculation of the unconstrained likelihood ratio test statistic does not pose any

11



specific complications, provided both the null and alternative models can be fitted with stan-
dard software, and both log-likelihood values at maximum are returned, minus twice the
difference of which is then referred to the appropriate chi-squared distribution, to yield the

p-value.

Even in the unconstrained case, the score test calculations are more involved than their like-
lihood ratio counterparts, since the first and second order derivatives of the alternative log-
likelihood function are required, evaluated under the null hypothesis. These cannot easily be
obtained in many standard packages without additional programming. Once these derivatives
have been obtained, they are the straightforward building blocks for the calculation of the test

statistic, while the p-value is obtained as in the previous case.

The constrained likelihood ratio test statistic can be obtained in the same way as in the
unconstrained case, provided the constraints are properly imposed onto the alternative model.
In many practical situations, this comes down to maximizing the likelihood under a positive
definiteness constraint on a covariance matrix D as, for example, in the linear mixed model
setting. Several routes can be followed. Replacing D by its Cholesky decomposition (D = L'L)
and maximizing over L rather than D turns the constrained optimization into an unconstrained
one. This route has been proposed by Lindstrom and Bates (1988). Note that the constrained
testing problem is not turned into an unconstrained one, because the Cholesky decomposition
does not map one-to-one onto the original parameterization, thus maintaining the need for
an appropriate testing theory as developed in this article and by Hall and Praestgaerd (2001).
Alternatively, a so-called barrier type approach can be followed, for example, by adding a
penalty alog{det(D)} to the log-likelihood function, for some pre-specified constant a. While
a careful consideration of the relative merits of these and other approaches is important and

interesting in its own right, it is beyond the scope of this paper.

The constrained score test statistic (7) is composed of two parts. The first term is identical

12



to the unconstrained counterpart, while the second term involves a constrained minimization
of the quadratic form (Zy — b)’H@(aH)(ZN — b) which cannot always be done analytically.
In such cases, additional software code needs to be written, invoking numerical constrained

optimization routines.

In both constrained cases, p-value computation is given by (8) which is a weighted sum of chi-
squared probabilities, the weights of which are known analytically in special (but important)

cases only.

6 Application: The Rat Data

Using a simple case study and a selected set of nested models, we illustrate (1) likelihood ratio
as well as score tests, (2) under both one-sided and two-sided alternatives, and (3) in cases

where a boundary estimate does and does not occur.

The data considered to this end are from a randomized longitudinal experiment, previously
described and analyzed by Verdonck et al. (1998), in which 50 male Wistar rats were random-
ized to either a control group or one of the two treatment groups where treatment consisted
of a low or high dose of the drug Decapeptyl, which is an inhibitor for testosterone production
in rats. The primary aim of the study was to investigate the effect of the inhibition of the
production of testosterone in male Wistar rats on their craniofacial growth. The treatment
started at the age of 45 days, and measurements were taken every 10 days, with the first ob-
servation taken at the age of 50 days. One of the responses of interest was the height of the
skull, measured as the distance (in pixels) between two well-defined points on X-ray pictures
of the skull, taken after the rat has been anesthetized. The individual profiles are shown in
Figure 2. Although rats were scheduled to be followed up to the age of 110 days, some drop

out prematurely because they do not survive anaesthesia. In fact, while 50 rats have been

13



randomized at the start of the experiment, only 22 of them survived the first 6 measurements,

so measurements on only 22 rats are available in the way anticipated at the design stage.

As before, let Y;; denote the response taken at time ¢;, for rat i. Verbeke and Lesaffre (1999)
and Verbeke and Molenberghs (2000) proposed to model the subject-specific profiles shown
in Figure 2 as linear functions of ¢t = In(1 + (Age — 45)/10). More specifically, their model is
of the form

Bo + bi + (1 + bai)ti; + €45, if low dose,
Yy = Bo + bui + (B2 + boi)ti; + 45,  if high dose, (9)
Bo + bui + (03 + bai)ti; + €45, if control.

Here, (3 is the average response at the time of randomization, while 3;, 3> and 33 are the
average slopes in the three different treatment groups. Further, the by; and by; are rat-specific
intercepts and slopes, representing the natural heterogeneity between rats with respect to
baseline values and with respect to evolutions over time, respectively. The above model is
an example of linear mixed model (6). As in our introductory example we have that, strictly
speaking, the marginal model does not require D to be positive definite, as long as the
resulting marginal covariance V; is. Hence, when testing for elements in D, two-sided tests
can be employed. However, they then no longer allow the hierarchical interpretation of the
model, i.e., the interpretation in which the variability in the data is believed to be generated
from an underlying random-effects model as in (9). If underlying random effects are believed

to be latently present, one-sided tests are required.

Several models can now be fitted and compared with one another. Table 1 summarizes some
of the results obtained from fitting and comparing a series of models to the rat data. Model 1
assume independent repeated measures and does not include any random effects; its only

2. Model 2 includes random intercepts only

variance component is the common variance o
and is therefore an example of (1), assuming all measurements Y;; within subject ¢ exhibit
equal correlation and common variance. Finally, Models 3 and 4 include random linear time-

effects by; as well, which may (Model 3) or may not (Model 4) be correlated with the random

14



intercepts by;.

Table 1 shows the results of one- as well as two-sided, likelihood ratio as well as score tests, for
model comparisons 2—1, 3-2, and 4-2. Comparison 2—1 is standard in the sense that, since the
unconstrained estimate of the random-intercepts variance di; under Model 2 is positive, the
one- and two-sided test statistics are identical, and only the null distribution is different. For
comparison 3—-2, the unconstrained estimate for the random-slopes variance dss is negative,
yielding different one- and two-sided test statistics. For the score test, for example, the infimum
in (7) is attained for b = 0, yielding zero as observed value for the one-sided test statistic.
For comparison 4-2, the infimum in (7) needs to be calculated numerically, and was found to

be equal to 1.93, which is attained for b = (—0.801, 0.187)".

In the likelihood ratio case, one might be tempted to combine a constrained calculation of
the test statistic with reference to the classical x? null distribution. This, however, would lead
to p-values that are too large. Therefore, the null hypothesis would be accepted too often,
resulting in incorrectly simplifying the covariance structure of the model, which may seriously

invalidate inferences, as shown by Altham (1984).

7 Concluding Remarks

Whenever inference for variance components is of interest, the choice between one-sided or
two-sided tests is crucial, depending on whether negative variance components are deemed
meaningful or not. For two-sided tests, classical inferential procedures can be followed, based
on likelihood ratios, score statistics, or Wald statistics, which have the same asymptotic null
distributions. For one-sided tests, however, one-sided test statistics need to be developed,
and their null distribution derived. In contrast to the case of likelihood ratio tests, this has

thus far not received much attention in the score-test case. Moreover, there seems to be a
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lot of confusion as to whether or not classical score tests are applicable in this setting. Using
heuristic arguments in the context of a simple linear random-effects model, we have shown why
those test statistics are not appropriate for testing one-sided hypotheses, and how one-sided
versions can be obtained. Then, the general theory of Silvapulle and Silvapulle (1995) has
been invoked to derive general one-sided score tests for variance components. Further, the
well-known equivalence between two-sided score and likelihood ratio tests is shown to hold

true for the one-sided counterparts as well.

In general, likelihood ratio tests as well as score tests are available for testing hypotheses about
variance components, and both procedures are asymptotically equivalent, for one-sided as well
as two-sided tests. The choice between one-sided and two-sided tests should be entirely driven
by the scientific question, the data analyzed, the models fitted, and the interpretation of the
parameters in those models. A frequently quoted justification for the use of score tests is
that they do not require fitting the alternative model. However, currently available software
easily allows pracitising statisticians to fit and compare a variety of models, containing many
variance components. Moreover, whenever one-sided tests are of interest, the score test may
require employing numerical optimization techniques for the calculation of the infimum in (7).
Therefore, it cannot be our intention to advocate the broad use of score tests for the inference
on variance components. Instead, the aim of this paper has been to enhance insight into the

score test and to illustrate the use of score tests in this context.

We hope to have indicated that one either can take an unconstrained view and then no
additional action is needed in case variance components are negative, or one takes a constrained
view and then the inferential procedures should be such that proper constraints are imposed.
In this sense, the statement made by Brown and Prescott (1999, p. 237): “The usual action
when a negative variance component estimate is obtained for a random coefficient would be
to refit the model with the random coefficient removed (... )", overlooks important issues and

is therefore misleading.
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Appendix

Within the context of the case study, we will show how all four tests discussed in Section 5 can
be implemented using the SAS procedures MIXED and NLMIXED (Version 8.2). In particular,

we will focus on the comparison between Models 2 and 4.

Let us consider the likelihood ratio tests first. Fitting Model 4, with random intercepts and

random slopes is typically done using the code (Verbeke and Molenberghs 2000, Ch. 8):

proc mixed data = example method = ml;

class treatment rat;

model y = treatment*time / solution;

random intercept time / type = un subject = rat;

run;

However, it should be noted the SAS procedure MIXED takes by default a constrained view-
point which differs not only from the unconstrained situation, but is also different from the
constrained formulation considered in this paper. Indeed, the only constraints imposed by

SAS are for the variances to be nonnegative; the resulting covariance matrix can still fail
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to be positive semi-definite. A completely unconstrained model can be fitted by adding the
‘nobound’ option to the PROC MIXED statement. The likelihood ratio test statistic then
follows from fitting Model 2 as well, which is obtained from deleting the variable time from

the RANDOM statement.

Fitting both models under our constraints is done by replacing the ‘type=un’ option in the
RANDOM statement of the initial program by ‘type=fa0(2)’ in Model 4 and ‘type=fa0(1)’ in
Model 2.

Recall that, for the unconstrained score test, the first and second order derivates of the
alternative log-likelihood need to be evaluated at the MLE's under the null model. We therefore
first fit the null model using the SAS procedure MIXED, then store the parameter estimates in
appropriately formatted SAS data sets, whereafter the derivatives under the alternative model
are obtained using the NLMIXED procedure. The NLMIXED is particularly convenient since
it easily produces the first and second order derivatives at the maximum likelihood estimates.
To this end, the MLE's under the null are supplied to NLMIXED as starting values and the
procedure is prevented from iterating. Practically, the results are obtained using the following

code.

proc mixed data = example method = ml nobound;
class treatmet rat;

model y = treatment*time / solution;

random intercept / subject = rat;

ods output covparms = cov;

ods output solutionf = fixed;

run;

data cov; set cov; keep estimate; run;
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data covl; input parameter $; cards;
di1

sigma?2

run;

data cov; merge covl cov; run;

data fixed; set fixed; keep estimate; run;
data fixedl; input parameter $; cards;
betal

betal

beta2

beta3

run;

data fixed; merge fixedl fixed; run;

data starting; set fixed cov; run;

proc nlmixed data = test start hess gpoints = 50 maxiter = O;

parms d12 = 0 d22 = 1E-10 / data = starting;

mean = betal0 + bl + b2*time + betal*tcon + beta2*thig + beta3d*tlow;
model y ~ normal(mean,sigma2);

random bl b2 ~ normal([0, 0],[d11, d12, d22]) subject = rat;

run;

For the constrained case, the above program is maintained for the calculation of the first term
in (7), except for the removal of the ‘nobound’ option from the PROC MIXED statement. To

execute the constrained minimization of (Z y — b)’Hﬁ(@H)(ZN —b), numerical optimization
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routines are often needed. While several routes could be followed, we have chosen to use the
constrained optimization features of GAUSS. To this end, the constraints need to be written
in the form of a procedure, with a second procedure containing the objective function. In our

example, Zy = (0.10219, —6.619967)" and

5 16.5355 —9.1388
His(O) = ( —9.1388  26.2642 )

The code then becomes:
library co;

proc inegp(b);

local d11, d12, d22, d;
d11=3.4374;

d12=bl[1,.];

d22=b[2,.];
d=(d117d12) [ (d127d22);
retp(minc(eigh(d))-1e-5);

endp;
_co_IneqProc=&ineqp;

proc factor2(b);

local zn, hmat;

zn={0.10219, -6.619967};

hmat={16.5355 -9.1388, -9.1388 26.2642};
retp((zn-b) ’*inv(hmat)*(zn-b)) ;

endp;
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start={-1,27};

_co_Algorithm=5;

{x,f,g,ret}t=co(&functie,start);
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Captions

Table 1. Rat data. Summary of the results of one- as well as two-sided, likelihood ratio as
well as score tests for the comparison of a series of linear mixed models fitted to the rat data.
The estimate D denotes the unconstrained maximum likelihood estimate for the matrix D in

the linear mixed model.

Figure 1. Graphical representation of two different situations, when developing one-sided

tests for the variance 72 of the random intercepts b; in model (1).

Figure 2. Rat Data. Individual profiles for each of the treatment groups in the rat experiment

separately.
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