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The Use of Sliding Spectral Windows for Parameter
Estimation in Power System Disturbance Monitoring

Peter O’Shea

Abstract—The monitoring of power systems after faults or dis-
turbances is an important problem. These disturbances generally
give rise to oscillating modal components, which in a worst case
scenario, can be exponentially growing sinusoids. The latter, if not
detected and damped out, can pose a serious threat to system relia-
bility. It is thus necessary to monitor whether any of these modes do
exhibit exponential growth (rather than the more acceptable sce-
nario of exponential decay). There are currently a number of ap-
proaches to predicting/monitoring disturbances in power system
networks. One approach is eigenanalysis, based on a linearized
modeling of the power system [1]. A more direct approach is spec-
tral analysis of the signals recorded immediately after a fault or
disruption. For this latter approach both Prony’s method [2] and
conventional Fourier techniques have been used [5].

This paper presents a Fourier based algorithm for estimating
the parameters of the oscillating modes which arise after a system
disruption. The algorithm is based on the sliding window method
discussed in [5], but has a number of innovations.

Index Terms—Fourier, modal analysis, optimization, signal
analysis, stability.

I. INTRODUCTION

T HERE are some distinct advantages to using Fourier
methods rather than Prony’s method for estimating the

parameters of the post disturbance modes. Fourier methods are:
1) known to be robust to noise [4], 2) able to be implemented
efficiently due to the availability of the Fast Fourier transform
(FFT), and 3) not as susceptible to problems with model
mismatches, as is Prony’s method [6]. Noise performance is a
particularly important practical issue, as disturbance records
are often plagued by measurement noise and “ghost modes.”

A Fourier based method for determining the parameters of
a damped oscillating mode was given in [5]. It relies on using
two different windows applied at different starting points in the
signal. The Fourier transform is applied to the two different win-
dows of the signal, and from these two transforms, the parame-
ters can be estimated. The formulae given in [5] for determining
the parameters, however, assume that the windows are “rectan-
gular.” This paper proposes that “smoothly tapering” windows
be used. These windows help to eliminate unwanted interfer-
ence, with leads to simplified parameter estimation formulae.
Moreover, some rather limiting conditions which were imposed
on the window lengths in [5] can be lifted. This relaxation of the
restrictions on the window lengths paves the way for procedures
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to either optimize performance in noise, or more effectively re-
solve multiple modes.

The parameter estimation method proposed in this paper is
discussed in Section II, while Section III considers optimiza-
tion of the length of the sliding windows in noise. Section IV
discusses how the window length should be modified in order
to ensure that multiple modes can be properly resolved. Simula-
tions are provided in Section V to show how well the new algo-
rithm works on: a) a single mode, b) a closely spaced modal pair
benchmark signal [3], [2], and c) a real power system example.
Simulations are also used to validate the optimization formulae
given in Section V.

II. ESTIMATING MODAL PARAMETERS IN A DECAYING

SINUSOID

Consider the noiseless real signal, , corresponding to a
single oscillating mode which arises after a system disturbance.
Assume that it can be modeled by:

(1)

where
is the amplitude,
is the angular frequency,
is the initial phase, and
is the damping factor.

The cyclic sampling frequency is assumed without loss of gen-
erality to be unity, and hence the angular sampling frequency is

.
Poon and Lee [5] showed that if one takes a window of the

signal and then calculates the Fourier transform, there will be
an energy concentration around the angular frequency,, and
around . They also showed that the Fourier amplitude at
will be a measure of the signal energy at this frequency. If the
Fourier transform is then calculated in another window of the
same width, but applied at some time later, the Fourier spectrum
would have decreased in magnitude because of the decay of the
signal with time. The amount of this decrease is related to the
damping factor of the mode, a fact which Poon and Lee were
able to use to derive a formula for the damping factor.

An alternative way of looking at the sliding window tech-
nique is to consider that an exponentially decaying window is
sliding across a fixed, infinite length sinusoidal signal. This is
illustrated graphically in Fig. 1 for a mode with
s , rad/s, rad and . The infi-
nite length sinusoid is shown in Fig. 1(a), while Fig. 1(b) shows
several snapshots of the exponentially decaying 1024 sample
window sliding across the sinusoid. The magnitude spectrum
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Fig. 1. (a) A sinusoidal signal. (b) Three snapshots of a sliding window of the
sinusoid and the corresponding spectra.

of the signal corresponding to each snapshot is also shown in
Fig. 1(b). It is seen that there is a clear energy concentration
in the low frequency region [in fact it is at

Hz] in all spectra. The amplitude spectrum maintains
an almost constant shape as the window slides, but decreases in
magnitude (due to the decay of the sliding window). The rate of
decay of the Fourier transform as the window slides was used
in [5] to determine the damping factor of the mode.

An important point must be made at this juncture. The es-
timation of the damping factor is complicated by the fact that
there are two separate components in the spectrum of the win-
dowed mode. The first is the “positive frequency” component
around and the second is the “negative frequency” compo-
nent around . These two components are seen in Fig. 2(a)
for the same signal that was used in Fig. 1, but with a window
length of 32 samples; the solid line represents the positive fre-
quency component, while the negative frequency component
corresponds to the broken line.

It is clear in the figure that these components interfere with, or
“leak” into one another. The superposition of these two compo-
nents is shown in Fig. 2(b). Now as the exponentially decaying
window moves along the signal, the spectrum of the positive
frequency component retains its shape exactly, but decreases

Fig. 2. (a) The positive frequency component (full line) and negative
frequency component (dashed line) of a decaying sinusoid. (b) The
superposition of the positive and negative frequency components.

in magnitude. The same holds true for the negative frequency
component. The shape of thesuperpositionof the positive and
negative frequency components, however, varies as the window
slides, due to the interference between them. Thus, it is not a
straightforward matter to determine the damping factor by just
monitoring the amplitude change in the spectrum as the window
slides along.

This problem of interference has led to tight restrictions on
the application of the damping factor estimation formula given
in [5]. In particular, Poon and Lee specified a requirement that
the window length only have certain discrete values, at which
the interference turns out to be zero. This restriction on the
window length is disadvantageous for two reasons. First, the al-
lowable window lengths are dependent on frequency and hence
a different analysis must be performed for each mode present in
the signal.

Second, there is no chance of optimizing the window length
for noise performance or for resolution of multiple modes. Re-
alizing that the restrictions on the window lengths arise be-
cause of interference, it becomes evident that one can remedy
the situation by using “smooth” sliding windows. Smooth win-
dows do not abruptly onset or terminate as do rectangular ones,
but rather gradually rise to a peak and gradually fall. Another
way of saying this is that for a smooth window, the first (and
often second and third) derivative with respect to time has no
discontinuities.

A standard rectangular window is shown as a dotted line in
Fig. 3(a). A decaying sinusoid ( s , ,
and rad/s) as seen through this rectangular window
is shown as a full line in the same figure. Its spectrum is shown
in Fig. 3(c). A smooth “Kaiser” window with a parameter of
7 [4] is shown as a dotted line in Fig. 3(b). The full line curve
in Fig. 3(b) shows the decaying sinusoid described above, as
seen through the Kaiser window. The spectrum of the smooth
windowed mode is shown in Fig. 3(d). Comparison of Fig. 3(c)
and (d) shows that the smooth window has much less leakage,
and as a result, has separated the positive and negative frequency
components more effectively.

Note that there is a significant amplitude difference between
Fig. 3(c) and (d). This is because the Fourier transform does
not display the amplitude of a signal directly, but rather reveals
thesquare root of the energyof the signal as a function of fre-
quency. The window function (both length and shape) has a
strong bearing on the spectral magnitude, as it determines what
part of the signal energy the Fourier transform “sees.” A smooth
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Fig. 3. (a) A mode windowed by a rectangular window, (b) the same mode
windowed by a smooth window, (c) the spectrum of the signal in (a), (d) the
spectrum of the signal in (b).

window tapers on and off gradually, as seen in Fig. 3(b); be-
cause of this, it “lets through” different amounts of signal en-
ergy to what a rectangular one does. The precise relationship
between the amplitude in the time domain signal and the spectral
peak values observed in Fig. 3 is given by equation (19) in
Appendix A.

If one applies two smooth windows to a decaying sinusoid at
different points in time, the relative amplitudes in the Fourier
transforms of the two windows can reliably be used to deter-
mine the damping factor. This is explained more fully in Ap-
pendix A, (18) of which gives the estimation formula for the
damping factor. Formulae for determining the frequency and
(complex) amplitude are also given respectively in (11) and (19)
of Appendix A. These formulae are similar to those in [5], but
are simpler. Unlike those in [5], however, they are valid for all
window lengths.

One practical issue needs to be mentioned in using the param-
eter estimation formulae in (18), (11), and (19). The removal of
the interference between positive and negative frequency com-
ponents will not be effective if the modal frequency is less than
a couple of multiples of from 0 Hz, where is the
window length used. This can be checked, and if necessary, an
alternative technique such as Prony’s method can be used.

III. W INDOW LENGTH OPTIMIZATION IN THE PRESENCE OF

NOISE

The relaxation in this paper of the window length constraint
imposed in [5] brings a number of practical advantages to the
sliding window method. First, since the window length no
longer depends on , multiple modes at different frequencies
can be processed with the one set of windows. Second, if
desired, one can “optimize” the window length for any given
mode to enhance noise performance, or to facilitate good reso-
lution of multiple modes. This section considers optimization
from a noise perspective.

The optimal window length, , is found in Appendix B
for the case of a decaying sinusoid in additive noise, for a given
ratio, , of window separation to window length. The optimiza-
tion is done so as to yield the minimum mean-square error esti-
mate of , this parameter often being the most crucial to estimate
in practice. The optimal window length, is given by:

argmax (2)

where
var
var

cov
var

(3)

(4)

where
is the noise contribution in the 1st window at,
is the noise contribution in the 2nd window at,

var denotes the variance, and
cov signifies the covariance.
is the number of samples between windows, and is

the number of samples in each window.
Equation (2) can be conveniently evaluated numerically. Sim-

ulations in Section V will verify the results in (2). It should be
noted at this point that (2) has meaning only for modes where

. Otherwise the optimal window length is infinite. Note
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also that (2) indicates that the optimal window length can be
obtained very simply as long as the damping factor is known.
Since this is one of the parameters to be estimated it will not be
known a priori,but can beestimatedvia a preliminary analysis
with arbitrary length windows. The recommended algorithmic
procedure is summarized below.

A. The Algorithm for Optimizing Noise Performance

Step 1: Take an FFT of the data and determine the frequency
of the mode by extracting the peak in the frequency
domain, according to (11). The FFT length should be
relatively long (i.e. it should cover most of the data)
to give a reasonable estimate of in noise.

Step 2: To apair of arbitrary length smooth windows, apply
FFT’s and use (18) and (19) to determine prelimi-
nary estimates for the damping factor and complex
amplitude parameters for the mode.

Step 3: Use (2) to determine the (near) optimal window
length for the mode. Then recalculate the damping
factor and complex amplitude parameters via (18)
and (19). (FFTs do not need to be re-calculated; the
frequency domain values only need to be calculated
at , requiring order operations.)

1) The Method of Minimizing the Residual Energy:In many
practical situations, it may be difficult to knowa priori or esti-
mate the statistical parameters, and . Hence the use of
the optimization formula in (2) is problematical. An alternative
procedure for setting the window length is to use the “method of
minimizing the residual energy.” In this method, it is assumed
that there is an observed signal, consisting of a mode of the form
of (1), plus some additive noise. The smooth sliding window al-
gorithm is used to estimate the signal parameters (amplitude,
frequency, phase, and damping factor), and a “signal estimate”
is reconstructed from these estimated parameters. This signal es-
timate is then subtracted from the observed signal, and the result
of the subtraction is referred to as the “residual.” If the param-
eter estimates were error free, the residual would consist solely
of the additive noise which was on the observed signal. More
commonly, the parameter estimates will contain some error, and
the residual will contain not only the additive noise but an ad-
ditional component due to the mismatch between the noise free
signal and the signal estimate. The energy of the residual effec-
tively provides a measure of the quality of the parameter esti-
mation process.

One can try to obtain the “best” parameter estimates by
varying the window length until the residual energy is mini-
mized. Doing so is equivalent to finding the window length
which gives rise to parameter estimates with the least square
error. It is also possible to use the method of minimizing the
residual to optimize other variables such as the amount of
overlap used.

IV. EXTENSION TO MULTIPLE MODES

The techniques presented for single modes are readily
extendable to multiple modes. When multiple modes are
present, their frequency contributions will not interfere sub-
stantially, providing that smooth windows are used and that

Fig. 4. The spectrum of a modal pair windowed with (a) a rectangular window,
and (b) a smooth window.

the frequencies are adequately resolved. In practice, this means
the modal frequencies must be separated by more than about
3 times . The precise separation required will depend on
the window type used.

The effectiveness of the sliding smooth window method
for multiple modes is now shown with a graphical example.
A signal is chosen with two modes whose frequencies are
sufficiently separated so that they do not interfere. The two
modes have different damping factors and amplitudes. The
signal is specified by:

(5)

Fig. 4(a) shows the spectrum of the signal after being windowed
by a 1024 point rectangular window, while Fig. 4(b) shows
the spectrum of the signal which has been windowed with a
1024 point Kaiser window (with ). The two different
modes in Fig. 4(b) are clearly separated, permitting easy
processing of the two modes.

It is worth noting that the spectral peak values in Fig. 4(b)
are not proportional to their amplitude values in the time do-
main signal. This is because the window has a large bearing on
the amount of energy “let through” into the Fourier transform.
In particular, because a smooth window turns on more slowly
than does a rectangular one, it tends to give rise to relatively di-
minished spectral peaks for more heavily damped modes. This
is why the more heavily damped mode appears proportionally
smaller in Fig. 4(b) than it does in Fig. 4(a).

V. SIMULATIONS

A. Parameter Estimation for a Single Mode, “Test1”

The first signal tested was “Test1,” a decaying sinusoid im-
mersed in some white additive noise, with a signal to noise
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TABLE I
TRUE AND ESTIMATED VALUES FOR A SINGLE MODE

TABLE II
TRUE AND ESTIMATED VALUES FOR A TWO COMPONENTBENCHMARK

SIGNAL [3]

power ratio (SNR) of 10 dB. The parameters of “Test1” are
, rad/s, , and s . The smooth

sliding window algorithm was applied to the signal (using a
window length of 180 samples, a delay between windows of
20 samples, and a Kaiser window withparameter of 15). A
sampling frequency of 1 was used, in this and all subsequent
simulations. These true parameter values are listed in the first
column of Table I, while the second column shows the param-
eter estimates actually obtained. Because the estimation tech-
nique is Fourier based, it is robust to additive noise [6], and the
estimate errors are seen to be very small.

B. Parameter Estimation for Benchmark Signal, “Test2”

The second signal analyzed was the benchmark signal pro-
posed in [3] and [2] for damping factor estimators. This signal
has two closely spaced modes, with the parameters of the two
modes being shown in the first column of Table II. The esti-
mates obtained for the parameters (using a Kaiser window with
a factor of 5) are shown in the second column of Table II. It
must be said that the example was a difficult one because of the
closeness of the modal frequencies. The signal was analyzed by
estimating the parameters of the highest energy mode first, then
subtracting an estimate of this mode from the time domain, and
finally analyzing the second mode. The estimates were all found
to be quite close to the true values.

C. Verification of Window Length Optimization Formula

The first signal used for this section was of the form of (1),
with , , , and . Stationary, white
noise of power, 1/500, was added to the signal. The two windows
were 1024 sample Kaiser windows (with aparameter of 15),
and they were consecutive in time. The optimal window length
may be determined theoretically from (2). Since the noise is
white and stationary, , and since there is no
window overlap, . can be found numerically from
(2) to be:

(6)

1000 simulations were run with the mean square error in the
damping factor estimate being plotted in Fig. 5 as a function of

Fig. 5. Mean-square error of̂� vs. window length.

Fig. 6. (a) The swing curve from Pacific Gas and Electric Co. [5], (b) its
spectrum.

window length. The error is seen to be minimized at a window
length of 36, compared with the theoretical prediction of 36.

A second simulation was run in which the noise was colored
with 25 percent window overlap. (i.e. ). The statistical
parameters, and were given by , .
The simulation showed the minimum error to occur at 49, com-
pared with the theoretically predicted value of 46.

D. Parameter Estimation for a Real Power System Example

The real power system data used was the voltage swing curve
of a test case by the Pacific Gas and Electric Co. first presented
in [5]. The swing curve consisted of two modes, one of which
was a component at around 0.67 Hz with potentially problemat-
ical damping, (its existence has been known in the Western Sys-
tems Coordinating Council interconnected system). The signal
and the spectrum of the two modes are shown respectively in
Fig. 6(a) and (b). (The mean was removed before forming the
spectrum). The two modes are seen clearly, one at 0.22 Hz, and
the other at 0.67 Hz.

In [5] a sliding window of length 2.2445 seconds was used in
order to determine the damping factor for the mode at 0.67 Hz.
This length was chosen so as to satisfy the window length con-
straints given in (5) (i.e. so as to eliminate interference between
positive and negative frequency components). For the mode at

Hz, however, the use of such a window length is highly
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questionable; the interference from the positive frequency com-
ponent at Hz, being relatively close, would be expected to
be much greater than that from the component at Hz. The
interference between the components at and Hz is
also one of the probable reasons why a strong frequency drift
of the Hz component was reported to have occurred in
(5). When a longer smoother window was used so that inter-
ference between the components at and Hz was
effectively eliminated, the drift in frequency between windows
was observed to be minimal.

It should be noted that the restriction on the window lengths
probably contributed significant error to the estimates of fre-
quency, damping factor and amplitude in [5]. This could be
surmised, despite the true parameter values being unknown, by
examining the energy of the residual. The parameter estimates
found in [5] gave rise to a comparatively high energy residual.
The parameter estimates found using the techniques proposed
in this paper yielded a much lower energy residual, i.e. the es-
timates found in this paper had statistically higher likelihood
of being the true values. This is explained further in the next
paragraph.

The smooth sliding window method was used to first deter-
mine the frequency and damping factor of the mode around
0.67 Hz. The frequency estimate was found to be 0.672 Hz.
The window length, starting time andparameter (for a Kaiser
taper function) were selected by a certain amount of trial and
error so that a low energy residual was obtained. The starting
time, length, and parameter respectively of the first window
were selected to be 0.86 s, 3.45 s, and 2. The second window
was applied at 6.42 s, with the length andparameter being
kept the same as in the first window. The damping factor was
found to be s , which is very different to the value
of s obtained in [5]. The amplitude and phase for
the mode were found to be 0.0376 and rad respec-
tively. It should be noted that since the energy of the residual
corresponding to these values was lower (by 34 percent) than
the residual corresponding to the estimates given in [5], the sta-
tistical likelihood of the values in this paper being correct, is
substantially higher.

The mode at 0.22 Hz was analyzed after subtracting an esti-
mate of the modal component at 0.67 Hz in the time domain,
as in [5]. A pair of Kaiser windows of length, 4.2 s, andpa-
rameter, 0, were used. The first window was applied at 0 sec-
onds and the second window was applied at 4.82 s. All of these
values were obtained again by using the method of minimizing
residual energy. The frequency, damping factor, amplitude and
phase subsequently found were 0.219 Hz, 0.265 s, 0.041, and
1.293 rad, respectively.

VI. CONCLUSION

A Fourier based algorithm for estimating the parameters of
a damped oscillating mode has been presented. The algorithm
uses the spectra of a pair of possibly overlapping smooth win-
dows, with the length of the windows able to be chosen so as
to provide good frequency resolution or optimal noise perfor-
mance. A theoretical analysis has been presented and simula-
tions have verified the effectiveness of the theoretical results.

APPENDIX A

Consider the real signal model specified in (1). Assume the
window function used, , is smooth and has samples.
If the signal is windowed starting at and ending at
the Fourier transform will be given by:

(7)

(8)

(9)

(10)

where
denotes the (discrete-time) Fourier transform
[4],
signifies convolution,
is the impulse function, and

.
If the window, , smoothly tapers and is finite, then

will peak either at, or extremely close to the origin. The
modal frequency estimate may therefore be determined from the
relation:

argmax (11)

The value of the Fourier transform at is given by:

(12)

(13)

[since will have dropped very close to 0 at ].
It is assumed that the second window starts at time,

, and ends at . Then the Fourier transform at in
this second window is:

(14)

The ratio of the two windowed Fourier transform amplitudes at
is:

(15)

(16)

(17)
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Rearranging (17) yields the following estimation formula for the
damping factor:

(18)

Eqn. (13) can be rearranged to give the following estimation
formula for the “complex amplitude”:

(19)

APPENDIX B

Assume that the signal of interest is of the form of (1), but
with some additive noise present. The noise may be colored.
Using (13), the Fourier transform in the first window, evaluated
at , is:

(20)

(21)

where is a random variable corresponding to the noise con-
tribution at . Similarly, the complex Fourier amplitude at
in the second window is given by:

(22)

where is a random variable corresponding to the noise con-
tribution at in this second window.

The ratio of the two Fourier amplitudes, and
, will be:

(23)

(24)

[using (17) from Appendix A].
It is assumed that the noise to signal ratio atin the Fourier

transform of both windows is small. Then the following approx-
imation can be made:

(25)

[since if is small]. Substituting (25) into
(18) gives:

(26)

(27)

[since if is small].

The variance of as given in (27) is:

var var var cov

(28)

where var and cov denote the variance and covariance
functions respectively.

Now var and var for a smooth
sliding window of arbitrary length, where and are con-
stants which are dependent on the shape of the window and
the spectral character of the noise in each window [6]. The co-
variance between and will be given by cov ,
where again, is a constant which is dependent on the window
shape, the spectral character of the noiseand the percentage
window overlap.

Using these variance expressions, one can expand the expres-
sion for the variance of the estimate as:

var (29)

Substitution of , ,
, and into (29) yields:

var (30)

In minimizing the above expression with respect to (while
keeping , the ratio of the window separation to window length
constant), multiplicative constants can be neglected. Thus the
optimal window length is given by:

argmax (31)
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