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The Use of Sliding Spectral Windows for Parameter
Estimation in Power System Disturbance Monitoring

Peter O'Shea

Abstract—The monitoring of power systems after faults or dis- to either optimize performance in noise, or more effectively re-
turbances is an important problem. These disturbances generally solve multiple modes.

give rise to oscillating modal components, which in a worst case The parameter estimation method proposed in this paper is

scenario, can be exponentially growing sinusoids. The latter, if not di d in Section II. while Section Il id timi
detected and damped out, can pose a serious threat to system relia- ISCussed In section {l, while section il considers optimiza-

bility. Itis thus necessary to monitor whether any of these modes do tion of the length of the sliding windows in noise. Section IV
exhibit exponential growth (rather than the more acceptable sce- discusses how the window length should be modified in order

nario of exponential decay). There are currently a number of ap- to ensure that multiple modes can be properly resolved. Simula-
proaches to predicting/monitoring disturbances in power system tions are provided in Section V to show how well the new algo-

networks. One approach is eigenanalysis, based on a linearized ith K ] inal de b | | d modal pai
modeling of the power system [1]. A more direct approach is spec- 'thM WOrks on: ) a single mode, b) a closely spaced modal pair

tral analysis of the signals recorded immediately after a fault or PeNchmark signal [3], [2], and c) a real power system example.
disruption. For this latter approach both Prony’s method [2] and  Simulations are also used to validate the optimization formulae
conventional Fourier techniques have been used [5]. given in Section V.

This paper presents a Fourier based algorithm for estimating
the parameters of the oscillating modes which arise after a system

disruption. The algorithm is based on the sliding window method Il. ESTIMATING MODAL PARAMETERS IN A DECAYING
discussed in [5], but has a number of innovations. SINUSOID
Index Terms—Fourier, modal analysis, optimization, signal Consider the noiseless real signalyn ), corresponding to a
analysis, stability. single oscillating mode which arises after a system disturbance.
Assume that it can be modeled by:
I. INTRODUCTION 2(n) = A cos(won + ¢)e=, n=0,---,N—1. (1)
T HERE are some distinct advantages to using Fourierh
methods rather than Prony’s method for estimating tHgnere

is the amplitude,

is the angular frequency,

is the initial phase, and

is the damping factor.
cyclic sampling frequency is assumed without loss of gen-
rsality to be unity, and hence the angular sampling frequency is

parameters of the post disturbance modes. Fourier methods aré
1) known to be robust to noise [4], 2) able to be implemented “°
efficiently due to the availability of the Fast Fourier transform
(FFT), and 3) not as susceptible to problems with mod g’
mismatches, as is Prony’s method [6]. Noise performance ij €
particularly important practical issue, as disturbance recor§7r
are often plagued by measurement noise and “ghost modes.*" . .

A Fourirt)ar gased )r/nethod for determining thegparameters QfPoon and Lee [5] showed that if one takes a window OT the
a damped oscillating mode was given in [5]. It relies on usin gnal and then calcu_lates the Fourier transform, there will be
two different windows applied at different starting points in th h energy concentration around the angular frequea_npyand
signal. The Fourier transform is applied to the two differentwirf’}r.ound_wo' They also ShO\.NEd that the Foungr amplitudeat
dows of the signal, and from these two transforms, the para I b_e ameasure _Of the signal energy at this frequency. If the
ters can be estimated. The formulae given in [5] for determini urier _transform IS _then calcula_ted in another wm_dow of the
the parameters, however, assume that the windows are “rectinC width, but apphed_ at some time later, the Fourier spectrum
gular.” This paper proposes that “smoothly tapering” Windov\}gould have decreased in magnitude because of the decay of the

be used. These windows help to eliminate unwanted interf§ gnal. with time. The amount of this deprease 's related to the
ence, with leads to simplified parameter estimation formula amping factor of the mode, a fact which Poon and Lee were

Moreover, some rather limiting conditions which were impose%bIe to use to_derlve a formulg for the dan_1p_|ng fa_ctor.
An alternative way of looking at the sliding window tech-

on the window lengths in [5] can be lifted. This relaxation of the. o 1 der that tiallv d . indow |
restrictions on the window lengths paves the way for procedun%i'gge IS to consider that an exponentially decaying wincow 1S
sliding across a fixed, infinite length sinusoidal signal. This is
illustrated graphically in Fig. 1 for a mode with = 0.003
Manuscript received August 19, 1997; revised November 4, 1999. s7!, wp = w/16 radls,¢ = 7/10 rad andA = 1. The infi-
_The_author is with the Department of Communication and Electronic Eyite Iength sinusoid is shown in Fig. 1(a)’ while Fig. 1(b) shows
gineering, Royal Melbourne Institute of Technology, GPO Box 2476V, Mel- . .
bourne, 3001, Australia. several snapshots of the exponentially decaying 1024 sample
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e — . Fig. 2. (a) The positive frequency component (full line) and negative
» mm‘?mﬁ 0 B0 %00 4000 frequency component (dashed line) of a decaying sinusoid. (b) The
( a.) superposition of the positive and negative frequency components.

in magnitude. The same holds true for the negative frequency
component. The shape of teaperpositiorof the positive and

1 ‘l 1 negative frequency components, however, varies as the window
05 05 05 slides, due to the interference between them. Thus, it is not a
§ 0 0 WMMN 0 WNWN straightforward mat';er to determi_ne the damping factor by just
monitoring the amplitude change in the spectrum as the window
05 08 08 slides along.
“ 2| S x| This problem of interference has led to tight restrictions on
°me<seé‘%'&os) ¢ nm(s%.) ° nMe(s%(’gs.) the application of the damping factor estimation formula given

in [5]. In particular, Poon and Lee specified a requirement that

100 100 100 the window length only have certain discrete values, at which
80 80 80 the interference turns out to be zero. This restriction on the
60 € 60 window length is disadvantageous for two reasons. First, the al-
& 40 ) lowable window lengths are dependent on frequency and hence
§ 20 20 JL 20 a different analysis must be performed for each mode present in
= q . o 0 1l the signal.
5 0 05 .5 0 0.5 35 0 0.5 . L .
NORMALISED FREQ. NORMALISED FREQ. NORMALISED FREQ. Second, there is no chance of optimizing the window length
for noise performance or for resolution of multiple modes. Re-
(b) alizing that the restrictions on the window lengths arise be-

. s o cause of interference, it becomes evident that one can remedy
F_lg. 1._ (a) A sinusoidal S|gn_al. (b) Three snapshots of a sliding window Oftl}ﬁe situation b s th” slidi ind S th win-
sinusoid and the corresponding spectra. y using "'smooth" sliding windows. smooth win
dows do not abruptly onset or terminate as do rectangular ones,
of the signal corresponding to each snapshot is also showrbint rather gradually rise to a peak and gradually fall. Another
Fig. 1(b). It is seen that there is a clear energy concentratinmay of saying this is that for a smooth window, the first (and
in the low frequency region [in fact it is af = w/(2r) = often second and third) derivative with respect to time has no
+1/32 Hz] in all spectra. The amplitude spectrum maintaingiscontinuities.
an almost constant shape as the window slides, but decreases # standard rectangular window is shown as a dotted line in
magnitude (due to the decay of the sliding window). The rate Bfg. 3(a). A decaying sinusoidd(= 1, ¢ = 0.015s %, ¢ = 0,
decay of the Fourier transform as the window slides was usaddw, = 7/2 rad/s) as seen through this rectangular window
in [5] to determine the damping factor of the mode. is shown as a full line in the same figure. Its spectrum is shown
An important point must be made at this juncture. The eBt Fig. 3(c). A smooth “Kaiser” window with @ parameter of
timation of the damping factor is complicated by the fact that [4] is shown as a dotted line in Fig. 3(b). The full line curve
there are two separate components in the spectrum of the wim¥ig. 3(b) shows the decaying sinusoid described above, as
dowed mode. The first is the “positive frequency” componeiseen through the Kaiser window. The spectrum of the smooth
aroundwg and the second is the “negative frequency” compavindowed mode is shown in Fig. 3(d). Comparison of Fig. 3(c)
nent around-wq. These two components are seen in Fig. 2(@nd (d) shows that the smooth window has much less leakage,
for the same signal that was used in Fig. 1, but with a windosnd as a result, has separated the positive and negative frequency
length of 32 samples; the solid line represents the positive fresmponents more effectively.
guency component, while the negative frequency componeniNote that there is a significant amplitude difference between
corresponds to the broken line. Fig. 3(c) and (d). This is because the Fourier transform does
Itis clear in the figure that these components interfere with, aot display the amplitude of a signal directly, but rather reveals
“leak” into one another. The superposition of these two comptie square root of the energyf the signal as a function of fre-
nents is shown in Fig. 2(b). Now as the exponentially decayingiency. The window function (both length and shape) has a
window moves along the signal, the spectrum of the positigtrong bearing on the spectral magnitude, as it determines what
frequency component retains its shape exactly, but decreases of the signal energy the Fourier transform “sees.” A smooth
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Fig. 3. (a) A mode windowed by a rectangular window, (b) the same mode 41
windowed by a smooth window, (c) the spectrum of the signal in (a), (d) the g2

spectrum of the signal in (b).

If one applies two smooth windows to a decaying sinusoid at
different points in time, the relative amplitudes in the Fourier
transforms of the two windows can reliably be used to deter-
mine the damping factor. This is explained more fully in Ap-
pendix A, (18) of which gives the estimation formula for the
damping factor. Formulae for determining the frequency and
(complex) amplitude are also given respectively in (11) and (19)
of Appendix A. These formulae are similar to those in [5], but
are simpler. Unlike those in [5], however, they are valid for all
window lengths.

One practical issue needs to be mentioned in using the param-
eter estimation formulae in (18), (11), and (19). The removal of
the interference between positive and negative frequency com-
ponents will not be effective if the modal frequency is less than
a couple of multiples ofi/N,, from 0 Hz, whereN,, is the
window length used. This can be checked, and if necessary, an
alternative technique such as Prony’s method can be used.

I1l. WINDOW LENGTH OPTIMIZATION IN THE PRESENCE OF
NoOISE

The relaxation in this paper of the window length constraint
imposed in [5] brings a number of practical advantages to the
sliding window method. First, since the window length no
longer depends o@,, multiple modes at different frequencies
can be processed with the one set of windows. Second, if
desired, one can “optimize” the window length for any given
mode to enhance noise performance, or to facilitate good reso-
lution of multiple modes. This section considers optimization
from a noise perspective.

The optimal window lengthNV,,_, , is found in Appendix B
for the case of a decaying sinusoid in additive noise, for a given
ratio, k3, of window separation to window length. The optimiza-
tion is done so as to yield the minimum mean-square error esti-
mate ofs, this parameter often being the most crucial to estimate
in practice. The optimal window lengtt¥,, . is given by:

ergcer +k226kgo’Nw +k‘11

N, =~ argmax 5 (2)
N n=~N
Ny, < Z w(n)e“’")
n=0
where
L= var{q } by = cov{qiqz} ®)
var{ga}’ var{gz}
N,
ks = N—Z (4)
where

is the noise contribution in the 1st window.a,
is the noise contribution in the 2nd windowa,
var{.} denotes the variance, and

cov{.} signifies the covariance.

window tapers on and off gradually, as seen in Fig. 3(b); bé/, is the number of samples between windows, ahd+ 1 is
cause of this, it “lets through” different amounts of signal erthe number of samples in each window.

ergy to what a rectangular one does. The precise relationshifequation (2) can be conveniently evaluated numerically. Sim-
between the amplitude in the time domain signal and the spectrdtions in Section V will verify the results in (2). It should be
peak values observed in Fig. 3 is given by equation (19) imoted at this point that (2) has meaning only for modes where

Appendix A.

o > 0. Otherwise the optimal window length is infinite. Note
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also that (2) indicates that the optimal window length can be 60
obtained very simply as long as the damping factor is known.
Since this is one of the parameters to be estimated it will not be
known a priori,but can beestimatediia a preliminary analysis
with arbitrary length windows. The recommended algorithmic
procedure is summarized below.

5.
(=]

= N w A
o O O

FOURIER AMPLITUDE
o

OO

0.2 04 0.6
NORMALISED FREQ.

(2)

A. The Algorithm for Optimizing Noise Performance

Step 1: Take an FFT of the data and determine the frequency
of the mode by extracting the peak in the frequency
domain, according to (11). The FFT length should be
relatively long (i.e. it should cover most of the data)
to give a reasonable estimateuwgf in noise.

Step 2: To gair of arbitrary length smooth windows, apply
FFT’'s and use (18) and (19) to determine prelimi-
nary estimates for the damping factor and complex
amplitude parameters for the mode.

Step 3: Use (2) to determine the (near) optimal window 0 NogﬁAuseo%gEQ 06
length for the mode. Then recalculate the damping ’
factor and complex amplitude parameters via (18) (b)
and (19). (FFTs do not need to be re-calculated; the
frequency domain values only need to be calculat{ggd
ato, requiring orderv,, ,, operations.)

1) The Method of Minimizing the Residual Energytmany the frequencies are adequately resolved. In practice, this means
practical situations, it may be difficult to knoavpriori or esti- the modal frequencies must be separated by more than about
mate the statistical parametefs; and k22. Hence the use of 3 timesl/N,,. The precise separation required will depend on
the optimization formula in (2) is problematical. An alternativéhe window type used.
procedure for setting the window length is to use the “method of The effectiveness of the sliding smooth window method
minimizing the residual energy.” In this method, it is assumefdr multiple modes is now shown with a graphical example.
that there is an observed signal, consisting of a mode of the foAmsignal is chosen with two modes whose frequencies are
of (1), plus some additive noise. The smooth sliding window a¢ufficiently separated so that they do not interfere. The two
gorithm is used to estimate the signal parameters (amplitudepdes have different damping factors and amplitudes. The
frequency, phase, and damping factor), and a “signal estimasijnal is specified by:
is reconstructed from these estimated parameters. This signal es- v T\  _0.008n
timate is then subtracted from the observed signal, and the result z(n) =0.8 cos (§ nt 5) ¢
of the subtraction is referred to as the “residual.” If the param- +0.4 cos ( T o ﬁ) o—0-01n (5)
eter estimates were error free, the residual would consist solely

10

FOURIER AMPLITUDE

4. The spectrum of a modal pair windowed with (a) a rectangular window,
(b) a smooth window.

6.75 4
of the additive noise which was on the observed signal. Mofdd. 4(a) shows the spectrum of the signal after being windowed
commonly, the parameter estimates will contain some error, 8 & 1024 point rectangular window, while Fig. 4(b) shows
the residual will contain not only the additive noise but an adbe spectrum of the signal which has been windowed with a
ditional component due to the mismatch between the noise fA@24 point Kaiser window (with8 = 15). The two different
signal and the signal estimate. The energy of the residual effétodes in Fig. 4(b) are clearly separated, permitting easy
tively provides a measure of the quality of the parameter egdtocessing of the two modes.
mation process. It is worth noting that the spectral peak values in Fig. 4(b)

One can try to obtain the “best” parameter estimates @€ not proportional to their amplitude values in the time do-
varying the window length until the residual energy is minitain signal. This is because the window has a large bearing on
mized. Doing so is equivalent to finding the window lengtfihe amount of energy “let through” into the Fourier transform.
which gives rise to parameter estimates with the least squéftearticular, because a smooth window turns on more slowly
error. It is also possible to use the method of minimizing tH8an does a rectangular one, it tends to give rise to relatively di-
residual to optimize other variables such as the amount fnished spectral peaks for more heavily damped modes. This
overlap used. is why the more heavily damped mode appears proportionally

smaller in Fig. 4(b) than it does in Fig. 4(a).
V. EXTENSION TOMULTIPLE MODES

) ) ) V. SIMULATIONS
The techniques presented for single modes are readily

extendable to multiple modes. When multiple modes afe Parameter Estimation for a Single Mode, “Test1”
present, their frequency contributions will not interfere sub- The first signal tested was “Testl,” a decaying sinusoid im-
stantially, providing that smooth windows are used and thatersed in some white additive noise, with a signal to noise
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TABLE | e
TRUE AND ESTIMATED VALUES FOR A SINGLE MODE
Modal parameter True value Estimated value (10dB noise)
Damping factor ~0.030000 sec-" ~0.030000 sec’ or 1
Frequency 0.714285 Hz 0.714285 Hz
Amplitude 1.000000 0.992592
Phase 0.000000 radians 0.000575 radians o
TABLE I £
TRUE AND ESTIMATED VALUES FOR A TWO COMPONENT BENCHMARK § sk
SIGNAL [3] g
i
Modal parameter True value | Estimated value 4L i
Damping factor of 1st mode 0.020000 sec™ 0.020041 sec”
Frequency of 1st mode 0.021484 Hz 0.021484 Hz
Amplitude of Ist mode 1.000000 0.992592 ot
Phase of Ist mode 0.0 radians 0.000575 radians
Damping factor of 2nd mode -0.005 sec” -0.004878 sec”
Frequency of 2nd mode 0.666666 Hz 0.667114 Hz s ) ) ) ) ) .
Amplitude of 2nd mode 1.000000 1.002685 20 2 £ 3s 40 45 50 5 60 65
Phase of 2nd mode 0.000000 radians | ___-0.041812 radians Windowlength (samples)

power ratio (SNR) of 10 dB. The parameters of “Testl” aréig. 5. Mean-square error éfvs. window length.
A=1,wy=4.488rad/sgp = 0,ands = 0.03s~*. The smooth
sliding window algorithm was applied to the signal (using ¢ 1.1s
window length of 180 samples, a delay between windows ¢
20 samples, and a Kaiser window withparameter of 15). A u
sampling frequency of 1 was used, in this and all subsequegms
simulations. These true parameter values are listed in the firz
column of Table I, while the second column shows the paran
eter estimates actually obtained. Because the estimation tec oss

o
N

o
-t
o

1.1

4
o
G

FOURIER AMPLITUDE
o

o

. . . . - . 4 6 8 10 1] 1 2 3 4
nique is Fourier based, it is robust to additive noise [6], and th TIME (8) FREQUENCY
estimate errors are seen to be very small. (2) (b)

B. Parameter Estimation for Benchmark Signal, “Test2 Fig. 6. (a) The swing curve from Pacific Gas and Electric Co. [5], (b) its

The second signal analyzed was the benchmark signal pserctrum.
posed in [3] and [2] for damping factor estimators. This signal
has two closely spaced modes, with the parameters of the twindow length. The error is seen to be minimized at a window
modes being shown in the first column of Table Il. The estlength of 36, compared with the theoretical prediction of 36.
mates obtained for the parameters (using a Kaiser window withA second simulation was run in which the noise was colored
a3 factor of 5) are shown in the second column of Table Il. With 25 percent window overlap. (i.e3 = 0.75). The statistical
must be said that the example was a difficult one because of ffsametersk;; andk., were given byk;; = 1, koo = 0.55.
closeness of the modal frequencies. The signal was analyzedrbyg simulation showed the minimum error to occur at 49, com-
estimating the parameters of the highest energy mode first, thered with the theoretically predicted value of 46.
subtracting an estimate of this mode from the time domain, and

flna”y analyZing the second mode. The estimates were all fOUDd Parameter Estimation for a Real Power System Examp|e

to be quite close to the true values. .
The real power system data used was the voltage swing curve

C. Verification of Window Length Optimization Formula of a test case by the Pacific Gas and Electric Co. first presented
The first sianal used for this section was of the form of 1in [5]. The swing curve consisted of two modes, one of which
! Ignai u : lon w ( %as a component at around 0.67 Hz with potentially problemat-

With wo = /2, 0 = 0.03, ¢ = 0, andA = 1. Stationary, white .., damping, (its existence has been known in the Western Sys-

nmsei)(l;gzwer, 1/|5O£’ was aqdcfd 0 th§t3|gnal. Thitwo;/vllgdo% s Coordinating Council interconnected system). The signal
were sample Kaiser windows (withiparameter of 15), nd the spectrum of the two modes are shown respectively in

and they were c_onsecutive ".1 time. The optim_al window Ie_ng ~ig. 6(a) and (b). (The mean was removed before forming the
may be determined theoretically from (2). Since the noise é%ectrum). The two modes are seen clearly, one at 0.22 Hz, and

white and stationarys1; = 1, k22 = 0, and since t_here iS no the other at 0.67 Hz.
\(/\g;?;\évegverlapkg = 1. Nu,, can be found numerically from In [5] a sliding window of length 2.2445 seconds was used in

’ order to determine the damping factor for the mode at 0.67 Hz.
This length was chosen so as to satisfy the window length con-
straints given in (5) (i.e. so as to eliminate interference between
1000 simulations were run with the mean square error in tpesitive and negative frequency components). For the mode at
damping factor estimate being plotted in Fig. 5 as a function ef0.67 Hz, however, the use of such a window length is highly

Wopt

N

Wopt

— 36 (6)
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guestionable; the interference from the positive frequency com- APPENDIX A
ponent at-0.22 Hz, being relatively close, would be expected to
.be much greater than that from the componert@s?7 Hz. The window function usedy(n), is smooth and ha¥’,,+1 samples.
interference between the components$-at67 and+0.22 Hz is It the signal is windowed starting a and ending aby + N,
also one of the probable reasons why a strong frequency dm’g Fourier transform will be given by: ¢
of the +0.67 Hz component was reported to have occurred in '

Consider the real signal model specified in (1). Assume the

(5). When a longer smoother window was used so that integ, (u) = Flw(n — n1)A cos(jwon + ¢)e™ "] @)

ference between the componentst#t22 and+0.67 Hz was _ on .

effectively eliminated, the drift in frequency between windows =Flwln = n)e™ ]« j:[icos(‘]won + )l ®)

was observed to be minimal. = Flw(n — n1)e™] * 2o [8(w — wo) + 8(w + wo)]
It should be noted that the restriction on the window lengths 2 9

probably contributed significant error to the estimates of fre- Aohe ©)

qguency, damping factor and amplitude in [5]. This could be _ e [SWi, (w — wo) + SWi, (w + wo)] (10)

surmised, despite the true parameter values being unknown, by 2

examining the energy of the residual. The parameter estimajg@sere

found in [5] gave rise to a comparatively high energy residual. denotes the (discrete-time) Fourier transform

The parameter estimates found using the techniques proposed [4],

in this paper yielded a much lower energy residual, i.e. the es- signifies convolution,

timates found in this paper had statistically higher likelihood 8(.) is the impulse function, and

of being the true values. This is explained further in the next sw,, (w) = Flw(n —ni)e "]

paragraph. If the window, w(n), smoothly tapers and is finite, then

The smooth sliding window method was used to first detegIW (w) will peak either at, or extremely close to the origin. The
mine the frequency and damping factor of the mode aroungbdal frequency estimate may therefore be determined from the
0.67 Hz. The frequency estimate was found to be 0.672 Halation:

The window length, starting time aritiparameter (for a Kaiser

taper function) were selected by a certain amount of trial and Wo = argmaxt;,, (w) (11)
error so that a low energy residual was obtained. The starting w

time, length, and? parameter respectively of the first window.

were selected to be 0.86 s, 3.45 s, and 2. The second wind-E)r\)&a value of the Fourier transforma is given by:

was applied at 6.42 s, with the length afichbarameter being Aed?
kept the same as in the first window. The damping factor was Foi(wo) = (SW, (0) + SWa, (2w0)) (12)
found to be—0.0211 s™!, which is very different to the value Al
of +0.0137 s~ obtained in [5]. The amplitude and phase for ~ SWh, (0) 13)

the mode were found to be 0.0376 an®.6131 rad respec- ]
tively. It should be noted that since the energy of the residd&inc&SWn, (w) will have dropped very close to O@at= 2uwo].
corresponding to these values was lower (by 34 percent) tHh}$ @ssumed that the second window starts at times 71 +
the residual corresponding to the estimates given in [5], the sf¥g» @nd ends ai» + N,,. Then the Fourier transform a in
tistical likelihood of the values in this paper being correct, €S seécond window is:
substantially higher. Aei®

The mode at 0.22 Hz was analyzed after subtracting an esti- B, (wo) &
mate of the modal component at 0.67 Hz in the time domain . ) _ )
as in [5]. A pair of Kaiser windows of length, 4.2 s, aficha- The ratio of the two windowed Fourier transform amplitudes at

rameter, 0, were used. The first window was applied at 0 sé&t? Is:

W, (0) (14)

onds and the second window was applied at 4.82 s. All of these Fo,(wo) SW,,(0)
values were obtained again by using the method of minimizing F, (wo) = SW,.(0)
residual energy. The frequency, damping factor, amplitude and ! n1+N:+Nw
phase subsequently found were 0.219 Hz, 0.2658.041, and Z w(n)e=m
1.293 rad, respectively. i
=iV (15)
VI. CONCLUSION > w(n)eon

A Fourier based algorithm for estimating the parameters of o N,
a damped oscillating mode has been presented. The algorithm @fo(m+Ng)Zw(n)@fon
uses the spectra of a pair of possibly overlapping smooth win- _ =0 (16)
dows, with the length of the windows able to be chosen so as - Ny
to provide good frequency resolution or optimal noise perfor- e*°<"1+Ng>Zw(n)e—”"
mance. A theoretical analysis has been presented and simula- n=0

tions have verified the effectiveness of the theoretical results. = N a7
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Rearranging (17) yields the following estimation formula for the The variance of as given in (27) is:

damping factor: R oN oN.
var(s) ~ (e*?Nevar(ga) + var(q) + ¢?Nocov(gig2))

~ 1 Fn (WO):| 4
& =— log {2— (18) . ' 2
Ny F, (wo) N2A26i22SW,,, (0)2 (28)
Eqgn. (13) can be rearranged to give the following estimatiqphere vaf.) and coy.) denote the variance and covariance
formula for the “complex amplitude”: functions respectively.
AE® = 2F, (w0)/SW, (0) (19) Now var(q;) = k1 N, and vafgz) = k2N, for a smooth

sliding window of arbitrary length, wherk, and k. are con-
stants which are dependent on the shape of the window and
APPENDIX B the spectral character of the noise in each window [6]. The co-
] ) ) variance between, andg» will be given by coVgig2) = k12,
Assume that the signal of interest is of the form of (1), byfnere againi,, is a constantwhich is dependent on the window

with some additive noise present. The noise may be coloreflane the spectral character of the naiad the percentage
Using (13), the Fourier transform in the first window, evaluate\g,indow overlap.

atw, is: Using these variance expressions, one can expand the expres-
Acd®SW,, (0 sion for the variance of the estimate as:
o (wi) = AW (0) +a 20) 20N, . oo N, .
' 2 AN L 4Nw(6 9/%24—/%126 g +/$1) 29
B AGWSWN1 (0) n 2q1 (21) var(s) = NggNwAQCjquSWnl(O)Q (29)
N 2 Aci®SW,, (0)

Substitution ofSW,,, (0) = ZZZQT“‘ w(n)e™ ", Ny /Ny, = ks,

whereq; is a random variable corresponding to the noise cop;, — koy [z, andkas = kia/ks into (29) yields:
tribution atwg. Similarly, the complex Fourier amplitude @

in the second window is given by: k(2R3N 4 fggeksTNe 4 |y y)

var(a) = — 5 (30)
AcIbSW,,_(0) 202 ) o [N _
E, ~ e 14— =22 k2N, A?ei%¢ w(n)yw=o"
- (o) 7= (1 gmsiw) ’ 2

(22) In minimizing the above expression with respectMg (while
wheregs, is a random variable corresponding to the noise cokeepingks, the ratio of the window separation to window length
tribution atw, in this second window. constant), multiplicative constants can be neglected. Thus the

The ratio of the two Fourier amplitudes:,, (wo) and Optimal window length is given by:
F,, (wo), will be:

2¢2 o N, kso N,

14— =42 (€237 + kope™ 7 Ve 4 Ky )
P, (wo)  SW,,(0) < AeI?SWi, (0)) 23) wops R ar%max p—— 5 (31)
Fry(wo) — SWy,(0) 14 2q1 Ny Z w(n)e=on

Aci®SWo(0) =
2 CcrNg
<1 + 7,32 )
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