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The use of slow waves to design simple sound absorbing materials
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Laboratoire d’Acoustique de l’Universit�e du Maine (LAUM), UMR-6613 CNRS, Av. O. Messiaen,
72085 Le Mans, France

(Received 16 September 2014; accepted 5 March 2015; published online 25 March 2015)

We demonstrate that the phenomenon of slow sound propagation associated with its inherent

dissipation (dispersion þ attenuation) can be efficiently used to design sound absorbing

metamaterials. The dispersion relation of the wave propagating in narrow waveguides on one side of

which quarter-wavelength resonators are plugged with a square lattice, whose periodicity is smaller

than the wavelength, is analyzed. The thermal and viscous losses are accounted for in the modeling.

We show that this structure slows down the sound below the bandgap associated with the resonance

of quarter-wavelength resonators and dissipates energy. After deriving the effective parameters of

both such a narrow waveguide and a periodic arrangement of them, we show that the combination

of slow sound together with the dissipation can be efficiently used to design a sound absorbing meta-

material which totally absorbs sound for wavelength much larger than four times the thickness struc-

ture. This last claim is supported by experimental results.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4915115]

I. INTRODUCTION

Slow sound propagation is currently a growing topic in

acoustics because of the direct analogy with electromagnetic

induced transparency. This phenomenon appears when an

opaque medium exhibits enhanced transmission in a narrow

frequency windows along with strong dispersions. This

rapid change in transmission leads to strong dispersion giv-

ing rise to slow phase or group velocity waves whose fre-

quency is centered on the narrow transmission band.1 In

acoustics, most of theoretical and experimental evidences of

slow sound have been achieved by considering sound propa-

gation in pipes with a series of detuned resonators (mostly

Helmholtz resonators) separated by a subwavelength dis-

tance,2 tuned or detuned resonators separated by half of the

wavelength giving rise to a coupling between the resonators

and the Bragg bandgap,3 in a waveguided sonic crystals,4 in

lined ducts.5 So far, only a few studies have been focusing

on the dissipation (dispersion and attenuation) of slow sound

propagation, even if it has been sometimes noticed or dis-

cussed.2,3,6,7 Dissipation was considered as a side effect of

an unexpected adverse reaction. The key point of this article

is to make use of slow sound propagation, which appears for

a broadband frequency below the bandgap associated with

resonator’s resonance, together with the associated dissipa-

tion to design a sound absorbing metamaterial. By sound

absorbing metamaterials, we mean a structured material that

exhibits strong or total absorption for wavelength in the air

much larger than four times the thickness of the structure L

when rigidly backed. Effectively, usual sound absorbing

materials, mainly foams, suffer from a lack of absorption at

low frequencies when compared to their efficiency at higher

frequencies. This results in bulky and heavy multilayered

structures, which are mainly efficient for frequencies higher

than the so-called quarter wavelength resonance of the

backed layer in the inertial regime, i.e., f¼ c/4 L. The speed

of sound in current porous material is usually of the same

order of the sound speed in the air in this regime, because it

tends asymptotically to cair=
ffiffiffiffiffiffi

a1
p

, where the tortuosity a1
is usually around unity for usual sound absorbing porous

materials. The interest of slow sound obviously appears

because decreasing the speed of sound in the structure at

fixed thickness results in a decrease of the first maximum

absorption frequency or decreasing the speed of sound in

the structure at fixed frequency results in a decrease of the

structure thickness. Over the last decades, several solutions

have been proposed to design sound absorbing metamateri-

als: membrane-type metamaterials that exhibit nearly total

reflection at an anti-resonance frequency8 or nearly total

absorption due to the flapping motion of asymmetric rigid

platelets added to the membrane9 have been proposed, but

their absorption properties are limited in the metamaterial

resonance frequency range; metaporous materials that ex-

hibit quite large total absorption frequency band due to the

coupling of several resonance phenomena arising from the

embedment of resonant inclusions in a porous matrix,10 pos-

sibly coupled with surface irregularities; double porosity

materials11 or, more recently, dead-end porosity materials.12

This last solution consists in plugging dead-end pores, i.e.,

quarter-wavelength resonators, on open pores to create

dead-end porosity materials. The derived model consists in

adding the admittance of the porous material without the so-

called dead-end pores with the one of the so-called dead-end

pores, resulting in a low frequency domain of validity of the

model and difficulties to understand absorption mechanism.

Moreover, the manufacturing process (cooling process)

involving salt grains and liquid metal does not yet offer the

possibility of the full control over the densities and the

lengths of the dead-end pores.a)Electronic mail: Jean-Philippe.Groby@univ-lemans.fr.
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In this article, we analyze a periodic structure composed

of a periodic arrangement of narrow slits, on one side of

which quarter-wavelength resonators are plugged with a

square lattice, whose periodicity is very small compared to

the wavelength. After a description of the configuration in

Sec. II and solution of the problem in Sec. III, Sec. IV

presents the dispersion analysis of the modes traveling in

one of this narrow irregularity and Sec. V presents the deri-

vation of the effective parameters together with their

domains of validity. Below the band gap associated with the

resonance quarter-wavelength resonators, the sound speed

inside the narrow irregularities presents the characteristic of

slow sound with an associated dissipation. This enable to

design a sound absorbing metamaterial possessing absorp-

tion peaks for wavelength in the air much larger than the

structure thickness as shown in Sec. V and experimentally

validated in Sec. VI.

II. DESCRIPTION OF THE CONFIGURATION

A unit cell of the 2D (in reality 3D) scattering problem

together with a sketch of one internal face of the narrow

irregularity (subsequently named slit) is shown in Fig. 1.

Before the addition of the quarter-wavelength resonators, the

unit cell is composed of N identical irregularities of width w

and height L occupied by a material Ms modeled as a slit,

i.e., the viscous and thermal losses at each lateral boundaries

are accounted for. When only plane waves propagate in a

slit, the equivalent complex and frequency depend densities

and bulk modulus are13

Ks ¼ cP0

1þ c� 1ð Þtanh w

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqaPrx=g
p

� ��

w

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqaPrx=g
p

� � ;

qs ¼ qa

1� tanh
w

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqax=g
p

� �

=
w

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqax=g
p

� � ;

(1)

wherein c is the specific heat ratio, P0 the atmospheric pres-

sure, Pr the Prandtl number, g the dynamic viscosity, and qa

the density of the saturating fluid. The upper and lower flat

and mutually parallel boundaries of the structure, whose x2
coordinates are L and 0, are designated by CL and C0,

respectively.

The upper semi-infinite materialMa, i.e., the ambient fluid

that occupies Xa, andMs are in a firm contact at the boundaries

C
ðnÞ
as ; 8n 2 N , meaning that the pressure and normal velocity

are continuous across C
ðnÞ
as . The thermal losses are neglected

on C0 and CL and a Neumann type boundary condition is

applied on these boundaries, i.e., the normal velocity vanishes

on C0 and CL. The n-th slit is located at x1¼ d(n), which refers

to the slit boundary on which a Neumann type boundary condi-

tion is applied, i.e., the interface CN.

A periodic set of r in radii quarter-wavelength resona-

tors of length l are plugged on one lateral face of the slit with

a square lattice of size a in the x2–x3 plane, see Fig. 1. The

material Mt that occupies each tube Xt is modeled as a circu-

lar tube and is in firm contact with Ms through Cst, i.e.,

the pressure and normal velocity are continuous across

Cst. When only plane waves propagate in a tube, the equiva-

lent complex and frequency depend densities and bulk

modulus are13

Kt ¼ cP0

1þ 2 c� 1ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqaPrx=g
p

J1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqaPrx=g
p

� �

=rJ0 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqaPrx=g
p

� � ;

qt ¼ qa

1� 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqax=g
p

J1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqax=g
p

� �

=rJ0 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iqax=g
p

� � ;

(2)

wherein Jn is the Bessel function of n-th order. The thermal

losses are neglected on Cl and a Neumann type boundary con-

dition is applied on these boundaries, i.e., the normal velocity

vanishes on Cl. The first conditions on Cst will be reduced to

an impedance condition applied on the whole interface CZ in

the following, because the considered wavelength is much

larger than the dimensions of Cst and the periodicity of this

arrangement a inside the slit. This impedance, which already

accounts for the material propagation and losses in the tubes,

and for the conditions on Cst and Cl reads as

Z6 ¼ 6iZt cotanðktlÞ=/t; (3)

wherein Zt ¼ ffiffiffiffiffiffiffiffiffi

qtKt
p

is the impedance of Mt, kt is the wave-

number inside the tube, and /t is the ratio between the area of

Cst over the one of the unit cell, i.e., a surface porosity

/t ¼ pr2=a2. The sign 6 depends on whether the tubes are
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plugged on the right (þ sign) or left (– sign) side of the slit. In

what follows, only the positive sign will be used and Z¼Zþ.
The problem therefore reduces to a 2D one. The impedance

condition does not account for losses on the rigid portion of

CZ, i.e., CZ\Cst, while use of Eq. (1) accounts for losses on a

fully rigid boundary. The combination of Eq. (1) and the

application of this impedance condition are also valid under

the hypothesis of small /t. This hypothesis is usually accepted

when dealing with dissipation in ducts with resonators.7,14

The incident wave propagates in X
a and is expressed by

piðxÞ ¼ Aieiðk
i
1
x1�kai

2
ðx2�LÞÞ, wherein ki1 ¼ �ka sin hi; kai2 ¼

ka cos hi and Ai¼Ai(x) is the signal spectrum.

In each domain X
a (a¼ a, s, t), the pressure field fulfills

the Helmholtz equation

r � 1

qa
rpa

� �

þ kað Þ2
qa

pa ¼ 0; (4)

with the density qa and the wavenumber ka¼x/ca, defined

as the ratio between the angular frequency x and the sound

speed ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ka=qa
p

.

As the problem is periodic and the excitation is due to a

plane wave, each field (X) satisfies the Floquet-Bloch relation

Xðxþ dÞ ¼ XðxÞeiki1d: (5)

Consequently, it suffices to examine the field in the elemen-

tary cell of the material to get the fields, via the Floquet rela-

tion, in the other cells.

III. SOLUTION OF THE PROBLEM

A. Field representations

Separation of variables, radiation conditions, and

Floquet theorem leads to the representations

paðxÞ ¼
X

q2Z
½Aie�ika

2q
ðx2�LÞd0q þ Rqe

ika
2q
ðx2�LÞ�eika1qx1 ; 8x 2 X

a ;

(6)

wherein d0q is the Kronecker symbol, ka1q ¼ ki1 þ 2qp
d
, and

ka2q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkaÞ2 � ðka1qÞ2
q

, with Reðka2qÞ � 0 and Imðka2qÞ � 0.

The reflection coefficient of the Bloch wave denoted by the

subscripts q is Rq.

According to Ref. 15, the pressure field ps(n), admits the

pseudo-modal representation, that already accounts for the

boundary conditions on C0, CN and CZ:

psðnÞ ¼
X

m2N
An cos ðks1mðx1 � dðnÞÞÞ cos ðks2mx2Þ8x 2 X

sðnÞ ;

(7)

wherein An are the coefficients of the pseudo modal repre-

sentation, ks2m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðksÞ2 � ðks1mÞ2
q

, with Reðks2mÞ � 0 and

Imðks2mÞ � 0, and ks1m is the m-th solution of the dispersion

relation and satisfies

ks1m tan ks1mw
� 	

¼ �ixqs

Z
: (8)

This last equation is solved by use of a Muller’s algorithm16

initiated with the low frequency approximations

~k
s

10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ixqsw=Z
p

=w; and

~k
s

1m ¼ mpð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4ixqsw=ZðmpÞ2
q

Þ=2w: (9)

These modes are said bi-orthogonal and the bi-orthogonality

relation reads as
ðw

0

cos ðks1mx1Þ cos ðks1Mx1Þdx1 ¼ dMmwð1þ sincð2ks1mwÞÞ=2

¼ dMmwNm: (10)

B. The linear system for the solution of Rq

The application of the boundary conditions on each

interface C
ðnÞ
as leads to two set of coupled equations in terms

of AðnÞ
m and Rq: the continuity of the pressure field is pro-

jected on each Bloch mode (making use of the orthogonality

of these modes), while the continuity of the normal compo-

nent of the velocity is projected on the mode of the slit (mak-

ing use of the bi-orthogonality relation (10)). The

combination of these two set of equations leads to the solu-

tion either in terms of Rq or in term of Am, these two solu-

tions being linked one with each other. In particular, the

linear system of equations for the solution for Rq, 8q 2 Z, is

Rq �
iqa

ka2q

X

Q2Z
RQ

X

n2N

X

m2Z

ks2m/
s nð Þ

qsNm

tan ks2mL
� 	

Il=r nð Þ�
mq I

l=r nð Þþ
mQ

¼ Aidq þ Ai
X

n2N

X

m2Z

iqaks2m/
s nð Þ

ka2qq
sNm

tan ks2mL
� 	

I nð Þ�
mq I

nð Þþ
mQ ;

(11)

where /sðnÞ ¼ w=d is the surface porosity of one slit, such

that [n2N /sðnÞ ¼ /s is the global surface porosity of the

structure, and

I nð Þ6
mq ¼ e6ika

1q
d nð Þ�w

2ð Þ
2

eik
s
1m

w
2sinc ks1m6ka1q

� 	w

2

� �


þe�iks
1m

w
2sinc ks1m7ka1q

� 	w

2

� ��

; (12)

FIG. 1. Example of a d-periodic structure, whose unit cell is composed of 2

slits with quarter-wavelength resonators plugged on one side of them.
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when the impedance condition is applied on the right side of

the n-th slit and

I nð Þ6
mq ¼ e6ika

1q
d nð Þþw

2ð Þ
2

e�iks
1m

w
2sinc ks1m6ka1q

� 	w

2

� �


þeik
s
1m

w
2sinc ks1m7ka1q

� 	w

2

� ��

; (13)

when the impedance condition is applied on the left side of

the n-th slit.

The system Eq. (14) is solved for each q and each m.

The absorption coefficient A is then calculated through

A ¼ 1�
X

q2Z

Re ka2q
� 	

ka2
k Rqk2: (14)

IV. ANALYSIS OF THE DISPERSION RELATION IN THE
SLITS

The width of the slit, tube dimensions, and the square lat-

tice dimension is fixed at w¼ 2mm, r¼ 2.5mm, l¼ 40mm,

and a¼ 7mm. The surface porosity /t is 0.4. Figure 2 depicts

the real part of solution of the dispersion relation Eq. (8) with

and without losses. In this last case, qs¼qt¼ qa and

Ks¼Kt¼Ka. The 0-th order mode possesses a cut-off

frequency with an infinite branch when cotan(ktl)

¼ cotan(kal)¼ 0. This make the higher modes continuously

shift down of a value of p/w, which means that these modes

change symmetry, from a symmetric to an antisymmetric one,

and the opposite. The impedance condition continuously

passes from a condition close to a Neumann one at low fre-

quency to a Neumann one at higher frequency through a

Dirichlet one at the resonance of the tubes. When losses are

introduced, and for small values of w, these modes do not

intersect anymore and do not change symmetry. This implicitly

means that a Dirac cone is theoretically possible with mode

repulsion for particular couple (w, l). These modes are cor-

rectly approximated by their low frequency approximation ~k
s

1m

given Eq. (9). The real part of ks is also plotted in Figure 2.

Only the fundamental mode ~k
s

10 leads to propagative waves.

This fundamental mode is close to a plane mode when propa-

gative, because ~k
s

10w � p. This fact together with the small

value of /t ensure the validity of the combination of Eq. (1)

with the application of this impedance condition. The structure

possesses a bandgap associated with the resonance of the

quarter-wavelength resonators. Because of the losses, the

bandgap definition and bounds are not clear. Nevertheless, it

corresponds to ~k
s

10 ¼ ks, i.e., tan ktl ¼ �kswZt=Zs/t.

Assuming all properties of the materials to be frequency inde-

pendent and real, the low frequency bound corresponds to the

first sign change of tanðktlÞ, i.e., fl � ct/4l, while the high fre-

quency bound corresponds to tanðktlÞ � ktl� p, i.e.,

fh ¼ 1=ð2ðl=ct þ wZt=csZs/tÞÞ. When the material properties

are frequency dependant, these two frequencies can be deter-

mined by the intersection of the real part of the previous

expression with f. This leads to fl� 2080Hz and fh � 3890Hz,

whose value highlight the difficult determination of the

bandgap bounds in case of losses and dispersion. While fl cor-

responds to the quarter wavelength frequency of the tubes, fh
also depends on various parameters among which the dimen-

sions and mechanical parameters of the slit. This explain why

fh is that affected when compared to fl by the flow in duct

experiments, for example.5

Among the bandgap, a particular feature of the sound

wave propagating in the slit is its velocity. Figure 3(a) depicts

the sound speed of the wave traveling in the slit, i.e.,

Reðx=ks20Þ, its approximation, i.e., Reðx=~ks20Þ, the sound

speed of air and the sound speed in the slit in absence of tubes

ReðcsÞ ¼ Reð
ffiffiffiffiffiffiffiffiffiffiffi

js=qs
p

Þ. Four zones are exhibited: At very low
frequency, sound speed vanishes because of the viscous re-

gime; below fl, the sound speed is smaller than the speed of

sound in the air and in the slit in absence of tubes, i.e., sub-

sonic regime; inside the bandgap [fl, fh], the sound speed van-

ishes; above fh, the sound speed is higher than the air speed of

sound, i.e., supersonic regime. Notice that again the bandgap

does not seem to have the same bounds as before, because of

the losses and dispersion. The supersonic regime was already

noticed in Ref. 17 over a small frequency range just after

Helmholtz resonance, while the infrasonic regime is to some

extend (in the sense that an acoustic wave always propagate

in a porous medium with a velocity a little bit smaller than in

the air) common in the porous community. Nevertheless, we

clearly demonstrate hereafter that this infrasonic regime is not

due to a common tortuosity effect. Below fl, the sound speed

possesses a plateau at low frequency and slowly decreases to

a value close to zero at fl. The value of this plateau can be

approximated (ktl � 1) by the low frequency limit

Reðcs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ /tlZscs=wZtct
p

Þ, Figure 3(a). This value is

always much smaller than Re(cs) if /tl > w. Without losses,

this limit reduces to ca=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ /tl=w
p

, which clearly shows

that the speed of sound in the slit is always smaller than ca

and decreases when the ratio /tl=w increases. Focusing on the

frequency band below fl, the group velocity, defined as vsg
¼ Reð@x=@ks20Þ is also much lower than the speed of sound

in the air and tends to zeros at fl.

The absorption is related to Imðks20Þ. Figure 3(b)

depicts Imðks20Þ in the slit and its approximation Imð~ks20Þ.
The imaginary part of ks20 is very large inside the bandgap.

FIG. 2. Real part of ks1mw, without and with losses, as well as ~k
s

10w. The real

part of ksw is also plotted, as well as the position of both bounds of the

bandgap fl and fh.
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The low frequency limit (ktl� 1) of Imð~ks20Þ is

Imðks
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ /tlZscs=wZtct
p

Þ, which clearly show that the

absorption increases with the ratio /tl=w. So, to ensure low

sound speed and large attenuation, the ratio /tl=w should

be large.

V. DERIVATION OF THE EFFECTIVE PARAMETERS

Assuming the unique propagation of the mode m¼ 0 in

the slits and ks10w � 1; N0 � 1. The assumption that the fre-

quency is much lower than the Wood anomaly frequency,

which corresponds to ka1q ¼ ka when q¼61, i.e., when only

the specularly reflected wave propagates, is not sufficient to

derive effective parameters because of the terms I
ðnÞ6
0q in

Eq. (11). To do so, the condition ðks106ka1qÞw=2 � 1; 8q 6¼ 0

should be imposed. This condition ensures that only the term

q¼ 0 does not vanish and that I00ðnÞ6 ¼ 1. It implicitly means

that the position of slits d(n) as well as the side of the slit on

which the impedance condition is applied, either on the right

or the left of the slit, does not affect the effective parameters.

In other words, it means that different structure of different

periodicity can have identical effective parameters. This last

condition is more restrictive than the first one, because it

also ensures that the higher order Bloch modes, which are

only related to the arrangement of the slits, do not contribute

to the field, while qp/d is always very large. This condition

is often forgotten by the porous material community, which

mainly focuses on the propagation inside the pores, a few on

their arrangement, but never on the possible contribution

of evanescent waves. Effectively, the macroscopic descrip-

tion of the propagation inside the slit is subjected to

ks1w � 1; ktr � 1, and ks20a � 1. The macroscopic descrip-

tion of the propagation inside the material is also subjected

to ðks16ka1qÞw=2 � 1; 8q 6¼ 0. In the frequency range, where

the condition ka1q < ka when q¼61 is satisfied, but the con-

dition ðks106ka1qÞw=2 � 1; 8q 6¼ 0 is not satisfied, the higher

order Bloch modes do not propagate but can contribute sig-

nificantly to the field and so to the properties of the material.

This is due to the large dispersion of ks10 close to the reso-

nance frequency of the resonators, which shifts the sinc

function windowing and could make I0qðnÞ6 large for q 6¼ 0.

The contribution of these evanescent waves, which are local-

ized close to the interface of the material can nevertheless be

accounted for through Drude transition layers.19,20

When ðks106ka1qÞw=2 � 1; 8q 6¼ 0, the system Eq. (11)

reduces to the unique calculation of R0, which reads as

R0 ¼ Ai ixq
scot ks20Lð Þ=ks20/s � Z0= sin h

i

ixqscot ks20Lð Þ=ks20/s þ Z0= sin h
i
: (15)

A simple identification with the classical formula of the

reflection coefficient of a rigidly backed homogeneous slab

leads to a surface impedance

Z ¼ ixqscotðks20LÞ=ks20/s: (16)

This impedance does not depend on the angle of incidence.

Sound propagation in each slit depends only on the pressure

of air above the slit, and the material is a locally reacting ma-

terial.21 Another simple identification leads to Ze f f ¼
xqs=~k

s

2/
s and ke f f ¼ ~k

s

2, where we make use of Eqs. (3) and

(9), the validity of these expressions being ensured. The effec-

tive density (qe f f ¼ Ze f f ke f f=x) and bulk modulus

(Ke f f ¼ xZe f f =ke f f ) of this locally reacting material would

read as qef f ¼qs=/s;Kef f ¼Ks=/sð1þZs/t tanðktlÞ=ZtkswÞ.
Nevertheless, these formula are derived accounting for the

unique porosity of the slit and not for the porosity of the

whole structure. Doing so, the effective density and bulk mod-

ulus of this locally reacting material read as

qe f f ¼
qs 1þ /tl=w
� 	

/tot ;

Ke f f ¼
Ks 1þ /tl=w

� 	

/tot 1þ Zs/t tan ktlð Þ=Ztksw
� 	 ; (17)

where /tot is the porosity of the whole structure and a1 ¼
ð1þ /tl=wÞ ¼ /tot=/s is a tortuosity-like parameter. In this

last case, limx!0 Ke f f ¼ P0, which is the usual value limit of

the bulk modulus in the classical porous material representa-

tion. These effective parameters are independent on wave

FIG. 3. (a) Real part of cs2 (—) and of ~cs2 (– –), as well as cair (	 ) and Re(cs) (� � �). The asymptotic low frequency limit of cs2 is also plotted (�). (b) Imaginary

part of ks2 (—) and of ~k
s

2 (– –). The asymptotic low frequency limit of Imðks2Þ is also plotted (�).
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propagation direction and structure thickness. The effective

density and bulk modulus in the slits are qse f f ¼ qe f f/
tot

¼ qsð1þ /tl=wÞ and Ks
e f f ¼ Ke f f/

tot, i.e., a unusual tortuos-

ity is introduced and the effective bulk modulus is modified.

The addition of the periodic set of resonators acts on the thermal

losses and introduces an unusual tortuosity, which acts on the

density of the slit and not on a mixture of the densities of the slit

and of tubes. To be convinced of the influence of the thermal

losses, the assumption ktl � 1 leads to Ks
e f f ¼ Ksð1þ /tl=wÞ

=ð1þ /tKsl=wKtÞ, which only depends on the effective bulk

modulus in the tube and the slit and so on the thermal losses.

Let us consider N ¼ 1, and the dimension used in

Sec. IV with d¼ 42mm. This corresponds to a very thin

plate ending the quarter wavelength resonator. Figure 4

depicts the normalized real and imaginary part of the effec-

tive bulk modulus and density as well as their approxima-

tion: normalized by P0=/
tot and by qa=/tot for the material

and normalized by P0 for the material and by qa for the slit.

The effective parameters for the materials are only valid till

fl, while the effective parameters for the slit are valid on the

whole range of frequency considered. A particular feature of

the real part of the effective modulus in the slit is that it

becomes negative on the whole frequency of the bandgap

associated with the resonance of the resonators. This is in ac-

cordance with previous results obtained in case of Helmholtz

resonators17 since the seminal article.18 A particular feature

of the real part of the density is its particularly large value,

which is due to a particularly large tortuosity-like effect only

acting on the density of the slit. Imaginary part of both effec-

tive parameters is in accordance with the passivity condi-

tion,20 with Im(Keff) < 0 and Im(qeff)> 0.

Let us remark that the extension to a 3D problem with

quarter-wavelength resonators plug on a straight pore is straight-

forward, by defining the proper porosity and using the proper

formulas for the effective parameters for the straight pore.

VI. RESULTS AND DISCUSSION

The infinite sums in Eq. (11) are truncated at M and

Q6 . The goal is to design a material that achieves large

absorption at low frequency. Low frequency means for a

wavelength in the air larger than four times the thickness of

the structure, where only one reflected Bloch wave is propa-

gating. The high frequency bound can be approximated by

the frequency at which the Wood anomaly happens.22

In our case, the large absorption is only associated with

the quarter wavelength resonance of the slits. Contrary to the

one usually encountered for regular porous material and

associated with interference phenomena, this quarter wave-

length resonance is a real resonance of the slits. For fixed ra-

tio /l=w, Figure 3 shows that the sound speed decreases

from a plateau, while the attenuation Imðks2Þ increases with
frequency below the bandgap. This means that the structure

possesses an optimum in terms of attenuation-thickness of

the structure at the quarter wavelength resonance of the slit

when the frequency of the end of the plateau fopt equals

cs2=4L. For the dimensions considered in Sec. IV, fopt
� 550Hz, which leads to L � 45mm. In practice, this length

can be smaller. Figure 5(a) depicts the absorption coefficient

for d¼ 84mm, L¼ 42mm, N¼ 2, with d(1)¼ d(2)¼ 42mm

(the other dimensions are those of Sec. IV), with the quarter

wavelength resonators plugged on the left for the first slit

and on the right for the second slit, when M¼ 2 and

Q6¼ 0, Q6¼ 22 as well as the calculation ran with the

equivalent parameters derived in Sec. V at normal incidence.

It should be noticed that in this case, the equivalent parame-

ters being independent of the slit position and side of the slit

on which the impedance condition is applied, the effective

parameters reduce to those of N¼ 1 and d0 ¼ 42mm. Their

validity is ensured till the quarter-wavelength resonance.

The calculation performed with the help of the effective pa-

rameters is identical (as expected) with the calculation per-

formed when only the terms Q¼ 0 is dominant. While the

calculation derived with the effective parameters constitutes

a good approximation, the effect of the Drude transition

layers19 is clearly visible around this bound, fl. Effectively,

the required number of Bloch mode is very large at the lower

bound of the bandgap. This is explained by the large disper-

sion of the waves inside the slits around this frequency. The

absorption coefficient vanishes inside the bandgap because

all the energy is reflected. The structure response possesses

absorption peaks which all correspond to resonances of the

slits.

The large absorption obtained at 590Hz is of particular

interest. It should be noticed that this peak is not associated

with the resonance of the resonators but to a resonance of the

slit with a sound velocity reduced because of the presence of

the side resonators. In first approximation, the sound speed is

reduced by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ /tl=w
p

¼ ffiffiffiffiffiffi

a1
p � 3. Thus, this ma-

terial will be efficient at a frequency 3 times smaller than a

classical one. This frequency corresponds in practice to a

wavelength in the air ka¼ 579.6mm, which is 14 times big-

ger than the thickness of the structure. The higher order quar-

ter wavelength resonances lead to large absorption peak,

which concentrates around fl because the speed of sound is

rapidly decreasing around this value. The measurement of

this resonance could be used to analyze back the speed of

sound inside the slits.

FIG. 4. Normalized real and imaginary part of the effective bulk modulus

(a) and density (b) as well as their approximation. Solid curves depict the

direct calculation of the effective parameters through ks1, while the dashed

curves depict their approximated values Eq. (17).
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Figure 5(b) depicts the absorption of the same configura-

tion at hi¼p/4, when 3 modes are accounted for in the slits

and Q6¼ 22 as well as the calculation ran with equivalent

parameters derived in Sec. V. The bandgap frequency range

and the position of the absorption peaks are identical,

because the bandgap is due to quarter wavelength resonance

of the tubes and because the large absorption peaks corre-

spond to resonances of the slits. In practice, the calculation

performed with the use of the effective parameters is in good

agreement below the bandgap till grazing incidence despite

the first Wood anomaly (which appears around 2100Hz,

Figure 5(b)).

The amplitude and frequency of the first absorption

peak can further be improved with the help of the ratio

w=/tl, as explained in Sec. IV. This validates the previously

effective parameters below the bandgap and proves the effi-

ciency of the structure as sound absorbing metamaterial.

VII. EXPERIMENTALVALIDATION

The samples were composed of an aluminum block of

40	 42	 42mm3. The block was drilled from side to side

along the 40mm thick direction with circular holes of

r¼ 2.5mm equally spaced of 7mm as shown Figure 5(a).

This constitutes Sample 1. A 1mm thick aluminum plate

was then glued on one side of Sample 1 to close the holes.

This constitutes Sample 2.

The absorption coefficient of the sample is measured in

an impedance tube with a square cross section

4.2 cm	 4.2 cm. The tube cut-off frequency is 4200Hz. By

assuming that plane waves propagate below the cut-off fre-

quency, the infinitely rigid boundary conditions of the tube

act like perfect mirrors and create a periodicity pattern in the

x1 and x3 directions. Samples 1 and 2 are placed at the end of

the tube against a copper plug that closes the tube and acts as

a rigid boundary, therefore creating a periodicity along the x1
direction of 8.4 cm with slit width w¼ 2mm and w¼ 1mm,

respectively, see Figure 5(a). This technique was previously

used in various articles10,23 and allows to determine experi-

mentally the absorption coefficient at normal incidence of a

quasi-infinite 2D periodic structure just with half or a quarter

of the unit cell.

Figure 6(b) depicts the experimental absorption coeffi-

cient of Sample 1, the calculated one in the corresponding

case, i.e., the one studied in Sec. VI and its approximation

with the effective parameters. All the three curves match well

below the bandgap. As explained in Sec. V, only the fully cal-

culated absorption coefficient is valid inside the bandgap.

Inside the latter, the experimental absorption coefficient is

very low and is also difficult to measure, explaining the oscil-

lations of the experimental curve. Figure 6(c) depicts the

same curves for Sample 2, i.e., in the case w¼ 1mm. Once

again the curves match well. A small disagreement is noticed

around fl. This can be explained by several things related to

the manufacturing and the misplacement of the sample, but

more surely by the use of the impedance model. Effectively,

the wavelength (Reðcs2=f Þ) is very small (while on the other

hand the imaginary part Imðcs2=f Þ is very large) and can be

comparable to a around fl, making improper the impedance

model around this frequency. In both cases, the absorption for

frequency higher than fh is not well measured because the

absorption is very low, but also because this frequency is very

close from the cut-off frequency of the tube. These experi-

ments were performed at two different levels of excitation,

with identical results, ensuring the linearity of the response.

These two experiments validate the previous method of calcu-

lation, as well as the derived effective parameters.

Of particular interest is the absorption coefficient of

Sample 2, which exhibits a total absorption peak at 480Hz,

which corresponds to a wavelength in the air medium 17

times larger than the structure thickness.

VIII. CONCLUSION

The acoustic properties of a periodic arrangement of

narrow irregularities (slits) with quarter-wavelength resona-

tors plugged on it with a square lattice, whose periodicity is

smaller than the wavelength is analyzed. It is shown that the

wave propagating in the slit possesses the specific features of

slow sound propagation over a quite large frequency band

FIG. 5. Absorption coefficient for L¼ 42mm, N¼ 2, with d(1)¼ d(2)¼ 42mm, with the quarter wavelength resonators plugged on the left for the first slit and

on the right for the second slit, when M¼ 2 and Q6¼ 0, Q6¼ 22 as well as the calculation ran with the equivalent parameters, (a) normal incidence, and (b)

hi¼p/4.
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with a phase (and group) velocity much smaller than the one

of air and the one of the wave propagating in the slit in ab-

sence of the quarter-wavelength resonators, for all frequen-

cies below the resonance of the resonators. The associated

dissipation is analyzed showing strong dependence with

regards to the surface porosity, length of resonators, and

width of the slit. The effective parameters are then derived,

both for the modeling of the sound propagation in one slit,

exhibiting negative bulk modulus inside the bandgap, and

for the modeling of the whole structure, exhibiting in addi-

tion a unusual tortuosity effect. Of particular interest is the

frequency limit of these effective parameters which are

clearly identified, also pointing the interest of the use the

Drude transition layers. These effective parameters also

clearly show that the slow down of the sound speed in the

slit is due to a modified bulk modulus together with an un-

usual tortuosity effect acting on the density of the slit. Both

sound speed and dissipation are then used to design sound

absorbing metamaterials, which exhibit a lowest frequency

total absorption peak for wavelength much larger than four

times the thickness of the structure. These results are vali-

dated experimentally, showing a lowest frequency total

absorption peak for wavelength 17 times larger the thickness

of the structure. This paves the way to the design of more

complex sound absorbing structures, involving resonators of

different nature, detuned resonators, and more complex

arrangement.
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