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THE USE OF SUBSERIES VALUES FOR ESTIMATING
THE VARIANCE OF A GENERAL STATISTIC FROM A
STATIONARY SEQUENCE!

By EDWARD CARLSTEIN

University of North Carolina

Let {Z: —o0 < i< +o0} be a strictly stationary a-mixing sequence.
Without specifying the dependence model giving rise to {Z,}, and without
specifying the marginal distribution of Z,, we address the question of variance

estimation for a general statistic ¢, = ¢,(Z,,..., Z,). For estimating Var{¢,}
from just the available data (Z,,..., Z,), we propose computing subseries
values: £,(Z,. 1,2, 9y+++r»Z4m), 0 < i< i+ m < n. These subseries values

are used as replicates to model the sampling variability of ¢,. In particular,
we use adjacent nonoverlapping subseries of length m = m,,, with m,, = oo
and m,/n — 0. Our variance estimator is just the usual sample variance
computed amongst these subseries values (after appropriate standardization).
This estimator is shown to be consistent under mild integrability conditions.
We present optimal (i.e., minimum m.s.e.) choices of m,, for the special case
where ¢, = Z, and {Z,} is a normal AR(1) sequence. A simulation study is
conducted, showing that those same choices of m, are effective when ¢, is a
robust estimator of location and {Z,} is subject to contamination.

1. Introduction. Consider this situation: a scientist is faced with data
Z,=(Z,...,Z,) from a stationary sequence {Z;: —oo < i < +oo}. He does not
know what underlying dependence model (M) produced {Z;}, nor does he know
the distribution (F') of the Z;’s. The latter may include large-variance contamina-
tion. A statistic ¢, = ¢,(Z,) is computed, e.g., a trimmed mean to estimate the
level of the sequence, or a robust estimate of scale. In order to make any
inferences from ¢,, an estimate of the variance of ¢,, will be needed. Our objective
is to provide a practicable and theoretically sound technique for calculating such
a variance estimate—without assuming knowledge of M or F. This is accom-
plished by using (as replicates) “subseries values” of the statistic ¢ computed on
“subseries”: (Z;,,,Z;,9,---»2Z; 1), 0 < i <i+ m < n. The literature contains
no other procedure to address this question in its full generality. Furthermore,
even if specific assumptions were made about M (e.g., autoregression) and F (e.g.,
joint normality), actual calculation of the theoretical variance of ¢, in terms of
the parameters of M and F may be intractable. This again points to the need for
a nonparametric variance estimator for general statistics from dependent se-
quences.

The setting we address is more complex than the iid case due to the presence
of M (be it known or unknown). Therefore the practical appeal of the bootstrap
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and jackknife estimates of variance applies a fortiori to our variance estimator: it
“can be applied to complicated situations where parametric modeling and/or
theoretical analysis is hopeless” (Efron, 1982).

After presenting our basic notation and definitions in Section 2, we proceed in
Section 3 to formally define our variance estimator and to discuss it in compari-
son with other variance estimators in the literature. Section 4 establishes condi-
tions under which our estimator is consistent in the L, sense. This consistency
result is combined with a distributional result from Carlstein (1986) to yield
asymptotic normality for general statistics from a-mixing sequences—with the
limiting distribution being free of the nuisance parameter o2. In Section 5 we
determine analytically the optimal choices of m (subseries length) for a useful
class of special cases. Finally, in Section 6, using the results of Section 5 as a
guide, we apply the variance estimator (via simulations) to precisely the sort of
situation described at the outset of this introduction.

2. Definitions and notation. Let {Z(w): —o0 <i< +0c0} be a strictly
stationary sequence of real-valued random variables (r.v.) defined on probability
space (Q, F, P). Let F,; (F,, respectively) be the o-field generated by
(Z(w), Z,, (w),...} ({..., Z,_((w), Z(w)}, respectively).

For N > 1 denote: «(N) = sup{|P{A N B} — P{A}P{B}|: A € F}, Be Fy},
and define a-mixing to mean lim, _, ,a(N) = 0.

Let ¢,(z,,..., 2,) be a function from R" — R!, defined for each n > 1 so that
t(Z(w),..., Z,(w))is F-measurable. Suppressing the argument w of Z,(-) from
here on, we denote Z%, = (Z, .\, Z,,5,...,Z;,,) and ¢t = t(Z%); as a particular
case: Z! = 3124/ N

For B> 0 denote: ;X = X-I{|X|< B} and BX = X — ;X. Expectation,
variance, and covariance will be denoted by E, V, and C, respectively.

Random variables {X,} will be said to be uniformly integrable (u.i.) iff: 3 n,
st. lim, , csup,. , E{|*X,|} = 0. It will at times be convenient to use the
equivalent condition: lim, _, limsup, _, . E{[4X,|} = O.

3. The variance estimator. Most variance estimation techniques for gen-
eral statistics have been aimed at the special case where {Z;} is iid. Tukey’s
“jackknife,” Hartigan’s “typical values,” and Efron’s “bootstrap” [see Efron
(1982) for descriptions] all make heavy use of exchangeability in their schemes for
generating replicates of ¢. These techniques are based on the idea that by
computing the statistic ¢ on subsamples of the data Z?, we can gain insight about
the sampling distribution of ¢2. The bootstrap, for example, resamples data from
the empirical distribution of Z?2, and then recalculates the statistic ¢ on each of
these “bootstrap” samples. These replicates of ¢ serve as an empirical approxima-
tion to the true sampling distribution of #°. This approximation is sensible when
{Z,} is iid; but when nontrivial dependence is present in {Z;}, the true sampling
distribution of 2 depends on the joint distribution of Z?. Thus, the only
subsamples that will yield valid replicates of ¢ are those that preserve the
dependence structure in {Z;}. Therefore we shall focus on subsamples of the form
{(Z):0<j<n-mn>2m=>1).
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[Recently, Freedman (1984) has considered applying the bootstrap to a linear
model with autoregressive component; this approach assumes additive iid per-
turbations. Also, as he emphasizes, the bootstrap calculations assume that the
user has correctly specified the form of the underlying autoregressive model.]

We face several competing considerations in designing a variance estimator
based on {t/: 0 <j<n—m, n>m>1). It is clear that the performance of
such an estimator will depend upon how many representative subseries values ¢/,
are used, how different the ¢;,’s are from each other, and how accurately the t/,’s
model the behavior of t0. For a particular value of m, one would not expect ¢,
and ¢! to differ by much—especially in light of the dependence between Z/,
and ZJ +m+1- Hence the collection of subseries values {¢: 0 <j < n — m} con-
tains a great deal of redundancy that may not contribute information about td’s
sampling variability. The collection {¢;™ 0 <j<[n/m]— 1}, on the other
hand, contains only nonoverlapping subseries values. If m grows with »n, each ¢,
will eventually behave as if it were independent of all but two of the other ¢/ ’s.
Furthermore, if m remained fixed, a subseries value ¢/, would never be able to
reflect the dependencies of lag m + 1 or greater. These arguments suggest the use
of {tjm: 0 <j<[n/m,]— 1}, with m, > co as n — oo.

Within this framework it seems reasonable to consider m,=[Bn](0<B<1),
since the corresponding tf'”" s are based on subseries of the same order of
magnitude as ¢? itself. Unfortunately, only about 1/ disjoint t/mn’s of this form
will ever be avallable So an estimator based on such #/™x’s w1ll never stabilize
and home in on 02, even as n — 0. (Ironically, the bootstrap and typical-value
methods use randomly selected subsets of the possible subsamples, since it is
computationally impractical to use all the subsamples available.)

In light of these factors we propose the use of the subseries values {t,{{:‘":
0<j<k,—1}, where {m,: n>1} are positive integers s.t. m, = oo and
m,/n — 0asn— oo, and &k, = [n/m,]. Thus we obtain an increasing number
(k,) of subseries values, each of which is based on an ever-growing subseries
(Z}"=); and each ¢~ is becoming increasingly distant (m,,) from all but two of
the other b s.

From thlS point on we will assume the following set-up: s! :=s,(Z.) is a
statistic that is wholly computable from the data Z}, and does not involve any
unknown parameters. ¢} == (s, — E{s2})n'/? is the correct theoretical standardi-
zation for s!, in the sense that lim,_,  E{(¢2)?} =: 6% € (0, o). The proposed
estimator for o2 is simply

k-1 k-1

=m, Z ( ohn — § )/kn, where 5, == ), s,’;,",""/kn.
1=0 '

This is nothing more than the usual sample variance amongst the standardized
subseries values {m)/?s/"™: 0 <j < k, — 1}.

4. L,-consistency. In this section we work out some theory for subseries
values. The first main result is a law of large numbers for these entities. This
result is used to obtain consistency of 672 Finally, we arrive at an asymptotic
normality result for t? in which the limiting distribution is free of o2.
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Let us begin with a useful truncation lemma:

LEMMA 1. Let X be Fj-measurable and Y be F, -measurable, q > p.
Suppose max{E{X?}, E{YZ}} < C < 0. Then for any A>0: |C{X, Y} <
4A%(q — p) + 3CV(E{(“X)*)'/* + (E{(*Y)*})/?).

PrOOF. Writing X = ,X + 4X we see that
|C{X,Y}| <|C(,X, Y} +|E{sX 4Y}| +|E{X - Y} | +|E{*X -4Y}|
+|EGXIE(Y |+ |E(*X}E(,Y}| +|E(“X}E{*Y}|.

The first term on the right-hand side is bounded above by 4A%x(q — p) [Theo-
rem 17.2.1, Ibragimov and Linnik (1971)]. The required bounds on the other
terms follow from the Schwarz inequality. O

Applying this lemma we can establish the following law of large numbers for
subseries values from an a-mixing sequence.

THEOREM 2. Let {Z;) be a-mixing and let f(Z.) = f,! be a statistic. Let
{m,: n>1) be s.t. m, > o and m,/n > 0; let k,=[n/m,]. Define f, =
Ekng fumn/ k. If

(2a) lim E{f }=9¢€R,
and

(2b) (1) areu.i.,
then )

(2¢) fn 2L, ¢ asn— .

ProoF. By (2a) it suffices to show lim,_, V{f,} = 0. Now
Witk X |e{him £

O<i<j<k,—1
< [2E{(12)) + z |c o fame

The idea here is that the covariance between nonadjacent f,,{’""" ’s is dropping off
as the separation (m,) increases. So, although there are order %, of these terms,
their average becomes negligible as n — oo.

Formally, we note first that [by (2b)] E{(f)?} are bounded uniformly in
n > ngy by C < oo. Assume now that n is sufficiently large so that m,>n
Then for each j € {2,3,..., k, — 1} we have

(1.2, fim}| < 44%(m,) + 60‘/2(E{(Afn?,,)2})1/2 = B(n, A) foranyA >0

by Lemma 1. Hence: 1V{(f,} <2C/k, + B(n, A) for any A > 0. Now take
lim, _, limsup,_, .(-) of this last expression. O

We are ready to prove L,-consistency of 2. This result follows in part from
Theorem 2, since 62 is essentially a mean.
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THEOREM 3. Let {Z,} be a-mixing and let {m,} and k,, be as in Theorem 2.
Let sk, t\, 6%, 682 be as defined in Section 3. If

(3a) (t,?)4 areu.i.
then
(3b) 67 = 1,0° asn — .

ProoF. Write 62 =2, — (£,)% where f, = Llg'ti"/k, and 2, =
Tkag(timn)?/k,,. Clearly we only need to show =, >, ¢® and (Z,)” - ;0. The
former follows from Theorem 2.

In order to show #, — ; 0, note first that #, — »0 by Theorem 2. Therefore,
by the mean convergence criterion [see Chow and Teicher (1978), page 98], it
suffices to establish that (£,)* are ui. Now (£,)®’ < Z,, so that for A > 0:
E((£,)'1{(f,)* = A}} < E{(Z,)*I{(Z,)* = A}}. Hence we only need to show u.i.
of (2,,)% But by (3a) we know that E{(Z,)?} < co when m, > ny; and 2, — ; o?
as mentioned above. Thus the mean convergence criterion (converse) yields the
required result. O

Notice that both Theorems 2 and 3 are logically independent of the question
of convergence in distribution. These results give integrability conditions that
guarantee L,-consistency of estimators based on the subseries values from an
a-mixing sequence—regardless of whether the ¢0’s (or f,2’s) are converging in
distribution. Furthermore, we have not constrained the mixing coefficient a or
the subseries length m, in any way other than a(n) - 0, m,, = o0, m,/n — 0.
In practice the L,-consistency is desirable because it translates into shrinking
variance and bias.

We can now combine the variance estimation result (Theorem 3) with the
distributional results of Carlstein (1986), and obtain:

THEOREM 4. Let {Z;} be a-mixing and let {m,}, si, t., 672 be as defined in
Theorem 3. If
(4a) lim (rn/v,,)l/2C{tgl, tf,‘:} =02,

n,2u,+v,>20,— 0

and
(4b) limsupE{(t2)4} = 30",
then (3b) holds, and also

D

(4c) (2, ¢t%) /6 N,(0,0,1,1,p) Vp?e[o0,1].
n? U, n 2

[The generalized limit notation is the same as that defined in Carlstein (1986).]

2
on/rn_’p » Th2 Uyt 0,20, > 00

ProoF. We will begin by showing that (¢, t4)/0 =5 Ny(0,0,1,1, p), via
Theorem 4 of Carlstein (1986). Since E{t2} = 0, it suffices to observe that (4b)
implies that (£2)? are u.i.

Next we want to use Theorem 3 to conclude that (3b) holds. In light of (4a)
with u, = 0 and r, = v, = n, it is enough to verify (3a). But (3a) follows directly
from (4b) together with t2 -, N(0, 62) (established above). O
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[Condition (4b) may of course be replaced by the less specific condition (3a).]
The sample mean and sample fractile statistics are discussed as theoretical
examples in Corollaries 8 and 10 (respectively) of Carlstein (1986).

5. Optimal subseries length. The results of Section 4 gave an asymptotic
justification for the use of 62. In fact, the asymptotics held for an extremely large
class of sequences {m,} of subseries lengths. In practice, however, the perfor-
mance of 62 (for fixed n) will be greatly influenced by the particular choice of
m . Our intuition tells us that by increasing m, we should reduce the bias of 62,
since our replicates (#;)* will more closely resemble the large-N (¢3)® whose
expectation is being estimated. Furthermore, as the dependence in {Z,} becomes
stronger, we will need longer subseries in order for ¢/™~ to adequately model the
dependence present in t%. On the other hand, by decreasmg m,, (i.e., increasing
k,) we expect to reduce the variance of 47, since more rephcates become
avallable This interaction of bias, variance, and dependence will yield an optimal
(i.e., minimum m.s.e.) m,, for a given statistic ¢ and a fixed n. Unfortunately, but
not surprisingly, we are unable to make statements regarding optimal subseries
length that apply with the generality of the consistency results in Section 4. We
can, however, make very precise statements in the following special case.

Let {Z,} be an AR(l) sequence: Z; = ¢Z,_; + & where |¢| <1and {e } are iid
N(0,1). The statistic s = Z° has asymptotic variance 62 = (1 — ¢) 2, which is
to be estimated by 62 :=m Zk n5 (simn)?/k, (E{s2} = 0). In this s1tuat10n we
can explicitly calculate the effect of subseries length on bias and variance:

0% — E{62} = 2¢e/a’cm, = 2¢/a’m, + o(1/m,),
and
{52} = 2{ b/ + 20m;[ 3(¢ - 20 - 4)/b
+ (b —7d + 11¢d + 3¢(5¢> — 4¢ — 5)/b) /a?
+3(3d + (¢° + 2¢* + 3)/b) /a + m;;}( - 3f/be
+ 6[(¢® + 2¢° + 8¢* — 2db + g2b) /c
—(5—11¢ + 4¢> + 8¢° + 55 — d) /a
+ (g% +2¢* = 3¢> — [ )/be + 2(¢° — g%) /¢
+ (2d + 2g — 2¢* + ¢° — 3¢)/a® + 3g + 5a]
— pe2/a’ + 6 [3(1 + 2¢ — ¢?)/b + 2(d? — ¢°)/bc
+ (3¢ — 4% + 2¢* — 5d + 4d¢) /a] /a?
+¢[1— (1~ d*»)/k,f]
x [1 - d*+ 2d3 - 2d + 2¢%(¢ — d)/a]/fa2b)]}/k,,c2a
= 2/a%k, + o(1/k,),
wherea=1-¢,b=1+¢,c=ab,d=¢™, e=1-d, f=1-d? g=d/¢.
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Variance and Bias of Gi with ¢=.9, n=100.

(Bias)2:
Variance s seeeccecccccnce
/\ o0 o
15000 o o
10000 —
5000
T T T T T r4
mn
0 20 40 60 80 100

Fic. 1. Variance and bias of 52 with ¢ = 09, n = 100. (Bias)?: —; Variance: ---.

Figure 1 illustrates the influence of m, and %, on the bias and variance in the
case n = 100, ¢ = 0.9. The jumps in V{52} are due to abrupt changes in k,.
Notice that V{5?2)} increases with m,, even while the number of replicates remains
fixed.

Using just the first-order contributions from the bias and variance, we ap-
proximate

ms.e.{G2} = (4¢*/a’c®)m,;? + (2/a*)m,/n.
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Hence the optimal subseries length is approximately
my = (2¢/¢)"°n'7,

with corresponding m.s.e 3(2¢,/¢)*3/a*n?/3. Observe that longer subseries are
required as the dependence becomes stronger.

6. Application. Let {Z;} be an AR(1) sequence: Z; = ¢Z;_, + ¢,, where
|¢| < 1 and e, are iid errors from the contaminated distribution (1 — #)F,(-) +
7F,(-) [F(-) denotes the c.d.f. of a N(0, c?) r.v.]. A scientist observes Z2, and,
suspecting contamination, he computes a 8% trimmed-mean (our s?) to estimate
E{Z}. In order to estimate the variance of s?, he will apply 2. [Gastwirth and
Rubin (1975) give an expression for the asymptotic variance of s in terms of an
infinite sum of Hermite polynomials—assuming, however, that {Z,} is a normal
sequence. |

We propose using the results of Section 5 simply as a guide in selecting an
appropriate m,: the scientist can calculate

n—1 n
6=nY (2,,-Z2)(2-20)/(n-1) X (2,- 2°)’
i=1 i=1

as a preliminary measure of the strength of dependence in {Z;}. Based on this o,
he can now estimate m¥. Although the resulting choices of m,, are not in general
going to be optimal, this is a realistic strategy, given the amount of information
available to the practitioner.

The entire procedure described above was carried out on 200 realizations of Z?,
with: # = 0.3, 72 = 10, § = 40% (20% in each tail), ¢ = 0.2 and 0.8, n = 100 and
1000. Table 1 shows that this procedure yields reasonable results. A balance
between variance and bias is maintained, and m.s.e.-consistency is exhibited.
Moreover, the quality of the performance of 62 is not affected by the strength of
dependence in {Z;}.

TABLE 1

Simulation study of 62 as an estimator of the variance (¢?)
of a 40% trimmed mean (s0).*

o o n E@EM V) W) /mse(s]) mse(dd) /ot

02 33 100 450100 19 0.57 0.31
1000  4.0(0.03)  0.16 0.25 0.06
08 88 100 50 (2.6) 1383 0.49 0.36
1000 71 (L1) 232 0.45 0.07

*The data are from an AR(1) sequence with 30% contamination. Subseries lengths (m,,) are
based on m¥.

*Each o2 = limy_, ,V{N'?s%) was estimated empirically by 200 realizations of N'/2s%
with N = 200.

**Each row was estimated empirically by 200 realizations of 2. An estimate of the standard
deviation of E{6?2)} appears in parentheses.
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