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Abstract
In this paper, a method for solving multipoint boundary value problems is presented.
The main idea behind this work is the use of the well-known Adomian decomposition
method. In this technique, the solution is found in the form of a rapid convergent series.
Using this method, it is possible to obtain the solution of the general form of multipoint
boundary value problems. The Adomian decomposition method is not affected by computation
round off errors and one is not faced with the necessity of large computer memory and time.
To show the efficiency of the developed method, numerical results are presented.

PACS numbers: 02.30 Jr, 02.30.Lt, 02.30.−f

1. Introduction

The Adomian decomposition method is useful for obtaining
the closed form and numerical approximations of linear or
nonlinear differential equations. This method has been applied
to obtain formal solutions to a wide class of stochastic and
deterministic problems in science and engineering involving
algebraic, differential, integro-differential, differential delay,
integral and partial differential equations.

The method was proposed by the American mathemati-
cian, G Adomian (1923–96). It is based on the search for a
solution in the form of a series and on decomposing the non-
linear operator into a series in which the terms are calculated
recursively using Adomian polynomials [1–3].

Generally this method is useful for problems that can be
written in the following form which appears in a large number
of problems in applied sciences

u − 2(u) = g, (1.1)

where u is unknown, 2 usually is a nonlinear operator and g
is given. Depending on the nonlinear form 2, the Adomian
decomposition method can be considered as an efficient
method. This technique has many advantages over classical
techniques. It avoids perturbation in order to find solutions of
given nonlinear equations.

In recent years, a lot of attention has been paid to the
study of the Adomian decomposition method to investigate
various scientific models. This method is applied to solve
various kinds of ordinary differential equations. In particular,
this method is useful for nonlinear differential equations [3].
Furthermore, this method is used for finding the numerical
solution of higher order differential equations in [4–9].

Another method for solving various types of problem is
proposed by He which is known as the homotopy perturbation
method [10]. It is shown that the Adomian decomposition
method could not always satisfy all boundary conditions
in solving partial differential equations [11]. Some new
approaches for overcoming this difficulty have been proposed
in [10, 12]. In recent years, the variational iteration method
has been widely applied for solving different kinds of
problems [13, 14]. This method does not need calculation
of the Adomian polynomials which can be considered as the
main advantage of the variational iteration method over the
Adomian decomposition method.

The present work is aimed at producing approximate
solutions which are obtained in rapidly convergent series
with elegantly computable components by the Adomian
decomposition technique. It is well known in the literature
that the decomposition method provides the solution in a
rapidly convergent series where the series may lead to the
solution in a closed form if it exists. The rapid convergence
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of the solution is guaranteed by the work conducted by
Cherruault et al [15, 16].

Consider the following ordinary differential equation of
order n

y(n)
= g(x, y, y′, . . . , y(n−1)). (1.2)

Without loss of generality let x ∈ [0, 1]. Also, it is assumed
that g has properties which guarantee the existence and
uniqueness of the solution of the problem. If the solution or
its derivatives are given at m points (m 6 n), then the problem
is said an m-point boundary value problem (BVP).

Multipoint BVPs for ordinary differential equations
appear in modelling of some physical problems. For example,
the vibrations of a guy wire of uniform cross-section and
composed of N parts of different densities can be set up as
a multipoint BVP. Also in [17] many problems in the theory
of elastic stability are handled by multipoint problems.

As a small sample of some theoretical works on these
kind of problems, see [18–20]. Despite of the large amount
of works which are done on the theoretical aspects of these
kind of equations, few works are available on the numerical
analysis of multipoint BVPs. For some numerical methods
for solving multipoint ordinary differential equations, refer
to [21, 22].

In this paper, the application of the Adomian decomposi-
tion method [23, 24] for finding an approximate solution for
multipoint BVPs has been investigated.

The organization of the rest of this paper is as follows;
in section 2, the Adomian decomposition method is applied
to some ordinary differential equations with given multipoint
boundary conditions. To present a clear overview of the
method, several examples have been shown in section 3. A
conclusion is presented in section 4.

2. Solution using the Adomian decomposition
method

Consider the operator form of an ordinary differential
equation in the following form

L(y) − N (y) = f, (2.1)

for 06 x 6 1 where L = dn/dxn is the nth-order derivative
operator, N usually is a nonlinear operator which contains
differential operators with order less than two and f is a given
function. Assume that the inverse operator L−1 exists and it
can conveniently be taken as the definite integral for a function
in the following form

L−1(·) =

∫ x

0

∫ tn

0

∫ tn−1

0
· · ·

∫ t2

0
(·) dt1 · · · dtn−1 dtn. (2.2)

Applying the inverse operator L−1 to both sides of (2.1) yields

L−1L(y) = L−1 N (y) + L−1 f. (2.3)

Thus we have

y(x) −

n−1∑
k=0

xk

k!
y(k)(0) = L−1 N (y) + L−1 f, (2.4)

or equivalently

y(x) =

n−1∑
k=0

xk

k!
y(k)(0) + L−1 f + L−1 N (y). (2.5)

Set Ak = y(k)(0) for 06 k 6 n − 1. Now according to the
decomposition procedure of Adomian, we construct the
unknown function y(x) by a sum of components defined
[4, 5, 25] by the following decomposition series

y(x) =

∞∑
n=0

yn(x), (2.6)

where

y0(x) =

n−1∑
k=0

xk

k!
Ak + L−1 f (x), (2.7)

yn+1(x) = L−1 Nn, n > 0. (2.8)

Based on the Adomian decomposition method, solution
of the equation (2.1) is considered as the series (2.6) and take
the nonlinear expressions N (y) by the infinite series of the
Adomian polynomials given by

N (y) =

∞∑
n=0

Nn, (2.9)

where the component Nn is an appropriate Adomian
polynomial which is calculated using the method introduced
in [1]. Adomian polynomials are found by calculating the
nonlinear operator Nn in the following form:

Nn(y0, y1, . . . , yn) =
1

n!

dn

dλn

[
N

[
∞∑

k=0

λk yk

]]
λ=0

, n > 0.

(2.10)

Notice that if N is a linear operator then we have Nn = yn .
In some nonlinear problems, it is not easy to calculate
the Adomian polynomials easily. But using a few number
of Adomian polynomials results an accurate approximation of
the problem [7, 26, 27].

The resulting solution converges [15] to the closed
form of the problem. The most important work about
convergence has been carried by Cherruault [15]. Other
references about theoretical treatments of convergence of
Adomian decomposition method are found in [2]. A new
approach of convergence of the decomposition method is
presented by Ngarhasta et al [28].

By calculating the terms y0, y1, y2, . . . , the solution y can
be obtained. Based on the Adomian decomposition method
[8, 9, 29], we constructed the solution y as

y = lim
n→∞

φn, (2.11)

where the (n + 1)-term approximation of the solution is
defined in the following form

φn =

n∑
k=0

yk(x), n > 0. (2.12)
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Figure 1. Plot of the |φ10 − y| (left) and |φ10 − y|/|y| (right).

The solution here is given in a series form that generally
converges very rapidly in real physical problems.

Applying decomposition procedure of Adomian, it is
found that the series solution of y(x) follows with constants
Ak for 06 k 6 n which are unknown. To find these constants,
the boundary conditions at other points are imposed. This
enables us to obtain the approximation of the solution defined
in (2.12) which results in a system of n + 1 equations with
n + 1 unknowns Ak for 06 k 6 n. By solving this equation
that usually is nonlinear, the values Ak and the solution of the
multipoint BVP follow immediately.

3. Test examples

3.1. Example 1

As the first example consider the following third-order linear
differential equation with its boundary conditions at three
different points [21]

y′′′
− k2 y′ + a = 0, (3.1)

y′(0) = y′(1) = 0, y(0.5) = 0, (3.2)

where the physical constants are k = 5 and a = 1. The
function y(x) shows the shear deformation of sandwich
beams. The analytic solution of this problem is written as

y(x) =
a

k3

(
sinh

k

2
− sinh kx

)
+

a

k2
(x −

1
2 )

+
a

k3
tanh

k

2

(
cosh kx − cosh

k

2

)
. (3.3)

Applying the Adomian decomposition method to the problem
we have

y = y(0) + xy′(0) + 1
2 x2 y′′(0) − L−1(1) + L−1(25y′(t1)),

(3.4)

where

L−1(·) =

∫ x

0

∫ t3

0

∫ t2

0
dt1 dt2 dt3. (3.5)

In this problem, we have A1 = 0. Thus we obtain

y0 = A0 + A2
1
2 x2

−
1
6 x3, (3.6)

y1 =
25
24 A2x4

−
5
24 x5, (3.7)

and so on. Using 11 terms of series solution we can write

A0 = −0.1210, A2 = 0.1973.

In figure 1, the error function |φ10 − y| and |φ10 − y|/|y| are
plotted. Other components of the series solution are found
easily. Better approximations can be obtained using more
components of the series solution.

3.2. Example 2

In this example, we consider the four-point fourth-order
nonlinear ordinary differential equation [21]

y(4) + yy′
− 4x7

− 24 = 0, (3.8)

y(0) = 0, y(3)(0.25) = 6,
(3.9)

y′′(0.5) = 3, y(1) = 1.

The exact solution of this problem is y(x) = x4. In this
problem, we have

y = y(0) + xy′(0) + 1
2 x2 y′′(0) + 1

6 x6 y(3)(0)

+ L−1(4t7
1 + 24) − L−1(y(t1)y′(t1)), (3.10)

where

L−1(·) =

∫ x

0

∫ t4

0

∫ t3

0

∫ t2

0
(·) dt1 dt2 dt3 dt4. (3.11)

In this example, we have A0 = 0. Now using the Adomian
decomposition method we get

y0 = A1x + 1
2 A2x2 + 1

6 A3x3 + 1
1980 x11 + x4, (3.12)

yn = −L−1(Nn), n > 1, (3.13)

where Nn(x) = Nn(y0(x), y1(x), . . . , yn(x)) are Adomian
polynomials of nonlinear operator N (y) = yy′.
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Figure 2. Plot of the |φ2 − y| (left) and |φ2 − y|/|y| (right).

In figure 2, the results are shown using only three terms
of the Adomian decomposition method. In this case, we have

A1 = − 0.1674e − 10, A2 = −0.3665e − 13,

A3 = − 0.1635e − 13.

3.3. Example 3

Consider the following three-point second-order nonlinear
ordinary differential equation [30]

y′′ + 3
8 y + 2

1089 [y′]2 + 1 = 0, 06 x 6 1, (3.14)

y(0) = 0, y( 1
3 ) = y(1). (3.15)

In this problem, we have

y = y(0) + xy′(0) − L−1(1) − L−1( 3
8 y(t1) −

2
1089 y′(t1)),

(3.16)

where

L−1(·) =

∫ x

0

∫ t2

0
(·) dt1 dt2. (3.17)

In this example, we have A0 = 0. Now using the Adomian
decomposition method we have

y0 = A1x −
1
3 x2, (3.18)

yn = −L−1(Nn), n > 1, (3.19)

where Nn(x) = Nn(y0(x), y1(x), . . . , yn(x)) are Adomian
polynomials of nonlinear operator N (y) = [y′]2.

In table 1, the results of the present method and the
results of the successive iteration method introduced in [30]
are shown using only three terms of both methods. In this case,
we have A1 = 0.7065.

4. Conclusion

The Adomian decomposition method is applied to multipoint
BVPs successfully. This method provides an accurate
approximation of the solution. As a main advantage

Table 1. The results of the Adomian decomposition method and the
successive iteration method.

Adomian decomposition Successive iteration
x method method

0.1 0.0656 0.0656
0.2 0.1209 0.1211
0.3 0.1658 0.1661
0.4 0.2001 0.2004
0.5 0.2236 0.2240
0.6 0.2363 0.2367
0.7 0.2382 0.2385
0.8 0.2291 0.2295
0.9 0.2091 0.2095

of this method over traditional numerical methods, the
decomposition procedure of Adomian does not require
discretization of the solution. Therefore, unlike other
numerical methods, this method does not result in any large
system of linear or nonlinear equations. Thus it is not affected
by computation round off errors and the solution is found
without taking a long time and a large amount of computer
memory. The Adomian decomposition method provides a
closed form of the solution.
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