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ABSTRACT

The magnetic field satellite data are usually referred to geocentric coordi-

nate reference frame. Conversely, the magnetohydrodynamic waves modes

in magnetized plasma depend on the ambient magnetic field, and is then

useful to rotate the magnetic field measurements into the mean field

aligned (MFA) coordinate system. This reference frame is useful to study

the ultra low frequency magnetic field variations along the direction of  the

mean field and perpendicularly to it. In order to identify the mean mag-

netic field the classical moving average (MAVG) approach is usually

adopted but, under particular conditions, this procedure induces unde-

sired features, such as spectral alteration in the rotated components. We

discuss these aspects promoting an alternative and more efficient method

for mean field aligned projection, based on the empirical mode decompo-

sition (EMD).

1. Introduction

Ultra-low frequency (ULF; 1 mHz-10 Hz) mag-

netohydrodynamic (MHD) plasma waves received

particular attention in the past years [Eriksson et al.

2006, Pilipenko et al. 2008, Agapitov and Cheremnykh

2015, Belakhovsky et al. 2016, Balasis et al. 2015]. Gen-

erated by a variety of  instabilities, ULF waves trans-

port energy throughout the magnetosphere, and may

play important roles in the energization and loss of

radiation belt particles (see Menk [2011] for a review).

In particular, ULF waves provide a convenient probe

of  the magnetosphere, by means of  ground [Lichten-

berger et al. 2013] and/or satellites magnetic field

measurements [Glassmeier et al. 2001, Clausen et al.

2009, Regi et al. 2013].

Satellite data are usually referred to a geocentric

reference frame, while MHD waves propagation and

properties can be established, using a more convenient

reference system. In this work we refer to measure-

ments from fluxgate magnetometers, which provide

three components of  the magnetic field, for both mag-

netospheric and interplanetary measurements. We

also assume, without losing generality, that the geo-

centric solar ecliptic (GSE) is the original spacecraft ref-

erence frame.

Usually, for satellite mission that continuously ex-

plore both the magnetosphere and upstream (fore-

shock) regions, the mean field aligned (MFA)

coordinate system is largely used for the rotation pro-

cedure [e.g., Clausen et al. 2009, Sarris et al. 2009,

Francia et al. 2012, Francia et al. 2013]. In the solar

wind, a technique widely used to study parallel and

perpendicular magnetic field components of  MHD

waves is represented by the minimum variance analy-

sis (MVA) [e.g., Tu et al. 1989, Klein et al. 1991, Bruno

and Carbone 2013]. However, the minimum variance

direction does not necessarily coincide with that of

the ambient magnetic field. In particular, Bruno et al.

[1985] found that the angle between the minimum

variance axis and the mean magnetic field direction

ranges in the interval 8-30 degrees, for heliocentric dis-

tances from 0.29 to 0.88 AU. Other methods compute

the average magnetic field direction by means of  the

moving average (MAVG) procedure, that will be de-

scribed in Section 2, and then apply the MVA on the

projected components into the orthogonal plane with

respect to the mean direction [Pulkkinen and Rastät-

ter 2009]. In these cases, the common key point con-

cerns the computation of  the main magnetic field

direction.

ULF waves property can be associated with sev-

eral anisotropy conditions. An important issue for

many types of  anisotropy is the scale over which the

mean magnetic field is defined. Time-scales of  the

ambient magnetic field and of  the perturbation are

crucial quantities. For example, considering the solar

wind measurements, if  time scales of  the fluctuations

are comparable with the scale of  the background flow,

interactions between the background flow and phase
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variations of  the fluctuations will influence the back-

ground flow [Tu et al. 1989]. For a local mean field, it

might be the same scale as that of  the considered fluc-

tuations, or perhaps 2, 5 or 10 times that [Oughton et

al. 2015]. On this regard, the magnetic variance

anisotropy (see TenBarge et al. [2012] for a review) of

the solar wind, as well as the ratio between the ambi-

ent magnetic field and the magnetic field fluctuations

[Tu et al. 1989, Bruno and Carbone 2013], can be re-

garded as useful quantities to identify the nature of

solar wind turbulent fluctuations.

If  a time scale separation exists within the mag-

netic field measurements, these time series can be

thought as a superposition of  a slowly varying (ampli-

tude) ambient field B0(t), an higher frequency signal b(t)

(or perturbation) and an incoherent noise n(t):

B(t) = B0(t) + b(t) + n(t) (1)

The MFA coordinates system, showed in Figure 1

for an assigned position in the inner magnetosphere, is

established by means of  the unit vectors defined as (� �

indicates the norm):

µ(t) = B0(t)/�B0(t) �

z(t) = r(t) × B0(t)/� r(t) × B0(t) � (2)

o(t) = µ(t) × z(t)

where µ, z and o are usually associated with compres-

sional, toroidal and poloidal ULF waves modes respec-

tively, while r(t) represents the position vector of  the

spacecraft [Sarris et al. 2009, Regi et al. 2013].

Although this definition is usually used for mag-

netospheric field measurements, it may also be ex-

tended in upstream regions (see for example Francia et

al. [2012]), but in this case the z and o components are

simply related with transverse oscillations in the inter-

planetary region (e.g. foreshock upstream waves).

Using the Expressions (2) we define the instanta-

neous rotation matrix from geocentric to MFA refer-

ence frame as

that allows us to project the instantaneous magnetic

field vector from the original geocentric reference

frame into the MFA one:

BMFA(t) = R(t) BGSE(t)                        (4)

It is clear from Equations (2) and (1) that, in order

to obtain the time series BMFA(t) in the MFA reference

system, the slowly varying mean field vector B0(t) must

be found through an appropriate filtering procedure. A

suitable filter should be applied to the data to remove

longer timescale variability. Although filtering proce-

dure has the benefit to potentially reduce the noise, it

should be applied with caution, as it may also introduce

artefacts affecting the signals altogether. In particular,

inverse fast Fourier (IFFT) based filters should be used

only for stationary and linear phenomena. On this re-

gard, in the MFA rotation procedure, the moving aver-

age (MAVG) is a good choice with respect to any

low-pass filter, and hence it is used to remove noise and

higher frequency fluctuations in a given time series (see

for example Clausen et al. [2009], Francia et al. [2012],

Regi et al. [2013]).

In applying the MAVG method it is assumed that

the characteristic fluctuation time T0 related to B0(t) is

much greater than the period Tb of  the perturbation

b(t). Moreover, T0 depends on both satellite motion and

natural magnetic field variation (e.g. high velocity

stream, coronal mass ejections, corotating interaction

regions), and could be related to non linear and non sta-

tionary phenomena.

Under these conditions the MAVG might be un-

suitable in the rotation procedure, while a method such

as the empirical mode decomposition (EMD), is useful

to identify non linear and non stationary processes

[Huang et al. 1998].

In Section 2 we discuss on the intrinsic problems

involved in the MAVG procedure on a discrete time se-

ries in the time domain; in Section 3 we introduce a

new method to identify B0(t) using the EMD, compar-

ing it to the classical ones (Section 4); finally, we discuss

on the spectral modification induced by MAVG proce-
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Figure 1. MFA coordinate system in the magnetosphere: the MFA
directions µ, z and o are showed together with the satellite posi-
tion (red dot). The geomagnetic field line (blu line) is computed
through T96 magnetosphere model [Tsyganenko 1995] during solar
quiet conditions.



3

dure in the MFA coordinate system, showing an exper-

imental example in Section 5.

2. The MAVG effects

The simplest procedure to identify B0(t) is the es-

timation of  the average over a time window T, centered

at a given time t. By considering a periodic perturba-

tion, Equation (1) assumes, for each component, the

following form

Bx(t) = B0,x(t) + b0xsin(~xt + ax) + nx(t)

By(t) = B0,y(t) + b0ysin(~yt + ay) + ny(t) (5)

Bz(t) = B0,z(t) + b0zsin(~zt + az) + nz(t)

where b0d (d = x, y, z) are the amplitudes, a
d

are the

phases, and ~
d

= 2r/Tb,d are the angular frequencies.

Assuming that Tb = max{Tb,x, Tb,y, Tb,z} and T0 =

min{T0,x, T0,y, T0,z}, and selecting a time length T greater

than Tb and smaller than T0

Tb ≤ T ≤ T0                                            (6)

the average of  B(t) around t is (hereafter 〈〉 indicates

the average operator)

since the average of  the perturbation in a time interval

T ≥ Tb is negligible

and the average noise

rapidly approaches to zero, because its auto correlation

time is short compared to that of  the physical phe-

nomena involved [Regi et al. 2015, 2016].

We now adapt the procedure to discrete time se-

ries, defining the time ti = ih, where h is the sampling

period and i = 1,2,…,n, with n the total number of

measurements. In order to compute the average field

around the ith-sample, we use a time-window

T = Nwh = (2N + 1)h                        (10)

where N is the integer number of  data on the left and

on the right with respect to the ith-central data, and

hence Nw is the window size (i.e. the total number of

data involved in the average). Under this condition the

MAVG, in discrete form, for the ith term of  the mag-

netic field, can be written as

that represents the procedure for the symmetric MAVG

computation.

The main goal of  the MAVG is to suppress both

〈b〉i and 〈n〉i terms in Equation (11), so that 〈B0〉i�

〈B〉i, and Equation (2) can be rewritten as follows

〈µ〉i � 〈B0〉i/�〈B0〉i �

〈z〉i � 〈r〉i × 〈B0〉i/�〈r〉i × 〈B0〉i � (12)

〈o〉i � 〈µ〉i × 〈z〉i

(here 〈r〉i represent the averaged position vector of  the

spacecraft), obtaining the MAVG rotation matrix below

However, the assumption 〈b〉i + 〈n〉i � 0 due to

the MAVG procedure is not always verified, and each

term in Equation (13) (generally) depends on the per-

turbation 〈b〉i, and lesser on the noise. Figure 2 illus-

trates qualitatively the MAVG effects on the perturbation

and noise, i.e. 〈b〉i + 〈n〉i terms in Equation (11). A
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Figure 2. A moving-average procedure example. Top panel shows
the original artificial signal composed by normally distributed white
noise and a 7 mHz (Tb = 143 s) sine wave. Bottom panel shows the
result after the moving-average procedure, for three different win-
dow sizes (Nw). The sampling period is h = 1 s.



more sophisticated test on the MAVG effects will be il-

lustrated in Section 5.1. In this test an artificial signal

with h =1 s, obtained as the sum of  a 7 mHz sine wave

of  unitary amplitude, that represents the perturbation

(along an assigned direction), and a normally distrib-

uted white noise with zero mean and variance v2
� 0.25

(top panel), are considered. We can see that the shape

of  the MAVG (bottom panel) strongly depends to the

choice of  the windows size Nw, with amplitudes de-

creasing with increasing Nw. In particular, the noise am-

plitude decreases more rapidly with respect to that of

the perturbation, however both quantities do not com-

pletely vanishes.

A quantitative evaluation of  MAVG effects on this

kind of  signals can be found analytically solving Equa-

tion (11). Considering the discrete version of  Equation

(5), and that the harmonic perturbation at instant ti is

represented by the amplitude bi and the angular fre-

quency ~
d

= 2r/Tb,d = 2r/Nb,dh, Equation (11) can be

written as

In this case, we assumed that 〈n〉i~0, and the

moving-averaged 〈b〉i is computed by means of  the re-

lationship (29) (Appendix A). In Equation (14) b0dsin

(2ri/Nb,d+a
d
) is essentially the perturbation b

d,i, while

g is the time-independent (dimensionless) factor (see

Equation (29) in Appendix A) resulting in a superposi-

tion of  cosine functions related only with Nw and Nb.

In general, for assigned Nw, |g| increases with Nb,

while for assigned Nb it decreases with Nw. More in de-

tail, local minima (close to but not equal to 0) are ob-

tained for Nw= cNb where c = 1, 2, 3, ..., cmax, and hence

when the MAVG window length is exactly equal to an

integer multiple of  Nb. Here, cmax is computed as

[Ns/Nb], where Ns is the total number of  samples, and

[] is the integer part operator. The choice of  Nw in the

MAVG procedure strongly affects the estimation of  the

rotation matrix coefficients. In the satellite reference

frame, the time fluctuations of  the ambient field B0(t)

can be due to its intrinsic variation, but also to satellite

motion. In the magnetosphere, the prevailing time vari-

ations are typically due to the satellite motion through

the magnetic field lines (except transient features ob-

served for example in the geomagnetic tail) while, in

the interplanetary medium, the ambient field variations

depend on natural phenomena ranging from coronal

mass ejections (CME) and plasma cloud passages (that

are more frequently observed during the higher solar

activity period), as well as co-rotating interaction re-

gions (CIR) linked with coronal holes (mainly observed

during the declining phase of  the solar cycles). The prob-

lem becomes more complicated if  we consider the ef-

fect of  several perturbations with different Nb, embedded

in the ambient magnetic field. In this case, the higher

frequency components (with lower Nb) are removed from

the time series, while the lower frequency ones (or higher

periodicity) can affect the procedure. The MAVG effects

on rotation matrix are discussed in Section 4.

3. An EMD based procedure for low-frequency com-

ponents identification

An alternative procedure to extract the main mag-

netic field from a signal can be obtained using the em-

pirical mode decomposition (EMD) method [Huang et

al. 1998]. The EMD technique decomposes a time series

into roughly zero-mean (mutually orthogonal) com-

ponents called intrinsic mode functions (IMFs), and a

residual term (Res). Each IMF is found using an appro-

priate convergent procedure called sifting algorithm.

The sifting process uses the upper eu and lower el

envelopes computed respectively by means of  cubic

spline interpolation of  the local maxima and minima

separately identified (see Huang et al. [1998] for detail).

At the first step, the envelopes from the original data

B(t) are computed. By defining 〈e〉1 as the mean of  the

envelopes, the first extracted component h1 is the dif-

ference between B(t) and 〈e〉1 [Huang et al. 1998], (i.e.

B(t) −〈e〉1 = h1). This procedure has to be repeated sev-

eral times, until preassigned stopping criteria are not

satisfied (e.g., Huang et al. [1998], Rilling et al. [2003],

Flandrin et al. [2004], Wu and Huang [2004]). Let as-

sume that criteria are satisfied at the kth-iteration, the

first intrinsic mode function (IMF) B1 is represented by

hk. At this step, the sifting algorithm is applied to

B(t) − B1, to extract B2, and so on. The final mode (here-

after residue, Res) can still be different from zero; for

data with a trend, then the final Res should be that

trend, characterized at most by a unique zero crossing.

After the EMD decomposition, the original time

series can be regarded as superposition of  all IMFs and

the residue:

where Bk (k = 1,2,...,Nm) are the IMFs.

In particular, the EMD decomposition can be re-

garded as a dyadic filter bank [Flandrin et al. 2004], and

hence it is expected that the number of  extracted IMFs

(or modes) Nm on a time series represented by Ns sam-

ples, should be

Nm< log2(Ns)                             (16)

or, at least, of  the order of  log2(Ns). If  the inequality

condition just above is not satisfied, the studied time se-

sinB B b Nb
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2
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ries possesses a more complex structure and a higher

information content than one of  a purely stochastic

noise [De Michelis et al. 2012].

In principle, sifting algorithm extracts IMFs with

energies and time-scales (or periodicities) that should

be compared with that obtained with pure randomized

time series (see Wu and Huang [2009] and De Michelis

et al. [2012]). In order to retain physical meaning in the

extractedmodes, different sifting algorithm, with dif-

ferent stopping criteria are proposed by several authors

(e.g., Huang et al. [1998], Rilling et al. [2003], De Miche-

lis et al. [2012]).

In this work we used the EMD procedure de-

scribed in Rilling et al. [2003] (see also Huang et al.

[1998]), that utilizes a stopping criterion for the sifting

algorithm based on two thresholds i1 and i2. This cri-

terion ensures globally small fluctuations, but at the

same time, takes into account locally slow large excur-

sions. Following the authors we introduce the mode

amplitude a(t) = (e(t)max − e(t)min)/2, where e(t)max and

e(t)min are the envelopes, and the evaluation function

v(t) = |m(t)/a(t)|, where m(t) is the mean between

these envelopes. The sifting algorithm is iterated until

v(t) < i1, for some assigned fraction (1 −a) of  the total

duration, while v(t) < i2 for the fraction a of  the total

duration. Regarding the boundary conditions, the al-

gorithm in Rilling et al. [2003] minimizes the error

propagations due to finite observation lengths by mir-

roring the extrema close to the edges. We performed

in a separate analysis, the EMD based rotation algo-

rithm for the real case of  upstream waves event ob-

served by Cluster satellite showed in Section 5.2, for

several stopping parameters i1 and i2, while for sim-

plicity we chose a constant tolerance of  a= 0.05. The

results (not shown here) confirmed that our algorithm

does not introduce significant spectral modification in

the MFA reference frame assuming i1 close to 0.05 and

i2 close to 0.5, as suggested in Rilling et al. [2003].

Then, according with the authors in Rilling et al. [2003],

we chose as default values a= 0.05, i1 = 0.05 and i2 =

10i1 = 0.50. For simplicity, in the following discussion,

we will refer to a single component of  the magnetic

field Bi= B0,i +bi + ni. As explained in the introduction,

we hypothesize that the B0(t) time scale is higher than

that of  b(t), and hence we found useful to define some

quantity in order to reconstruct B0(t) after the EMD

procedure. Referring to the perturbation field b(t), we

search for the maximum time length Tmax unaffected

by typical perturbation phenomena, defining the equiv-

alent maximum number of  samples as Mmax= Tmax/h.

Each kth-IMF can be subdivided in a finite number

of  subintervals, identified by two consecutive zero

crossing. Let assume that each subinterval I encloses qI

samples. We compute, for each of  them, the period

TI= 2qIh, and an energy-linked quantity PI= ∑|Bi∈I|.

By means of  the previous quantities, we evaluate:

(a) the average periodicity of  an IMF;

〈T〉= 2〈q〉 (17)

(b) the ratio between the sum of  PI of  subintervals char-

acterized by a periodicity TI > Tmax (namely P0), and the

total energy of  all subintervals (namely P = ∑PI)

R = P0/P                                   (18)

Finally, we reconstruct B0(t)
EMD simply summing the

residual Res of  the EMD method and IMFs character-

ized by 〈TI〉>Tmax or R > Rmin, while the remaining IMFs,

with lower periodicities, reconstruct [b(t) + n(t)]EMD.

The last condition ensures that the IMFs characterized

by a high energy even for a short time interval can be

identified as part of  the main field. The lower is Rmin

the more the method accepts the IMFs having high

mean frequency.

We performed a Monte Carlo test in order to eval-

uate the best value of  Rmin, generating 10,000 surro-

gates of  Gaussian white noise (each one with vn=0.3),

while B0 and b are fixed and are represented by sinu-

soids with period greater/lower than Tmax. We com-

puted, for different Rmin, the correlation coefficients r

between B0 and B0
EMD. The results showed that our al-

gorithm reconstructed B0 with r > 0.99 in over 99% of

the cases, for Rmin= 0.1.

An example is showed in Figure 3, using artificial

signals with h = 1 s. Panel (a) shows B0(t) and b(t) + n(t),

while in the panel (b) the resulting B(t) = B0(t) + b(t) +

n(t) is showed. The perturbation is obtained windowing

a 23 mHz sine wave with a 1000 points Hanning win-

dow centered at t = 1000 s. We assume in this simula-

tion that B0(t) has a period greater than 1000 s.

Following our procedure, the EMD method decom-

poses B(t) into 7 IMFs and a Res (panels c); the average

period M of  each IMF is also showed. By choosing

Tmax= 1000 s (i.e. Mmax= 1000), identifying IMF7 and

the Res (red lines) as B0(t). Using our method, both

B0(t)EMD and [b(t) + n(t)]EMD are then reconstructed

(panel d). It can be noted that the original B0(t) is well

reconstructed, while b(t) + n(t) can be obtained by su-

perimposing the remaining IMFs. Although we used

the EMD method described in Rilling et al. [2003], any

kind of  EMD procedure can be used following our

methods, such as the ensemble empirical mode de-

composition (EEMD; Wu and Huang [2009]) or the

complete ensemble empirical mode decomposition

(CEEMD; Torres et al. [2011]). However, we stress that

MFA COORDINATES USING EMD



different sifting algorithms work with different stopping

criteria, and hence, the Rmin should be evaluated by

means of  a dedicated Monte Carlo test for other EMD

algorithms. We conclude this section with some details

on the selection criteria examined here. They are based

on the observed numerical test results, as well as on the

direct application on several magnetospheric and up-

stream region events. Regarding Tmax, it should be

chosen accordingly with what assumed in Section 1. In-

deed, if  the periodicity Tb is much smaller than TB, a

time scale separation exists within the magnetic field

measurements, and Tmax will be chosen within [Tb, TB].

Finally we remark also that, because of  the adaptive na-

ture of  the basis, EMD is ideally suited for analyzing

data from nonstationary and nonlinear processes. How-

ever, the reader must bearing in mind that EMD still

cannot resolve the most complicated cases, when the

processes are nonlinear and the noises also have the

same time-scale as the signal. In these cases their sepa-

ration becomes impossible (see Wu and Huang [2004]

for details).

4. The comparison between EMD and MAVG methods

We compared the EMD and MAVG methods, bas-

ing on the difference between the original signal B0(t)

and that, B0
th(t), obtained using different methods

DB0(t) = B0(t) −B0
th(t) (19)

where, for simplicity, we used the same artificial signal

B(t) showed in Figure 3b.

Figure 4 shows the original signal B(t) (panel a),

and DB0(t) computed using the EMD (green) and the

MAVG (blue) procedures (panel b). In the MAVG

method a window size of  75 points is used. As we can

see the MAVG method is affected by the presence of  a

residual oscillation at the same frequency of  the orig-

inal perturbation, but with a phase shift of  180°, and

both method show irregular deviation from the ex-

pected signal due to the noise. The results are more

clear by looking at the panel (c) (see also the magni-

fied time interval showed in panel d), where we aver-

aged the results for 10,000 signals differing only for the

white noise, highlighting then the method dependent

effects. In particular, the residual signal (red) arising

from the MAVG procedure reproduces the pattern of

the original perturbation, but with a phase shift of

180°, while the EMD residual results almost insignifi-

cant. The amplitude of  the residual oscillation and the

phase shift depend on the window size used for the

moving-average. We computed the maximum ampli-

tude difference and phase lag between the original B0(t)

and moving-averaged BMAVG(t) signals, for several val-

ues of  Nw. The maximum difference (Figure 5, top

panel) generally decreases with Nw, this trend is af-

fected by oscillations with relative minimum corre-

sponding to integer multiples of  the perturbation

period Nb (accordingly with Figure 12).

Moreover, the phase lag (Figure 5, bottom panel),

calculated via a cross-phase analysis at the frequency of

the perturbation fb = 23 mHz, close to zero in corre-

spondence of  the intervals 0 − Nb, 2Nb − 3Nb, etc. The

dashed line marks Nw = 75. Conversely, in a separate

analysis, we do not found any significant phase lag be-

tween B(t) and BEMD(t).

REGI ET AL.
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Figure 3. EMD example. (a) Top: synthetic ambient field B0(t), bot-
tom: b(t)+n(t); (b) the sum of  signals in panel a; (c) the IMFs ob-
tained using the EMD procedure, together to the integer number of
samples that corresponds to the average “periodicity” of  each IMF;
(d) the extracted B0(t)EMD and [b(t)+n(t)]EMD.
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5. Energy conservation test

Basing on the previous results it is now clear that

the MAVG affects the rotation matrix coefficients. In

principle, the total energy should be conserved under

rotation procedure. Numerically, it should correspond

to a very low difference between power spectra of  the

original and that of  the rotated signals. In order to eval-

uate the energy difference induced in the MFA aligned

components by the MAVG procedure, we computed a

Monte Carlo test comparing the power spectra of  the

time series in the original coordinate to that of  the MFA

reference frame. We assumed that the Bx and Bz com-

ponents of  the original signal are constant values (5 and

6 a.u. respectively) with added red noise, with AR(1)=.95

(autocorrelation coefficient at lag=1) and the standard

deviation vred = 0.1 respectively, that are generated at

each run, while the By component is the same signal of

Figure 4 except for the red noise generated at each run

with properties just above described. In this test, the

satellite position is fixed at the coordinates x = 1, y = 0

and z = 1 a.u. Figure 6 shows the absolute values of  the

averaged power difference |〈DP〉|, computed over 10

surrogates, as a function of  Nb and Nw. The results

show behaviors similar to |g| (see Figure 12) that affects

the averaged perturbation 〈bd〉, and hence |〈DP〉|. In-

deed, |g| rapidly increases for Nw< Nb (see Appendix A

for details), that corresponds to a violation of  the in-

equality condition in the left side of  relation (6).

MFA COORDINATES USING EMD

Figure 4. MAVG-EMD comparison. (a) The same artificial signal B(t) of  Figure 3; (b) the difference DB0(t) between the original B0(t) and that
estimated from the EMD (green) and MAVG (blue), where we used a window size of  75 points for the MAVG method; (c) the resulting av-
erage 〈DB0(t)〉 for 10,000 signals, differing only for a different noise; (d) detail of  the phase shift between original perturbation and the av-
eraged 10,000 signals [ b(t)+n(t)] estimated from different methods.

Figure 5. MAVG behaviour. Top: amplitude of  the oscillation for
different values of  the window size Nw. Bottom: phase lag between
the expected signal and the original perturbation, for the same value
of  Nw. Dashed line corresponds to Nw= 75.



In order to evaluate the effects of  the noise, we

computed a Monte Carlo test using 10,000 different

noise keeping fixed the frequency fb = 23 mHz and the

moving-average windows size Nw = 75; the resulting

spectra are averaged to obtain the total PSD ratio be-

tween rotated and original signals. The results are

shown in Figure 7. EMD method gives excellent results,

showing the same pattern of  original signal through the

frequencies. Conversely MAVG method presents several

undesired issues: lowering energy at low frequencies,

rising energy around the perturbation frequency, a pro-

nounced peak in correspondence of  the first harmonic

of  the perturbation and a regular oscillation at high fre-

quencies. In particular, the last behavior depend on the

window size of  the moving average, with a characteris-

tic frequency that increase with decreasing Nw.

5.1. The MFA rotation matrix instability induced by

MAVG procedure: a numerical example

We now discuss how the rotation matrix coeffi-

cients depend on the MAVG and EMD. We remark

that, generally, these coefficients depend also on the

mean field variation. In order to simplify our discus-

sions, we assume a constant ambient B0 = (0, B0, 0). In

addition, we assume that the measuring point r = (x, 0,

0) is fixed. The chosen conditions will be clear in the

next discussions. With these assumptions and in ab-

sence of  any perturbing signal, each component of  the

rotation matrix is time invariant. If  we assume b = (0,

b0sin(~hi), 0) as the perturbation (t = hi) using Equa-

tion (14) the rotation matrix (13) is given by

where

We can see that, generally, Gi switches from −1 to

1, so that the rotation matrix could be unstable induc-

ing undesired features. To avoid this problem, the fol-

lowing condition must be satisfied:

The resulting MFA components are

We can see that, with our assumption, the MFA

b
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Figure 6. Absolute values of  average total power difference be-
tween original and rotated components |〈DP〉| as a function of
samples per cycle Nb and window size Nw of  moving average (see
text for details).

Figure 7. EMD/MAVG comparison: statistical analysis. 10,000
runs average of  total PSD ratio between rotated and original sig-
nals by the EMD (top panel) and MAVG (bottom panel) methods.
Red lines indicate the upper and lower limits of  95% confidence
level. Dashed lines indicates the perturbation frequency and its
first harmonic.

(21)

(20)
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components are non-zero only along the aligned com-

ponent Bµ = Gi [B0 + b0sin(~hi)].

As discussed in Section 2 (see also Appendix A for

details), |g| decreases with Nw, with local minima at

Nw= cNb (c = 1, 2,...,cmax). In the following test we used

B0 =0.3 nT, b0 =1 nT, ~= 33 mHz, and h = 1 s, so that

Nb~ 30 and B0/b0 = 0.3. The time series has a duration

of  3600 s (i.e. i = 1, 2, …, 3600), and is analyzed using

FFT algorithm. In the frequency domain we used the

relationships (21) and (29) in order to select two values

of  Nw equal to 11 and 35: those values correspond to

|g|Nw=11 = 0.78 > 0.3 (i.e. unstable condition) and

|g|Nw=35 = 0.03 < 0.3 (stable condition), as it can be

seen in the top panel of  Figure 8.

While the stable rotation matrix satisfies the en-

ergy conservation (i.e. Gi= 1 = const, lower panel), the

unstable condition does not preserve energy and Gi is

represented by an asymmetric square function and the

negative values of  By(GSE) become positive in the re-

sulting Bµ, since Gi switches from −1 to +1 with time.

Regarding the unstable condition, we show in Fig-

ure 9 the total power spectra of  the original and rotated

components, together with the Gi spectra. We observe

several features: (a) energy attenuation in the rotated

components (at the signal frequency of  33 mHz and at

lower frequencies); (b) the appearance of  new peaks, in

correspondence to multiples of  the fundamental fre-

quency (i.e. 66 mHz, 99 mHz,…). In a separate analy-

sis (not shown here) we observed that the energy of  the

even harmonics decreases with decreasing ratio B0/b0,

while the energy peaks related with the odd ones in-

crease.

In particular, assuming that the mean field is zero

(B0= 0), Gi becomes a symmetric square wave function,

and the fundamental frequency disappears, together

with its even harmonics, while only the odd harmonics

survive. Although this corresponds to an extreme case

study, it is interesting to analyze because it allows us to

highlight some of  the issues covered here. Indeed, in

this case the Fourier expansion of  Bµ= b0sin(~hi) is (see

Appendix C)

that clearly contains only the odd harmonics of  the fun-

damental frequency of  the signal.

Regarding the energy attenuation at lower fre-

quencies, it can be tentatively explained by means of  the

Fourier expansion of  Bµ = Gi [B0 + b0sin(~hi)], obtained

using the Fourier expansion of  a generic square wave Gi

(see Appendices B and C) with amplitude A = 1

For a practical purpose, we truncate the Fourier

expansion at order k = 0, obtaining c0B0 + c0b0sin(~t) =

c0By. Since A = 1, for each coefficient it results |ck|2< 1,

and hence, indicating with P0 = PBy(t) the power of  the
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MFA COORDINATES USING EMD

Figure 8. Top panel: |g| as a function of  NW assuming B0 = 0.3 nT,
b0 = 1 nT, ~= 33mHz, and h = 1 s. The unstable (central panel) and
stable (bottom panel) rotation matrix term Gi and the resulting Bµ.

Figure 9. Power spectral density (PSD) of  Gi (green) and BMFA (ma-
genta) obtained using Nw= 11 (unstable rotation procedure, see text
for details). The PSD of  BGSE is also showed (black); the fundamen-
tal frequency of  the perturbation (33 mHz) and its harmonics are in-
dicated by vertical dotted lines.

(22)

(23)



original signal, the resulting rotated component be-

comes PBµ = Pc0By = |c0|2P0 ≤ P0 . This implies that only

for c0 = 1 the power is equal (i.e. PBµ= P0), and this is

possible only if  x+ = 1 and x− = 0, and hence G(t) =

1 = constant (see Appendix B, Equations (33), (34),

(36)), that corresponds to the validity of  inequality con-

dition (21). It is possible to study the Fourier series of  Bµ

following Appendix B for any k-order, but it is out of

the scope of  this work.

The energy alteration, due to the MAVG applica-

tion, can be regarded as a fundamental element of  di-

agnostic in the rotation procedure, as we will discuss

further in the next sections, by means of  an experi-

mental example.

5.2. A case study of  the upstream waves event on May 6,

2005, observed by Cluster satellites

In order to compare EMD and MAVG effects on real

data, we present a case study. Basing on the theoretical

results showed in the previous section, we expect that

major differences occur during time intervals character-

ized by large amplitude oscillations of  the geomagnetic

field (i.e. during disturbed geomagnetic conditions).

However, it is extremely difficult to find a magne-

tospheric event characterized by a large amplitude os-

cillation with respect to the mean magnetic field.

Conversely, in the foreshock region, i.e. regions up-

stream the Earth’s bow shock, the ULF upstream waves

(20-100 mHz frequency range) amplitude is compara-

ble with the interplanetary magnetic field strength. In

that region, when the interplanetary magnetic field

makes an angle with the bow shock normal direction

in,B< 45° (see Regi et al. [2014a, 2014b]), the existing

waves in the solar wind are amplified by means of  the

ion-cyclotron resonance mechanism.

We searched for a time interval characterized by

quasi-monochromatic ULF fluctuations in the trans-

versal components with respect to the ambient inter-

planetarymagnetic field, inside a database of  previously

examined events in Regi et al. [2014a]: in that work each

event was classified by the signal-to-noise ratio, in each

GSE component, using Cluster satellites fluxgate mag-

netometer data at 4 s sampling period [Balogh et al.

2001]. We selected the time interval 9-11 UT on May 6

(DoY 126) of  2005, characterized by a high signal-to-

noise ratio and a low average ambient field in the same

component. This condition should emphasize the ef-

fects induced by MAVG procedure, theoretically pre-

dicted and described above.

Figure 10 shows the magnetic field components in

the GSE reference frame (top panel), with oscillation

amplitudes up to ~3 nT, while the average magnetic

field was B0 = (−4.8,−0.2, 2.1) nT. We computed the

MFA components by means of  both EMD and MAVG

methods, also evaluating the absolute values of  the dif-

ference between homologous components DBd=

�Bd
EMD − Bd

MAVG � (where d= µ, z, o), using Nw= 5 (un-

stable condition), as showed in the bottom panel of  Fig-

ure 10. It can be seen that, during time intervals

characterized by higher oscillations of  By (i.e. compo-

nent with lower average 〈B0,y〉= 0.21 nT), the differ-

ence becomes more evident. Similar, although less

clear, results are obtained using greater Nw value in the

MAVG procedure.

REGI ET AL.
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Figure 10. Upstream wave event observed by Cluster-1 satellite on May 6, 2005. Top panel: original magnetic field components in the GSE
reference frame. Bottom panel: the absolute value of  the differences between homologous MFA components obtained by means of  MAVG
and EMD methods. During this time interval Cluster-1 was at the position (6.5,-16.9,-7.2) Re (1Re = 6380 km), and average magnetic field
〈B0〉= (−4.8,−0.2, 2.1) nT. In each panel, the zero levels are marked by horizontal dotted lines.
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In Figure 11 we show a comparison between total

power spectra (i.e. SGSE( f ) = Sx( f  ) + Sy( f ) + Sz( f )) of

original magnetic field in the GSE coordinate system

and that obtained with EMD and MAVG (i.e. SMFA( f )

= Sµ( f  ) + Sz( f ) + So( f )).

It can be seen, for SGSE (marked in both panels of

Figure 11 with black curves), a power peak at fuw~25.8

mHz (Tb~ 38.7 s, corresponding approximately at Nb=

9 samples). In this test, we used a number of  weights

Nw = 5, 9, 19 for the MAVG procedure, while for the

EMD we fixed a cut-off  frequency of  1 mHz. Remark-

able correspondence is found between SEMD (green

line) and SGSE (black line). Conversely, SMAVG departs in

the lower frequency range (i.e. f < fuw) for any value of

Nw, while for higher frequency and for Nw= Nb, 2Nb the

correspondence is good. Remarkable difference is

found around f ~2 fuw, 3 fuw using Nw= 5 (i.e. lower than

Nb), accordingly to the theoretical discussions in previ-

ous section.

Further evidences of  energy alteration as well as

phase difference in the MAVG procedure are from multi-

ple coherence analysis. Since no external noise is intro-

duced in the rotation procedure, a multiple coherence c2

close to 1 is theoretically expected. We computed c2 be-

tween original GSE time series (3 inputs) and that in the

MFA reference frame (3 outputs), obtained with both

EMD and MAVG techniques (Figure 11, bottom panel).

It can be seen that c2
EMD is close to 1 at any frequency,

while clear differences emerge in the c2
MAVG at several fre-

quency bands, further demonstrating that MAVG alters

the power spectra of  the rotated components with re-

spect to that of  the original ones.

6. Discussions and conclusions

In this work we studied the effect of  the moving-av-

erage procedure applied to a discrete time series, com-

paring the results with those obtained using a new method

based on the empirical mode decomposition. Theoretical

investigations on a simple periodic and monochromatic

perturbation, show that the MAVG procedure cannot

completely remove the high-frequency perturbation

from the mean field, affecting the rotated MFA compo-

nents, although they are time-scaled separated.

The choice of  the window size Nw in the MAVG

procedure strongly affects the estimation of  the rota-

tion matrix coefficients. We showed that the amplitude

of  the perturbation b(t), in the estimated B0(t), are close

to but not equal to zero only if  the window size Nw cor-

responds to a integer multiple of  the number of  sample

Nb, that corresponds to the fundamental period of  b(t)

(i.e. Nw= kNB, k = 1, 2, …). Moreover, a phase shift of

180° is introduced by the MAVG procedure when using

a window size Nw in the range between an odd and

even integer multiple of  the perturbation fundamental

period Nb (i.e. 2(m − 1) Nb ≤ Nw ≤ 2m Nb, m = 1, 2, 3...).

These results are also supported by means of  energy

conservation test, using a Monte Carlo simulation.

We also showed that theoretically, when the per-

turbation amplitude is large with respect to the mean

magnetic field, several power peaks, at frequencies mul-

tiple of  the fundamental one, appear. However it is ex-

tremely difficult to found such conditions in the

magnetosphere, where the ambient field is higher than

ULF waves amplitudes (see for example Sergeev et al.

[2003]) and the stability condition is satisfied.

Finally, we studied the MAVG and EMD effects on

real magnetic field data measured by Cluster satellite on

May 6, 2005, in the upstream region. In this case, we found

significant differences between the power spectra of  the

original and that of rotated components, using the MAVG.

MFA COORDINATES USING EMD

Figure 11. Power spectral density S obtained by means of  EMD al-
gorithm (top panel, green line) and by means of  MAVG algorithm
(central panel) using different Nw (marked with different colors, cen-
tral panel), together with the total power spectra S of  GSE compo-
nents (black lines). (bottom panel) The multiple coherence c2

between GSE and MFA components using EMD (green) and MAVG
(with different colors).



In other words, the MAVG operates as a low-pass fil-

ter with (generally) a non-zero phase lag. The choice of

appropriate Nw is crucial; it should not be too large, in

order to be comparable with the ambient field fluctua-

tion period, and not too small, in order to ensure that the

power spectra of  the resulting rotated MFA components

are not modified, especially in correspondence to fre-

quency ranges of  our interest. Moreover, in some cases,

the involved phenomena are non-linear and non-station-

ary, and hence the MAVG cannot be applied to identify

the long-periodicities components of  the discrete time se-

ries. A new technique based on the EMD is presented;

this technique is applied to artificial (but almost realistic)

signals, as well as to real data: The results show that it al-

lows us to identify the long periodicities component B0
without phase shift, and energy modifications.

We further remark that, in theMAVG procedure,

an ideal choice of  Nw equal to (or multiple of ) Nb is not

possible because: (a) the periodicity of  the perturbation

Tb generally does not correspond to an integer number

of  samples, i.e. Tb/h is not an integer number (h is the

sampling period); (b) real data, in the frequency do-

main, generally may contain several spectral peaks,

each characterized by different Nb, and then Nw cannot

be uniquely determined in order to suppress, with the

same efficiency, all the oscillations.

Conversely, the EMD procedure does not intro-

duce any significant distortion in the MFA components,

probably due to the adaptive nature of  the EMD. How-

ever, it cannot resolve the most complicated cases

when, for example, the noise and signals time-scale sep-

aration does not exist (see Wu and Huang [2004] for de-

tails). The complete codes can be requested via email at

the following addresses: mauro.regi@aquila.infn.it;

alfredo.delcorpo@aquila.infn.it.
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Appendices

A. Moving-average applied to a sinusoidal discrete

time series

Let si be a generic data series, the balanced moving

average 〈s〉 at ith-central interval is defined as

where N is the number of  data on the left and on the

right with respect to the central value, used to compute

the average; hence the total number of  data values used

in the average is the odd integer Nw= 2N + 1. Assume

now a periodic and monochromatic form for the series

sk = s0sin(~hk +a), where ~ is the pulsation, a is the

phase and h is the sampling period. Under these as-

sumptions, Equation (24) at ith-time can be written as

follows

In order to compute the sum (25) we used the trig-

onometric superposition relationships (prosthaphaere-

sis) formula (26)

obtaining the following terms:

Therefore Equation (25) becomes:

In this expression one term is independent and an-

other (containing i-index) is dependent on time. More-

over, assuming that the discrete time series is sampled

at h resolution, we can define the integer number of

samples Nb that corresponds to the signal periodicity Ts

such that Ts = hNb, allowing us to define the angular

frequency as ~ = 2r/Ts = 2r/hNb. After the substitu-

tion of  this expression in Equation (27), we obtain:

where we have conveniently defined the time inde-

pendent term

Equation (28) has a time-dependent term

s0sin (2r
i—
Nb

+a)

and a time-independent dimensionless term g. The for-

mer is essentially the original time series (or perturba-

tion) si , and the latter is a superposition of  cosine

functions depending only on Nw and Nb.

Figure 12 shows the absolute value of  |g| (in a

color scale) as a function of  Nw and Nb, for a sampling

period h = 1 s. |g| is always different from zero except

for Nw = kNb (k = 1,2,3,…,kmax), is indicated by white

dashed lines. Here, kmax is computed as [Ns/Nb], where

Ns is the total number of  samples, and [] is the integer

part operator. In particular, |g| rapidly increases for

Nw< Nb, exceeding 0.5; this condition corresponds to a

violation of  the inequality condition in the left side of

Equation (6) (see also Section 5).
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Figure 12. |g| as a function of  Nw and the pulsation period Nb for
a sampled period of  h = 1 (see text for details). The white dashed
lines mark the corresponding minimum |g| values, associated with
Nw= Nb, 2Nb, 3Nb.
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B. Fourier expansion of  a generic square wave

Assuming an asymmetric square wave g(t) as showed

in Figure 13 with a fundamental period T, resulting

from a superposition of  a positive pulse, with ampli-

tude +A and duration x+T, and a negative pulse with

amplitude −A and duration x−T (it can be noted that

x+ +x− = 1). Defining ~= 2r/T, the Fourier coeffi-

cients can be calculated as follows:

where c+
k are the coefficients for the positive pulse, cal-

culated as

while for the negative pulse, the coefficients are calcu-

lated as

and k = 0, 1, 2, 3, …

For Equation (31) we easy obtain (~= 2r/T)

where we used the relation 2jsinx = e jx − e−jx. In order

to calculate the contribution of  the negative pulse, we

use the properties of  the Fourier transform of  a time

shift in the time domain F [x(t ± x)] = X(j~)e±jk~d,

where X(j~) = is the Fourier transform of

the non shifted, negative pulse. In our case the time

shift is d= (x+ +x−)T/2 = T/2. Finally, for a time

shifted negative pulse we obtain

Using the equality e−jkr= (−1)k, and assuming A =

1, the resulting coefficients for g(t), where k = ±1, ±2,

±3,... are

and hence the Fourier expansion of  g(t) is

From Equations (33)-(36) the Fourier expansion

has both odd (k = 1,3,5,…) and even (k = 2,4,6,…) fre-

quencies.

C. Fourier expansion of  the product of  the sine func-

tion with its associated square wave

Let assume a sinusoidal signal in discrete form

s(ti) = s0sin(~hi) (a= 0) at time ti = hi, we define the as-

sociated square wave qs(ti) as follows

where n = 1,2,3,... In order to compute the product

s(ti)qs(ti), we used the Fourier series expansions of  the

qs(ti) odd function:

(37)

The product ŝ(t) = s(t)qs(t) assumes the following

expression

(38)

We compute the product of  two sinusoids in

Equation (38) using theWerner’s formula sin(x)sin(y) =
1–2 (cos(x − y) − cos(x + y)), obtaining the following ex-

pressions
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Figure 13. Asymmetric square wave.
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Grouping the terms with the same argument in

Equation (38) and simplifying the expression we obtain

the Fourier series for the product of  a sine wave and its

associated square wave

finally obtaining

. (40)
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