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Abstract

Introduction: Mammography screening results in a significant number of false-positives. The use of pretest breast

cancer risk factors to guide follow-up of abnormal mammograms could improve the positive predictive value of

screening. We evaluated the use of the Gail model, body mass index (BMI), and genetic markers to predict cancer

diagnosis among women with abnormal mammograms. We also examined the extent to which pretest risk factors

could reclassify women without cancer below the biopsy threshold.

Methods: We recruited a prospective cohort of women referred for biopsy with abnormal (BI-RADS 4) mammograms

according to the American College of Radiology’s Breast Imaging-Reporting and Data System (BI-RADS). Breast cancer

risk factors were assessed prior to biopsy. A validated panel of 12 single-nucleotide polymorphisms (SNPs) associated

with breast cancer were measured. Logistic regression was used to assess the association of Gail risk factors, BMI and

SNPs with cancer diagnosis (invasive or ductal carcinoma in situ). Model discrimination was assessed using the

area under the receiver operating characteristic curve, and calibration was assessed using the Hosmer-Lemeshow

goodness-of-fit test. The distribution of predicted probabilities of a cancer diagnosis were compared for women

with or without breast cancer.

Results: In the multivariate model, age (odds ratio (OR) = 1.05; 95% confidence interval (CI), 1.03 to 1.08; P < 0.001), SNP

panel relative risk (OR = 2.30; 95% CI, 1.06 to 4.99, P = 0.035) and BMI (≥30 kg/m2 versus <25 kg/m2; OR = 2.20; 95% CI,

1.05 to 4.58; P = 0.036) were significantly associated with breast cancer diagnosis. Older women were more likely than

younger women to be diagnosed with breast cancer. The SNP panel relative risk remained strongly associated with

breast cancer diagnosis after multivariable adjustment. Higher BMI was also strongly associated with increased odds of

a breast cancer diagnosis. Obese women (OR = 2.20; 95% CI, 1.05 to 4.58; P = 0.036) had more than twice the odds of

cancer diagnosis compared to women with a BMI <25 kg/m2. The SNP panel appeared to have predictive ability

among both white and black women.

Conclusions: Breast cancer risk factors, including BMI and genetic markers, are predictive of cancer diagnosis among

women with BI-RADS 4 mammograms. Using pretest risk factors to guide follow-up of abnormal mammograms could

reduce the burden of false-positive mammograms.
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Introduction
Though mammography screening reduces breast cancer

mortality, it is imperfect like all screening tests. The high

burden of false-positive tests relative to the number of

cancers detected has contributed to controversy about the

routine use of mammography screening among women

ages 40 to 50, as well as about biennial rather than annual

screening [1]. After 10 years of annual mammography

screening beginning at age 40, over 60% of women will

have a false-positive result and 7% to 9% will have a biopsy

[2]. False-positive mammograms can result in inconveni-

ence, pain and anxiety for patients, as well as increased

costs [3,4].

Using pretest probability of disease can improve the

positive predictive value of a screening test. However,

this approach requires the ability to accurately deter-

mine an individual’s risk of disease. The Breast Cancer

Risk Assessment Tool (BCRAT), or Gail model, uses

age, family history of breast cancer, reproductive history

and history of breast biopsy or atypical hyperplasia to

estimate a woman’s 5-year or lifetime risk of breast

cancer [5]. Although the model is well calibrated, its

discriminatory accuracy is modest [6]. Additional risk

factors, such as genetic markers [7-14] and body mass

index (BMI) [15-19], have been shown to moderately

improve breast cancer risk prediction.

Although many studies have focused on predicting can-

cer risk in the general population, few have employed risk

prediction models to improve decisions about follow-up of

abnormal mammograms. Current standards in the United

States recommend biopsy of a mammographic abnormality

if the radiologist deems the probability of cancer diagnosis

to be at least 2% [20-22]. Mammogram results are reported

using the American College of Radiology (ACR) Breast

Imaging-Reporting and Data System (BI-RADS), which

includes six result categories, each tied to follow-up

recommendations [20]. The BI-RADS 4 category indi-

cates the presence of a suspicious abnormality that should

be followed up with a biopsy. However, the 1-year prob-

ability of breast cancer for women with a BI-RADS 4

mammogram is 15% to 30% on average [20,22-29]; there-

fore, the majority of biopsies of BI-RADS 4 abnormalities

are benign. Furthermore, the likelihood of cancer diagnosis

varies widely within the BI-RADS 4 category, leading to

the subdivision of the category into BI-RADS 4A (2% to

9% risk of malignancy), BI-RADS 4B (10% to 49% risk of

malignancy) and BI-RADS 4C (50% to 94% risk of malig-

nancy) [22]. A small pilot study suggested that an experi-

enced radiologist using this substratification scheme could

increase the threshold for the biopsy decision without

missing invasive cancers [30]. In addition, a recent model-

ing study suggested that the addition of pretest breast can-

cer risk factors, including genetic markers, could change

biopsy decisions for a small proportion of women with

abnormal mammograms [31]. Greater ability to predict

cancer outcomes in women with BI-RADS 4 mammo-

grams could reduce the burden of false-positive tests

from mammography.

In this study, we assessed the usefulness of the Gail

model, BMI and a panel of 12 single-nucleotide polymor-

phisms (SNPs) to predict cancer diagnosis among women

with BI-RADS 4 mammograms. We then evaluated the

extent to which these factors could improve decisions

about biopsy among this group by reclassifying women

without cancer below the biopsy threshold.

Methods
Participants

Women referred for breast biopsies at the Hospital of

the University of Pennsylvania following a BI-RADS 4

mammogram between January 2010 and April 2012

were invited to participate in the study. Women were ex-

cluded if they were younger than 20 years old, had a per-

sonal history of breast or ovarian cancer, mantle radiation

or known BRCA1/2 mutation. Women who consented

provided a buccal swab for DNA testing prior to their

biopsy appointment. Three hundred sixty-three women

were enrolled. An additional 119 women with a BI-RADS

4 mammograms from a previous study in which breast

imaging modalities were compared at the same institution

were also included (2002 to 2006; National Institutes of

Health grant P01 CA85484; Principal Investigator: M

Schnall). Participants in the breast imaging study were

enrolled between July 2003 and August 2007. A blood

sample from each patient was collected and stored, which

was used for genetic analysis. Of the total sample, five pa-

tients were missing follow-up information, eleven had data

on fewer than nine SNP markers and two had nonbreast

malignancies (tubular adenoma, B-cell lymphoma in the

breast). These participants were excluded, resulting in a

total population of 464 for analysis. Both studies were

approved by the University of Pennsylvania Institutional

Review Board, and written informed consent was obtained

from each study participant.

Risk factors

Participants completed a health history questionnaire,

including information on race, age at menarche, age at

first live birth, number of biopsies, presence of atypical

hyperplasia and family history of breast and ovarian

cancer. Using the BCRAT, we estimated the 5-year

absolute risk and relative risk (RRs) of breast cancer

using source code version 3.0 from the National Cancer

Institute website [32]. BMI was calculated by using the

patient’s self-reported weight and height at the time of

recruitment, or it was extracted from medical record

data prior to recruitment.
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Single-nucleotide polymorphism panel

Buccal swabs (N = 347) or blood samples (N = 117) were

sent to deCODE genetics (Reykjavik, Iceland) for analysis

using Illumina Infinium II whole-genome genotyping

(Illumina, San Diego, CA, USA). The deCODE genetics

SNP assay included 12 loci that have consistently been

associated with breast cancer risk: 2q35 (rs13387042),

MRPS30 (rs4415084), FGFR2 (rs1219648), TNRC9/TOX3

(rs3803662), 8q24 (rs13281615), LSP1 (rs3817198), 5q11

(rs889312), NEK10 (rs4973768), 1p11 (rs11249433),

RAD51L1 (rs999737), COX11 (rs6504950) and CASP8

(rs1045485) [33-40]. The call rate was 99.8%. The de-

CODE BreastCancer™ test uses individual allele effect sizes

for the 12 SNPs to create a RR estimate for each genotype.

For each participant, a combined RR estimate for the

12-SNP panel was calculated by multiplying the RR esti-

mates for all SNPs as described previously [11]. Expected

and observed allele frequencies and homozygote odds

ratios (ORs) for risk alleles are included in Additional file 1.

The combined SNP panel RR estimate has been shown to

be independent of BCRAT factors [11].

Statistical analysis

The results of the BIRADS 4 biopsies were obtained from

pathology records. Logistic regression was used to assess

the association of Gail risk factors, BMI and SNP panel

RR with cancer diagnosis (invasive or ductal carcinoma in

situ (DCIS)). First, each predictor was tested in an age-

adjusted model. SNP panel RRs were examined as a log-

transformed continuous variables and as categorized RRs

<1.00, 1.01 to 1.49 and ≥1.50. The Gail RR was tested as a

log-transformed continuous variable. Gail absolute 5-year

risk estimate was categorized as <1.67% and ≥1.67%, as

these cutoffs have been widely used to denote high risk of

breast cancer, as well as for the use of chemopreventive

drugs [41,42]. BMI data were missing in 17% of partici-

pants, and therefore BMI was entered into models, includ-

ing a category for missing data, as follows: <25 kg/m2, 25

to 29.9 kg/m2, ≥30 kg/m2 and missing. The multivariate

logistic regression model included log-transformed SNP

panel RR, all Gail risk factors (age, race/ethnicity, age at

menarche, age at first live birth, first-degree family history

of breast cancer, breast biopsy, atypical hyperplasia) and

BMI. We also examined the predictive ability of the vari-

ous risk factors. Model calibration was assessed using the

Hosmer-Lemeshow goodness-of-fit test to compare ob-

served and predicted outcomes within deciles of predicted

risk for each model [43]. Discriminatory accuracy was

assessed by calculating area under the receiver operating

characteristic curve (AUC). DeLong’s test was used to

compare AUCs for various models. In our analysis, the

model incorporating age and the Gail RR had poor calibra-

tion. The original Gail model incorporated 5-year intervals

of age, but we entered age as a continuous predictor to

minimize the number of predictors in our models. Because

of the poor calibration of the age plus Gail RR model, we

also examined a model that entered all Gail risk factors

individually, and this model was better calibrated to our

data. In addition, we performed tenfold cross-validation of

the prediction models in the total study population. Finally,

we estimated the predicted probability of cancer using the

multivariate model and assessed reclassification below

several risk thresholds (2%, 3%, 5% and 10%) for cancer

cases and noncancer cases. Statistical analyses were per-

formed using SAS 9.3 (SAS Institute, Cary, NC, USA) and

Stata/IC 12 (College Station, TX, USA) software.

Results
The mean age of study participants was 48.7 years (SD,

13.2), and approximately one-half of the study popula-

tion was over age 50 (Table 1). Over 30% of participants

were black or African American. The mean 5-year breast

cancer risk estimate derived by using the BCRAT was

1.54, and 33% of participants had a 5-year risk estimate

of 1.67% or greater. The mean SNP panel RR was 1.22

(SD, 0.44). Over one-fourth of participants had a SNP

panel RR estimate of 1.50 or greater, indicating their risk

of breast cancer was 50% greater than that of the general

population. Of the 464 participants, 74 women (16%)

were diagnosed with cancer, 33 (7%) with DCIS and 41

(9%) with invasive cancer.

Table 2 displays the results of age-adjusted and multi-

variate logistic regression models used to estimate the OR

for cancer diagnosis. The SNP panel RR was significantly

associated with cancer diagnosis (OR, 2.15; 95% CI, 1.04

to 2.43; P = 0.038). The ORs estimated in our model for

the categorized SNP panel RRs were comparable to the

predefined RR estimates obtained from deCODE genetics.

The Gail RR estimate was not significantly associated

with cancer diagnosis, nor was Gail absolute 5-year

risk ≥1.67%. Among the Gail factors, only age was signifi-

cantly associated with breast cancer diagnosis, though the

ORs for race/ethnicity, age at menarche, age at first live

birth and family history of breast cancer were consistent

with expected associations. Prior breast biopsy and atypical

hyperplasia were inversely associated with breast cancer,

though these data were not statistically significant. Few

participants (4.3%) reported prior atypical hyperplasia.

In the multivariate model, age, SNP panel RR and BMI

were significantly associated with breast cancer diagnosis.

Older women were more likely than younger women to

be diagnosed with breast cancer (OR = 1.05; 95% CI, 1.03

to 1.08; P < 0.001). The SNP panel RR remained strongly

associated with breast cancer diagnosis after multivariable

adjustment (OR = 2.30; 95% CI, 1.06 to 4.99; P = 0.035).

Higher BMI was also strongly associated with increased

odds of breast cancer diagnosis. Obese women (OR = 2.20;

95% CI, 1.05 to 4.58; P = 0.036) had more than twice the
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odds of cancer diagnosis compared to women with a

BMI <25 kg/m2.

Next, we evaluated the association of the SNP panel

separately for white (N = 277) and black (N = 145) women

(Table 3). Among white women, the SNP panel RR was

associated with twofold elevated odds of receiving a

cancer diagnosis in both age-adjusted (OR = 2.43; 95% CI,

0.99 to 5.98; P = 0.053) and multivariate (OR = 1.97; 95%

CI, 0.76 to 5.10; P = 0.161) models, and OR estimates were

similar for the SNP panel RR categories and predefined

values. There was evidence that the SNP panel RR was

associated with breast cancer diagnosis among black

women. Among black women, the OR estimate was 4.50

in the age-adjusted model (OR = 4.50; 95% CI, 0.87 to

23.2; P = 0.073) and 4.21 in the multivariate model

adjusted for age, Gail factors and BMI (OR = 4.21; 95% CI,

0.79 to 22.6; P = 0.093), though these estimates did not

reach statistical significance. In addition, the OR esti-

mates for the SNP panel RR categories were similar to the

predefined RR values. There was no significant interaction

between race and the SNP panel RR (P = 0.880).

We compared the predictive accuracy of the Gail

factors, BMI and SNP panel RR (Table 4). First, Gail RR,

SNP panel RR and BMI were tested separately in models

including age. The model with age and Gail RR had the

lowest predictive ability (AUC= 0.6646), and the Hosmer-

Lemeshow goodness-of-fit test indicated poor model fit

(P = 0.0019). All other models exhibited acceptable model

fit (P > 0.05). The predictive accuracy was similar for age

and the SNP panel RR (0.6848) and age and BMI (0.6845).

Age, BMI and the SNP panel RR together yielded an AUC

of 0.7007, which was of borderline significance compared

to age alone (P = 0.061).

Predictive accuracy was greater in the model including

the individual Gail risk factors (0.7144) compared to a

model with age alone (P = 0.044). Adding BMI to the

Table 1 Characteristics of BIRADS 4 cohort, all ages,

N = 464a

Characteristics Data

Age, yr, mean ± SD (range) 48.7 ± 13.2 (20 to 86)

Age, yr, categories

<35 73 15.7

35 to 40 41 8.8

40 to 49 114 24.6

50 to 59 146 31.5

60+ 90 19.4

Race/ethnicity

White 277 59.7

African American/black 145 31.3

Hispanic 9 1.9

Asian 16 3.5

Other 17 3.7

Age at menarche, yr

<11 90 19.4

12 to 13 200 43.1

≥14 107 23.1

Unknown 67 14.4

Age at first live birth, yr

<20 69 14.9

20 to 24 94 20.3

25 to 29 76 16.4

≥30 80 17.2

Nulliparous 139 30

Missing data 6 1.3

First-degree relatives with breast or ovarian cancer, n

0 350 75.4

1 101 21.8

>1 13 2.8

Prior breast biopsy, n

0 266 57.3

1 123 26.5

>1 75 16.2

Prior AH

Yes 20 4.3

No 444 95.7

Gail 5-yr risk estimate, mean ± SD 1.54 ± 1.43

Gail 5-yr risk estimate, %

<1.67 309 66.6

≥1.67 155 33.4

Body mass index, kg/m2

<25 182 39.2

25 to 29.9 95 20.5

Table 1 Characteristics of BIRADS 4 cohort, all ages,

N = 464a (Continued)

≥30 108 23.3

Missing data 79 17.0

deCODE genetics panel RR, mean ± SD 1.22 ± 0.44

<1.00 163 35.1

1.01 to 1.49 182 39.2

≥1.50 119 25.7

Outcome of biopsy

Benign 366 78.9

AH/LCIS 24 5.2

DCIS 33 7.1

Invasive carcinoma 41 8.8

aAH, Atypical hyperplasia; BI-RADS, Breast Imaging-Reporting and Data System;

DCIS, Ductal carcinoma in situ; LCIS, Lobular carcinoma in situ; RR, Relative risk;

SD, Standard deviation. Data are number and percent unless otherwise stated.
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Gail risk factor model increased the AUC (0.7279), but

the difference was not statistically significant (P = 0.341).

Subsequently adding the SNP panel RR to the model

further increased the AUC (0.7377; P = 0.212). We re-

peated analyses stratified by age (35 to 49 years and

≥50 years) and found that the addition of BMI and SNP

panel RR improved predictive accuracy compared to the

Gail factors alone in both age groups, though the AUC

values were greater for women ages 50 and older. The

addition of the SNP panel had a greater impact on the

AUC in the 35 to 49 age group than in women ages 50 and

older. When stratified by race, the AUC values were com-

parable for black women and white women. For the model

including Gail factors, BMI and SNP panel RR, the AUC

was 0.7518 for white women and 0.7710 for black women.

We repeated our analyses excluding women younger than

40, and the results were similar. We performed tenfold

cross-validation on the prediction models in the total study

population (Table 5). AUC values were slightly attenuated

after cross-validation and were not statically significant.

Table 2 Logistic regression, odds of cancer among women with BIRADS 4 mammograms, N = 464a

Age-adjusted Multivariateb

OR 95% CI P-value OR 95% CI P-value

SNP panel RR, log continuous scale 2.15 1.04 to 2.43 0.038 2.30 1.06 to 4.99 0.035

SNP panel RR, categories

<1.00 1.00 Reference

1.01 to 1.49 1.09 0.59 to 2.02 0.788

≥1.50 1.60 0.84 to 3.04 0.149

Gail RR, log continuous scale 1.11 0.69 to 1.78 0.660

Gail absolute 5-yr risk, %

<1.67 1.00 Reference

≥1.67 1.09 0.60 to 1.98 0.778

Age, log continuous scale 1.05 1.03 to 1.07 <0.001 1.05 1.03 to 1.08 <0.001

Race/ethnicity

White 1.00 Reference 1.00 Reference

African American/black 0.66 0.37 to 1.19 0.170 0.53 0.26 to 1.06 0.071

Other 0.86 0.33 to 2.20 0.748 0.81 0.30 to 2.23 0.689

Age at menarche, yr

<11 1.44 0.65 to 3.21 0.368 1.33 0.57 to 3.09 0.510

12 to 13 1.67 0.85 to 3.30 0.139 1.50 0.73 to 3.06 0.266

≥14 1.00 Reference 1.00 Reference

Unknown 0.77 0.29 to 2.07 0.608 0.83 0.28 to 2.41 0.729

Age at first live birth, yr

<30 1.00 Reference 1.00 Reference

≥30 1.58 0.81 to 3.08 0.183 1.37 0.66 to 2.87 0.400

Nulliparous 1.09 0.58 to 2.06 0.780 1.06 0.54 to 2.08 0.867

Missing data 1.60 0.17 to 15.0 0.680 2.26 0.22 to 23.6 0.497

First-degree relatives with breast cancer, n 1.48 0.86 to 2.57 0.160 1.62 0.90 to 2.90 0.106

Prior breast biopsy 0.73 0.43 to 1.24 0.242 0.82 0.47 to 1.46 0.508

Prior atypical hyperplasia 0.41 0.09 to 1.86 0.247 0.51 0.10 to 2.54 0.410

BMI, kg/m2, mean ± SD

<25 1.00 Reference 1.00 Reference

25 to 29.9 1.68 0.81 to 3.47 0.161 1.86 0.86 to 4.05 0.116

≥30 1.94 0.99 to 3.81 0.054 2.20 1.05 to 4.58 0.036

Missing data 1.85 0.87 to 3.93 0.111 1.80 0.81 to 3.99 0.147

aBI-RADS, Breast Imaging-Reporting and Data System; BMI, Body mass index; CI, Confidence interval; OR, Odds ratio; RR, Relative risk; SD, Standard deviation; SNP,

Single-nucleotide polymorphism. bMultivariate model includes log SNP RR, age, BMI, race/ethnicity, age at menarche, age of first birth, family history of breast

cancer, breast biopsy and atypical hyperplasia.
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The highest cross-validated AUC was observed for the

model including age, BMI and the SNP panel (AUC=

0.6753).

The predicted probabilities of breast cancer diagnosis

for each individual were estimated using the model in-

cluding age, Gail factors, BMI and the SNP panel RR.

Figure 1 displays the distribution of predicted probabilities

by breast cancer status. Women diagnosed with cancer

(true-positives) had a mean predicted probability of cancer

diagnosis of 22.6%, compared to 12.2% for women not

diagnosed with cancer (false-positives), though the 95% CIs

significantly overlapped (Table 6). However, no women

diagnosed with cancer had a predicted probability below

5%. On the basis of our model, nine women (3.4%) with

BI-RADS 4 mammograms were reclassified below the <2%

threshold, none of whom were diagnosed with cancer.

Furthermore, 69 women (14.9%) had a predicted prob-

ability of cancer less than 5%, and none of these women

were subsequently diagnosed with cancer. The positive

predictive value of the BIRADS 4 categorization alone

was 15.9%, compared to 18.7% using the BIRADS 4

categorization along with the prediction model with a

5% predicted probability.

Discussion
Our results suggest that breast cancer risk factors can be

used to predict cancer diagnosis among women with

BI-RADS 4 mammograms. Age, BMI and the 12-SNP panel

were strongly associated with cancer diagnosis. Addition of

BMI and the 12-SNP panel to Gail risk factors improved

model discrimination. Furthermore, using a predicted prob-

ability cutoff of 5% for biopsy would reclassify 15% of

women below the biopsy threshold while retaining 100%

sensitivity in cancer detection in this sample. Though our

results need to be prospectively validated, our work provides

proof of concept that the use of pretest risk factors to guide

follow-up of BI-RADS 4 mammograms could potentially

improve mammography screening outcomes by reducing

the number of biopsies among women who do not have

cancer.

To our knowledge, our present study is the first in

which a panel of genetic markers has been tested in

women with abnormal mammograms. The SNP panel

RR estimates observed were similar to the RR estimates

stated by deCODE genetics in our population of women

with BI-RADS 4 mammograms, and the SNP panel RR es-

timate remained strongly associated with cancer diagnosis

Table 3 Logistic regression, odds of cancer among women with BIRADS 4 mammograms, by racea

White (N = 277) Black (N = 145)

Age-adjusted Multivariateb Age-adjusted Multivariateb

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

SNP panel RR, log continuous
scale

2.43 (0.99 to 5.98) 0.053 1.97 (0.76 to 5.10) 0.161 4.50 (0.87 to 23.2) 0.073 4.21 (0.79 to 22.6) 0.093

SNP panel RR, categories

<1.00 1.00 (reference) 1.00 (reference)

1.01 to 1.49 1.34 (0.64 to 2.82) 0.437 1.56 (0.90 to 8.18) 0.599

≥1.50 1.84 (0.83 to 4.11) 0.135 1.77 (0.33 to 9.52) 0.505

aBI-RADS, Breast Imaging-Reporting and Data System; BMI, Body mass index; CI, Confidence interval; OR, Odds ratio; RR, Relative risk; SNP, Single-nucleotide polymorphism.
bMultivariate model includes BMI, age, race/ethnicity, age at menarche, age of first birth, family history of breast cancer, breast biopsy, atypical hyperplasia.

Table 4 Predictive accuracy of models using Gail risk factors, body mass index and single-nucleotide polymorphism

panel among women with BIRADS 4 mammogramsa

Total study population (N = 464) Age 35 to 49 yr
(N = 155)

Age ≥50 yr
(N = 236)

White
(N = 277)

Black
(N = 145)

AUC GOFb P-valuec P-valued AUC P-valuec AUC P-valuec AUC P-valuec AUC P-valuec

Age, log Gail RR 0.6646 0.0019 0.839 0.5475 0.966 0.6748 0.470 0.6654 0.373 0.7243 0.495

Age, BMI 0.6845 0.3649 0.210 0.5775 0.619 0.6914 0.613 0.6826 0.317 0.7456 0.653

Age, log SNP RR 0.6848 0.3134 0.197 0.6068 0.445 0.6917 0.508 0.6890 0.153 0.7385 0.836

Age, BMI, log SNP RR 0.7007 0.9297 0.061 0.6258 0.337 0.7086 0.276 0.7078 0.060 0.7527 0.661

Gail factorse 0.7144 0.3586 0.044 Reference 0.5488 0.123 0.7115 0.267 0.7390 0.019 0.7256 0.925

Gail factors, BMI 0.7279 0.7646 0.014 0.341 0.6964 0.072 0.7272 0.167 0.7463 0.011 0.7485 0.602

Gail factors, BMI, log SNP RR 0.7377 0.1924 0.007 0.212 0.7242 0.026 0.7356 0.116 0.7518 0.007 0.7719 0.442

aAUC, Area under the receiver operating characteristic curve; BI-RADS, Breast Imaging-Reporting and Data System; BMI, Body mass index; RR, Relative risk; SNP,

Single-nucleotide polymorphism. bP-value derived from Hosmer-Lemeshow goodness-of-fit (GOF) test. cP-value derived from DeLong test compared to a model

with age only. dP-value derived from DeLong test compared to reference model. eGail factors include age, race/ethnicity, age at menarche, age at first live birth,

first-degree family history of breast cancer, breast biopsy and atypical hyperplasia.
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after adjusting for other breast cancer risk factors. Similar

to what has been reported in prior studies [7,8,10-14,44,45],

the SNP panel in the present study moderately improved

predictive accuracy. However, this small improvement may

prove to be more clinically valuable for decisions about

biopsies among women with abnormal mammograms than

for risk stratification in the general population.

It was not entirely surprising that the Gail risk estimate

was not significantly associated with cancer diagnosis in

our study, because the Gail model was developed to esti-

mate 5-year or lifetime risk of invasive breast cancer in the

general population. In our present study, we attempted to

predict the risk of diagnosis of either DCIS or invasive

cancer in women with abnormal mammograms. The mag-

nitudes of the exposure–disease relationships are likely

different for short-term cancer outcomes in the higher-risk

BI-RADS 4 population. In our analysis, the model using

age and the Gail RR had poor calibration, and therefore the

AUC estimates are not meaningful. The poor calibration of

this model could have been due to differences in the study

population and outcome used in our study, or it could have

been a result of our inclusion of age as a continuous pre-

dictor to provide a more parsimonious model, whereas the

original Gail model used 5-year age categories. Because of

this, we also examined a model that entered all Gail risk

factors individually, and this model was better calibrated

to our data. We observed an AUC of 0.738 for the model

with Gail factors, BMI and the SNP panel, which is higher

than the AUC observed in the general population for the

Gail model alone (0.596) or the Gail model including

breast density (0.634) [46]. Researchers in two prior stud-

ies evaluated prediction models in women with BI-RADS 4

mammograms. A prediction model trained on 170 French

patients with BI-RADS 4 mammograms using Gail risk,

age, presence of a palpable lesion, lesion size, hormone

replacement therapy and menopause status demonstrated

predictive accuracy similar to our model, with an AUC of

0.716 in the training set and AUC of 0.660 when validated

in 188 BI-RADS 4 patients from Texas [47]. Similar to our

results, age was the strongest predictor of cancer among

approximately 4,000 women with BI-RADS 4 mammo-

grams referred for biopsy between 1997 and 2001 in the

Vermont Breast Cancer Surveillance System [48]. The pres-

ence of a palpable lump, previous breast biopsy, menopause

status and use of postmenopausal hormone therapy were

also associated with cancer diagnosis. Genetic risk factors

and BMI were not included in these prediction models.

Obese women had more than twice the odds of receiving

a cancer diagnosis compared to women of normal weight.

One possible explanation for this association is that obese

women tend to have less-dense breasts and therefore

Table 5 Cross-validation of prediction modelsa

Total study population (N = 464) Tenfold cross-validation

AUC 95% CI P-valueb AUC 95% CI P-valueb

Age, log Gail RR 0.6646 0.5970 to 0.7321 0.839 0.6482 0.5797 to 0.7167 0.159

Age, BMI 0.6845 0.6188 to 0.7501 0.210 0.6583 0.5911 to 0.7255 0.764

Age, log SNP RR 0.6848 0.6195 to 0.7501 0.197 0.6735 0.6077 to 0.7393 0.188

Age, BMI, log SNP RR 0.7007 0.6370 to 0.7645 0.061 0.6753 0.6099 to 0.7407 0.258

Gail factors 0.7144 0.6532 to 0.7755 0.044 0.6522 0.5855 to 0.7188 0.955

Gail factors, BMI 0.7279 0.6705 to 0.7854 0.014 0.6561 0.5919 to 0.7203 0.924

Gail factors, BMI, log SNP RR 0.7377 0.6808 to 0.7946 0.007 0.6727 0.6099 to 0.7356 0.493

aAUC, Area under the receiver operating characteristic curve; BMI, Body mass index; CI, Confidence interval; RR, Relative risk; SNP, Single-nucleotide polymorphism.
b
P-values derived from DeLong test compared to model with age only.

Figure 1 Distribution of the predicted probability of cancer

using Gail factors, body mass index and single-nucleotide

polymorphism panel.

Table 6 Predicted probability of cancer using Gail factors,

body mass index and single-nucleotide polymorphism

panel (N = 464)

Cancer Noncancer

Median % (95%
confidence interval)

22.6% (7.0% to 46.6%) 12.2% (2.6% to 38.8%)

Predicted probability, n (%)

<2% 0 (0%) 9 (1.9%)

<3% 0 (0%) 35 (7.5%)

<5% 0 (0%) 69 (14.9%)

<10% 10 (2.2%) 162 (34.9%)
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potentially easier-to-read mammograms, which facilitates a

more accurate interpretation of their mammograms by

radiologists, such that obese women with a BI-RADS 4

mammogram are more likely to actually have cancer (and

less likely to have a false-positive test) than nonobese

women. The association of BMI with cancer diagnosis may

also reflect disease etiology, as BMI is associated with

increased risk of postmenopausal breast cancer [49].

Although BMI data were missing for 17% of participants,

we do not believe the missing data biased the observed

association. The distribution of risk factors (except for age

at first birth) and percentage diagnosed with cancer did

not differ for women with missing BMI data and women

with complete BMI data. Additional studies are needed to

verify this association and to tease apart the effects of BMI

and breast density in women with abnormal mammograms.

This study was a first attempt to validate the 12-SNP

panel among black women. The SNP panel variants were

identified and validated primarily in white/European popu-

lations. Several genome-wide association studies and can-

didate gene studies [50-60], and authors of meta-analyses

[61-66] have assessed the association of these 12 SNPs

individually with breast cancer risk among black/African

American populations, with mixed results. Six of the twelve

SNPs in the panel have been replicated in at least one study

of black/African American populations: rs1045485 (CASP8)

[59], rs1219648 (FGFR2) [54,58,59], rs13387042 (2q35)

[52,58,59], rs3817198 (LSP1) [60], rs4415084 (FGF10) [56]

and rs999737 (14q24.1, RAD51B) [59]. Validating breast

cancer–associated SNPs among black women is challenging,

given the large sample sizes needed to detect small

associations, differing linkage disequilibrium patterns among

different ancestral groups, and disease heterogeneity. Despite

the fact that only half of these SNP associations have been

replicated, the 12-SNP panel appeared to have predictive

value among black women, though our results need to be

validated in larger studies. In addition, in future studies,

researchers should assess whether race-specific and tumor

subtype–specific SNP panels can further improve breast

cancer risk prediction.

Several limitations should be considered when interpret-

ing our results. Because we recruited women referred for

biopsy at one academic hospital, our study sample may not

be representative of all women with abnormal mammo-

grams referred for biopsy. Our sample size was modest,

and therefore our results, particularly those of subgroup

analyses, should be interpreted cautiously. We performed

cross-validation of our prediction models for the entire

study sample; however, prospective validation of our results

is needed. Given the limited number of cancers (N = 75),

our study did not have statistical power to fit separate

models for DCIS and invasive cancer or to assess interac-

tions between risk factors. We utilized a validated panel of

12 breast cancer–associated SNPs. To date, nearly 70 SNPs

have been identified that are associated with breast cancer

risk [67]. Therefore, our results using 12 SNPs may under-

estimate the utility of genetic markers, and including a

larger number of genetic markers may further improve risk

prediction. In future studies, researchers should evaluate

the use of genetic markers in women with abnormal mam-

mograms. Also, breast density was not controlled for, and

this may partly explain the observed association of BMI

with cancer diagnosis.

This study has several strengths. Ours is one of the

first studies to develop a cancer prediction model for

women with abnormal mammograms. We had rich data

on recognized breast cancer risk factors ascertained

prior to biopsy. We employed a validated panel of genetic

markers associated with breast cancer incidence, with RR

estimates independent of traditional breast cancer risk

factors. Our study population was diverse in terms of age

and race/ethnicity, suggesting that our model could be

applied broadly.

Conclusions
Our results suggest that pretest breast cancer risk factors

could be utilized to individualize biopsy decisions following

abnormal mammograms. We found that age, BMI and a

12-SNP panel were significantly associated with breast can-

cer diagnosis in women with BI-RADS 4 mammograms.

The association of obesity with cancer diagnosis was par-

ticularly novel and warrants additional investigation. On the

basis of results derived from the model using Gail risk fac-

tors, BMI and genetic markers, we were able to identify a

predicted probability threshold that could be used to identify

women who would not benefit from immediate biopsy. Our

study, though preliminary, highlights that improved risk

modeling for women with abnormal mammograms could

reduce the burden of false-positive tests and therefore

increase the benefits of mammography. Future studies are

needed to validate these results in larger patient populations.
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