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SUMMARY
By making use of the Mellin transform a formal solution is obtained for the stress

distribution in an infinite wedge under fairly general conditions of surface loading.
The results for the particular case in which each surface is subjected to unit pressure
for a finite distance measured from the vertex of the wedge are reduced to infinite
integrals. These can be evaluated exactly when the wedge is a semi-infinite solid
and are in a form suitable for numerical computation for other wedge angles.

1. FORMAL solutions for fairly general conditions of surface loading have
recently been obtained by Tranter and Craggs (1) and Sneddon (2) in the
case of axially symmetrical stress. If the axis of symmetry is the z-axis
and the loading is on the curved surfaces r = constant, Tranter and
Craggs make use of the complex form of the Fourier integral transform,
while for loading on the plane surfaces z = constant, Sneddon employs
the Hankel transform. A formal solution for the stress distribution in an
infinite wedge under similar fairly general surface tractions can be obtained
by using the Mellin transform. Such a solution would appear to cover
cases (e.g. discontinuities) which are excluded from the solution given by
Timoshenko (3) for a polynomial distribution of load and to give a more
direct result than could be obtained from an extension of Shepherd's
work (4) for isolated forces acting at points of the faces of the wedge.

2. Taking cylindrical polar coordinates (r,6,z) and taking the faces of
the wedge as 6 = £ a , we have to find a stress function <f> satisfying")"

( 32 1 3 1 3 2 \ 2

&+7£+hw)+ = 0 (0<r<co, -«<*<«), (1)
and the boundary conditions

(2)

= sz(r) (8 = -oc), (3)

t Timoshenko (3), pp. 53, 55.
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126 C. J. TRANTER

where fi(r), ft(r) are the normal stresses and a^r), a2(r) the shear stresses
applied to the faces of the wedge, all supposed given functions of r.
Once <f> has been found, the stresses og, rrg are given by the expressions
shown in (2) and (3), while the third stress is given by

= 1 8$ 1 £V
°r~ r 8r+ri 3d2'

(4)

Fio. 1. The surface loading shown is for the particular case of § 3.

Assuming <f> is such that r»+n ^ (n = 0,1,2,3), r " ^ (n = 1,2), and
orn 8onor 8on

±rp+1—±- all tend to zero aa r -> oo, and writing $ for the Mellin transform

of (f>, i.e.
= j<frr*-ldr, (5)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/1/1/125/1883360 by guest on 25 August 2022



THE USE OF THE MELLIN TRANSFORM

integration by parts gives:

127

CO

J ri^
o

(6)

Multiplying (1) by r*4^ integrating" with respect to r from 0 to oo and
using (6), we find

= 0. (7)

Equations (2) and (3), after multiplication by rp+1 and integration with
respect to r from 0 to oo, give

p(p+l)f = F2(p), (6=-a),

(8)

(9)

where
00 00

K(P) = j r»+1fn(r) dr, Sn(p) = j t***n(r) dr (n = 1,2). (10)
o o

The solution of (7) is
$ = Asinp6+B cosp0+Csin(p+2)6+Dcos(p+2)O, (11)

where A, B, C, D depend on p and a. Substitution in (8) and (9) and
some reduction yields

2p(p+l)O(«,p)A
= {S1(p)+S2(p)}psin(p+2)oc-{F1(p)-F2(p)}(p+2)cos(p+2)<x, (12)

-2(p+l)G(oc,p)C = {S^+S^pfisinpx-WW-FMcoapoc, (13)

2p(p+l)H(cc,p)B
= {S1(p)-S2(p)}pcoa(p+2)cc+{Fl(p)+F2(p)}(p+2)ain(p+2)cc, (14)

-2(p+l)H(«,p)D = {SiW-Szipficoapcc+iF^+F^pfrmpoc, (15)

w h e r e Q(«,p) = (P+l)sin2oc-8in2(p+l)lx, \
H(a,p) = (p+l)ain2oc+aui2(p+l)cc. j ( '
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128 C. J. TRANTER

The Mellin transform $ of the stress function <f> is thus completely
known. More interest, however, lies in the stresses themselves, and if we
denote the Mellin transform by a 'bar', we have

= J r&

(17)

The stresses can now be found from Mellin's inversion formula (5) and
we have

c+tco

°B = ^i J
c —too

c+foo

c—vo
c+ico

2m J

(18)

J
The formal solution is now complete, <j> and its derivatives with respect

to 6 being found from equations (11) to (16). The line integrals in (18) can
be evaluated in terms of infinite integrals from which numerical computa-
tion is possible. The conversion is straightforward but somewhat tedious,
and the process is illustrated in § 3 for a particular case of the loading.

3. The particular case considered is that in which the faces of the wedge
are each subjected to unit pressure for a distance a measured from the
vertex, the rest of these faces being free from normal stress and the whole
of both faces being free from shear stress.

For thJ3 case (10) gives

(19)

= 0.
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THE USE OF THE MELLIN TRANSFORM 129

Equations (12) to (15) lead to

A = C = 0,

p(p+l)H(<x,p)B = — a?+2sin(p+2)<x, } (20)

Substitution in (11) and (18) then gives:
c+ioo

Tr9 = 2 ^ J W
i
J

c—if

(21)
For values of a between 0 and \TT it is easy to show that the only zero

of H(oc,p) in the strip for which the real part of p lies between —2 and
0 is p = — 1. The line integrals in (21) can be replaced by integrals from
—oo to 0 and from 0 to oo along the line for which the real part of p is — 1,
less iri times the residue at p = —1 . Omitting details of the algebra, we
find

•trr• . 7rsinacos#cos# f
i n 2 « - J

(22)

j
o

where P(£), Q({), R(£) are given by

= sin(a—5)

= cos(a—0)sinh(a+0)f+cos(a+0)sinh(a—6

= sin(a—0)sinh(a+0)£—sin(a+0)sinh(a—d)

(23)
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130 THE USE OF THE MELLIN TRANSFORM

For the particular case (a = \n), when the wedge becomes a semi-
infinite solid, the integrals in (22) can be evaluated exactly by making
use of the two results (6)

J
0

J

coshpx . , sinh 2m
. f Bvamxdx = ,

sinh \nx COS 2p+cosh 2m

sinh px , sin 2»
. f cos77ix ax = £

sinh £TTX C(
The results are

_ 4arcos0/ r2-fo2cos20
9~<Tr w ^r4+2a2r2cos 26+a*)'

Oa+O. = \1T—

2ar cos 6 a2sin20

(r < a)

\

(24)

Tr0 =

which can be shown to agree with those given by Love (7), who treats
this particular case by an entirely different method. For other values
of a it would appear that the stresses can only be found by evaluating
the integrals in (22) numerically. The method developed by Filon (8) for
trigonometric integrals of this type has proved very convenient for this
purpose.
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