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ABSTRACT 
With the huge amount of information available electronically, there 
is an increasing demand for automatic text summarization systems. 
The use of machine learning techniques for this task allows one to 
adapt summaries to the user needs and to the corpus characteristics. 
These desirable properties have motivated an increasing amount of 
work in this field over the last few years. Most approaches attempt 
to generate summaries by extracting sentence segments and adopt 
the supervised learning paradigm which requires to label documents 
at the text span level. This is a costly process, which puts strong 
limitations on the applicability of these methods. We investigate 
here the use of semi-supervised algorithms for summarization. 
These techniques make use of few labeled data together with a larger 
amount of unlabeled data. We propose new semi-supervised 
algorithms for training classification models for text summarization. 
We analyze their performances on two data sets - the Reuters news-
wire corpus and the Computation and Language (cmp_lg) collection 
of TIPSTER SUMMAC. We perform comparisons with a baseline – 
non learning – system, and a reference trainable summarizer system.  
Categories & Subject Descriptors: I.5.4 text 
processing, B.2.4 Algorithms, G.3. Stochastic processes. 
General Terms: Algorithms, performance, design. 

Keywords: text summarization, machine learning, semi-
supervised learning, text-span extraction. 

1. INTROUCTION 
With the continuing growth of online text resources, it is becoming 
more and more important to help users to access information and to 
develop easy to use information research tools. Text summarization 
can be used together with conventional information research 
engines, and help users to quickly evaluate the relevance of 
documents or to navigate through a corpus. 
Automated summarization dates back to the fifties [16]. The 
different attempts in this field have shown that human-quality text 
summarization was very complex since it encompasses discourse 
understanding, abstraction, and language generation [30]. Simpler 
approaches were then explored which consist in extracting 

representative text-spans, using statistical techniques and/or 
techniques based on surface domain-independent linguistic analyses.  
Within this context, summarization can be defined as the selection 
of a subset of the document sentences which is representative of its 
content. This is typically done by ranking document sentences and 
selecting those with higher score and minimum overlap [6, 25]. 
Most of the recent work in summarization uses this paradigm. 
Usually, sentences are used as text-span units but paragraphs have 
also been considered [21, 31]. The latter may sometimes appear 
more appealing since they contain more contextual information. The 
quality of an extract summary might not be as good as an abstract 
summary, but it is considered good enough for a reader to 
understand the main ideas of a document.  
Our work takes the text-span extraction paradigm and explores a 
machine learning approach for improving automatic summarization 
methods. The proposed model could be used both for generic and 
query-based summaries. However for evaluation purposes we will 
present results only on a generic summarization task. Previous work 
on the application of machine learning techniques for 
summarization [4, 8, 15, 17, 33] rely on the supervised learning 
paradigm. This requires a training set of documents and associated 
extract summaries. Learning systems are first trained to label 
document sentences as relevant when they are in the summary, or 
irrelevant otherwise. After training, they operate on unlabeled text 
by ranking the sentences of a new document. Labeling large amount 
of text spans for training summarization systems is time consuming 
and unrealistic for many applications. We consider here the use of 
semi-supervised techniques, which allow to train a system with only 
a few labeled documents together with large amounts of unlabeled 
documents. The latter being widely available and cheap, this could 
considerably help the development of trainable text summarizers. 
For this, we introduce a new semi-supervised algorithm. Its 
originality is that it relies on a discriminative approach to semi-
supervised learning rather than a generative approach, as it is usually 
the case. The advantage is that the algorithm is generic and can be 
used with many discriminant classifier, it leads to cheap and 
efficient implementations and shows better performances than 
generative systems. The algorithm is described in the framework of 
the Classification Expectation Maximization algorithm (CEM) [7, 
19] and detailed for the case of a logistic classifier.  
The paper is organized as follows, we first make a brief review of 
recent work in machine learning for text summarization and semi-
supervised techniques (section 2). In section 3, we introduce two 
baseline text summarizers, a non trainable system and the Kupiec et 
al.’s trainable model [15], which are later used for comparison. We 
then describe our semi-supervised approach to text summarization 
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based on sentence extraction and present the formal framework of 
the model and its interpretation as a CEM instance (section 4). 
Finally we present a series of experiments on Reuters news-wire and 
on the Computation and Language (cmp_lg) of TIPSTER 
SUMMAC collections in section 6, and carry on a set of 
comparisons. 

2. RELATED WORK 
Recently, several innovative methods for automated document 
summarization have been explored, they exploit statistical 
approaches [6, 25, 31, 35], linguistic approaches [13, 18, 26] and 
combinations of both [3, 10].  
We will focus here on a statistical approach to the problem and more 
precisely on the use of machine learning techniques, which has 
recently motivated an increasing amount of interest in the field. 
Trainable text summarizers allow one to adapt to the specific user 
needs and to corpus characteristics, they may also help to improve 
the quality of summaries. 
Text extracting for summarization has been cast in the framework of 
supervised learning for the first time in the seminal work of [15]. 
The authors propose a generic summarization model, which is based 
on a naive Bayes classifier operating on a synthetic representation of 
sentences. This method is described in more detail in section 3.2. 
Different authors built on this idea, e.g. [33] apply the same 
technique for other training and evaluation settings. [17] have used 
several machine learning techniques in order to select features 
indicating the salience of a sentence. They considered three types of 
features (locational, thematic and cohesion) and addressed the 
production of generic and user-focused summaries. [8] compare 
three supervised learning algorithms: C4.5, naive Bayes and neural 
networks. Their conclusion is that all three methods successfully 
completed the task by generating reasonable summaries. [4] adopt 
supervised learning methods to make synthetic summaries of web 
pages in the Ocelot system. 
All these approaches rely on the supervised learning paradigm and 
require the labeling of text spans as relevant or not relevant which is 
either performed manually or by aligning an abstract with document 
sentences. Manual tagging or abstracting is a tedious task, it is 
unrealistic for large corpora, for query based summaries or for 
adapting summaries to different user needs or corpora. 
The semi-supervised learning paradigm has emerged as a solution to 
this type of problem when large corpora of unlabeled data are 
available together with a much smaller amount of labeled data. In 
our case, for a given document collection, labeling a few documents 
at the text span level, or producing a few abstracts is usually 
affordable and does not take much time. 
From a machine learning perspective, automatic summarization by 
extracting is typically a task for which semi-supervised learning 
seems appropriate. This learning paradigm has been first explored in 
statistics, a review of the work done prior to 92 in the context of 
discriminant analysis may be found in [19]. Most approaches 
propose to adapt the Expectation Maximization (EM) algorithm for 
handling both labeled and unlabeled data and perform maximum 
likelihood estimation. Theoretical work mostly focuses on gaussian 
mixtures, but practical algorithms may be used for more general 
settings, as soon as the different statistics needed for EM may be 
estimated. Recently this paradigm has been rediscovered by the 
machine learning community and is subject to a growing interest. 
For example [20] adapt EM to a mixture of experts model, [23] 

propose an algorithm which is a particular case of the general semi-
supervised EM described in [19], they extend it to multiple mixtures 
and present an empirical evaluation for text classification. [28] 
propose a Kernel Discriminant Analysis which can be used for semi-
supervised classification. 
Other ideas bear some similarity with semi-supervised learning. This 
is the case of the co-training paradigm [5] which has been proposed 
independently for training classifiers when data may be described 
with two modalities. The algorithm we propose here is related to the 
decision directed paradigm [9], which has been used under different 
settings in the field of adaptive signal processing.  
On the machine learning side, the originality of our work lies in the 
design of a discriminative approach to semi-supervised learning 
whereas others mainly rely on generative classifiers. The main 
benefits are the following: the approach is fully generic in the sense 
that most discriminant classifiers could be used within this 
framework, it does not rely on any parametric assumption about the 
data, discriminative training allows to have better performances than 
generative methods especially when there are few training data, it 
leads to very simple and fast implementations. 

3. AUTOMATIC SUMMARIZERS 
In this section, we present two baseline systems for sentence 
extraction. The first system is a non-trainable statistical model 
(section 3.1) and the second is Kupiec et al.’s naive Bayes trainable 
system [15] (section 3.2).  

3.1 A baseline non-trainable system 
Many systems for sentence extraction rely on the use of similarity 
measures between text spans (sentences or paragraphs) and queries, 
e.g. [10, 17]. Representative sentences are then selected by 
comparing the sentence score for a given document to a preset 
threshold. These systems differ in the representation of textual 
information and in the similarity measures they use. Usually, 
statistical and/or linguistic characteristics are used in order to encode 
the text (sentences and queries) into a fixed size vector and simple 
similarities (e.g. cosine) are then computed. 
We build here on the work of [14] who used such a technique for 
the extraction of sentences relevant to a given query. They use a tf-
idf representation and compute the similarity between sentence sk 
and query q as: 
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Where, tf(w,x) is the frequency of term w in x (q or sk), df(w) is the 
document frequency of term w and n is the total number of 
documents in the collection. Sentence sk and query q are pre-
processed by removing stop-words and performing Porter-reduction 
on the remaining words. For each document a threshold is then 
estimated from data for selecting the most relevant sentences.  
In our experiments we have considered a generic query, where the 
query is enriched before computing the similarity. Since queries and 
sentences may be very short, this allows to compute more 
meaningful scores. Query expansion proceeds in two steps: first the 
query is expanded via a similarity thesaurus - WordNet in our 
experiments - second, highly ranked sentences, according to the 
generic query, are extracted from the document and the most 
frequent words in these sentences are included into the query. This 
process can be iterated. We also take into account the sentence 
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length when computing the similarity tf(w,s). The use of the 
document length has been shown to improve performance in 
Information Retrieval [27]. This leads to the following similarity: 
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Where ψ is the number of sentences in the current document, l(sk) is 
the length of sk and ∑

s
sl )(  is the summation over all sentence 

length. 
Similar systems have been shown to perform well for sentence 
extraction based text summarization. For example [35] uses such an 
approach, which operates only on word frequencies for sentence 
extraction in the context of generic summaries, and shows that it 
compares well with human based sentence extraction. 

3.2 Naive Bayes Model 
Our baseline trainable summarizer is the model proposed by Kupiec 
et al. [15]. Sentences are encoded into five discrete features 
{Fj}j=1,..,5. Four of them are binary: a sentence length cut-of feature 
indicates whether or not the sentence length is below a specified 
threshold, a fixed-phrase feature is set to 1 if the sentence contains 
occurrences of cue words, thematic word feature indexes sentences 
whose similarity with a generic query is above a preset threshold 
(we have used the Sim2 measure in our implementation), upper case 
word feature indicates the occurrence of acronyms, excluding 
common abbreviations. Finally a paragraph feature is set to 1, 2 or 3 
depending on the position of the sentence in the text. The 
computation of the posterior probability that sentence s will be 
included in summary S is achieved assuming statistical 
independence of the features and using a naive Bayes classifier: 

∏

∏

=

=

∈∈

=∈ 5

1

5

1
51

)(

)(.)/(
),..,/(

j
j

j
j

Fp

SspSsFp
FFSsp  

where p(s∈S) is a constant, p(Fj /s∈S) and p(Fj) are estimated 
directly from the training set by counting occurrence. For computing 
p(Fj /s∈S) and p(Fj), we have used a smoothing scheme (where 
counts in both the numerator and denominator are augmented by 
one for each feature) to prevent zero probabilities for infrequently 
occurring features. The use of this type of prior is sometimes 
referred to as Laplace smoothing. In the paper we refer to this 
system as the naive Bayes classifier. 

4. A Semi-supervised algorithm for text-span 
classification 
We now introduce an iterative discriminant algorithm for semi-
supervised learning applied to text-span extraction. This algorithm is 
generic in the sense that it can be used with any discriminant 
classifier provided its output can be interpreted as a posterior class 
probability. We describe our algorithm in the general framework of 

the Classification EM (CEM) algorithm [7, 19]. This ensures that all 
nice properties of CEM (e.g. convergence) hold for our method. For 
text summarization, we are interested in two-class classification 
(relevant or irrelevant for the summary), we thus restrict our 
presentation and analysis to this case. For simplifying further the 
presentation, we consider here only the case of logistic classifiers, 
which have been used in our experiments. These two hypotheses are 
not restrictive since the algorithm and analysis can be easily 
extended for any discriminant classifier and for multi-class 
problems. 
We first introduce the CEM unsupervised algorithm and propose a 
semi-supervised version of this method. We then describe our 
algorithm in the particular case of logistic regression. 

4.1 Framework 
We consider a binary decision problem and suppose available a set 
of m unlabeled data Du and a set of n labeled data Dl. We will 
denote, Du={xi | i = n+1,…,n+m} and Dl ={(xi, ti) | i = 1,…,n} where 
xi ∈ℝd, ti=(t1i, t2i) is the class indicator vector for xi – here (t1i, t2i) = 
(1,0) when sentence i is relevant and (0,1) otherwise. Data in Du are 
assumed drawn from a mixture of densities with two components 
C1, C2 in some unknown proportions π1 and π2. We will consider 
that unlabeled data have an associated missing indicator vector ti = 
(t1i, t2i) for (i = n+1, …, n+m) which is a class or cluster indicator 
vector. The algorithms we consider attempt to iteratively partition 
the data into the two components C1 and C2. We also denote 
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jj PP the partition into two clusters computed by an 
algorithm at iteration j. 

4.2 Classification Maximum Likelihood approach 
The classification maximum likelihood (CML) approach [32] is a 
general framework which encompasses many clustering algorithms 
[7, 29]. It is only concerned with unsupervised learning, but we will 
see later that it can be easily adapted to semi-supervised learning. 
In the two component case considered here, samples are supposed to 
be generated via a mixture density: 

),(.),(.),( 222111 θπθπ xfxfxf +=Θ  
Where the fk are parametric densities with unknown parameters θk 
and πk is the mixture proportion. The goal here is to cluster the 
samples into 2 components P1 and P2. Under the mixture sampling 
scheme, samples xi are taken from the mixture density f and the 
CML criterion is [7, 19]: 
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Where, ∑
∈ uDix

is a summation over all unlabeled samples which 

belong to Du. This is different from the classical mixture maximum 
likelihood (MML) criterion. MML measures how well a model fits a 
data distribution, whereas CML measures the quality of the 
clustering performed with the model. For CML the mixture 
indicator tki associated to xi is treated as an unknown parameter and 
corresponds to a hard decision about the membership of xi to the kth 
mixture component. It has to be learned together with the density 
parameters. Such a parameter is not explicitly present in the MML 
criterion. 
The classification EM algorithm (CEM) [7, 19] is an iterative 
technique, which has been proposed for maximizing LCML, it is 
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similar to the classical EM except for an additional C-step where 
each xi is assigned to one and only one component of the mixture. 
The algorithm is briefly described below. 
CEM 
Initialization: start from an initial partition P(0) 

 jth iteration, j ≥ 0: 
E –step. Estimate the posterior probability that xi belongs to Pk (For 
all xi in Du and k ∈{1,2}): 

∑
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C – step. Assign each xi to the cluster )1( +j
kP with maximal 

posterior probability according to E[t/x] 

M–step. Estimate the new parameters (π 

(j+1), θ 

(j+1)) which maximize 
log LCML(P 

(j+1), π 

(
 

j) , θ   

(
 

j) ). 

4.3 Semi-supervised generative-CEM 
CML criterion can be easily extended for semi-supervised learning. 
Since the tki for labeled data are known, this parameter is either 0 or 
1 for data in Dl. The new criterion – denoted here LC - becomes: 
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The first summation inside the brackets is over the labeled samples, 
and the second one over unlabeled samples. 

CEM can then be easily adapted for semi-supervised learning so as 
to maximize LC instead of LCML: for unlabeled data the tki are 
estimated as in the classical CEM (E and C steps), for labeled data, 
they are fixed to their known value. This is a generative approach to 
semi-supervised learning since it relies on the estimation of the fk 
which model the data generation process. In this context, different 
models could be used depending on the distributional assumption 
about the input data. For our experiments the {fk}k=1,2 are assumed to 
be normal distributions. 
After convergence, the model can be used for classification on new 
data using Bayes decision rule, i.e. x is assigned to the class with 
maximum a posteriori according to p(Pk /x)= E[tk /x]. 

4.4 Semi-supervised logistic-CEM 
Because density estimation could be problematic especially for high 
dimensions or when only few data are labeled – this is what we are 
interested in - and since we are dealing with a classification 
problem, a more natural approach is to directly estimate the 
posteriors p(Pk /x). This is known as the discriminant approach to 
classification. 
For simplifying, we will consider here only the case of logistic 
classification [1]. In this case, the only distributional assumption is 
that the log likelihood ratio of class distributions is linear in the 
observations (see equation below), this is the case for a large family 
of distributions such as the exponential density family, (e.g. normal, 
beta, gamma, etc), and there is no explicit assumption on the nature 
of the densities. 
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With this model, posterior probabilities have the simple form of a 
logistic function: 
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Let us now express log LC as a function of the posteriors p(Pk/x) : 
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For discriminant classifiers, no assumption is made about the 
functional form of the marginal distribution f(x), therefore, 
maximizing LC is equivalent to maximizing CL

~ 1: 
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Any discriminant classifier which estimates the posteriors p(Pk /x) 
can be trained to optimize CL

~ . With the logistic regression model, 
one uses a simple logistic unit G whose parameters are (β  0, β  ), i.e. 

)).(exp(1
1)(
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= , G(x) is used as an estimate of 

p(P1/x) and 1 – G(x) as an estimate of p(P2/x). The estimation of β’s 
can be performed using the logistic-CEM algorithm described 
below: 
 
Logistic-CEM 
Initialization: Train a discriminant logistic model )()0( xG over Dl, 
let P(0) be the initial partition obtained from this model on   Dl ∪Du. 

 jth iteration, j ≥ 0: 
E –step. Estimate the posterior probability that xi belongs to Pk on 
Du (i = n+1,…, n+m; k = 1,2) using the output of the logistic classifier 
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C – step. Assign each xi ∈ Du to the cluster )1( +j
kP with maximal 

posterior probability according to p( )( j
kP /xi): 
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The algorithm is guaranteed to converge. In order to maximize CL
~  

in step M, we have used a quasi-Newton gradient procedure. The 
advantage of this method is that at each iteration it requires to 
compute only the first derivatives of log CL~  with regard to the 
parameters β. 
The main difference here with the generative method is that no 
assumption is made on the conditional densities f1 and f2 except that 
their log ratio is linear in x. The algorithm directly attempts to 
estimate the p(Pk /x) - the quantity we are interested in - instead of 
the conditional densities. It will be shown later to outperform 
                                                                 
1 A similar argument has been developed for supervised learning 

in the case of logistic classifiers [1, 19]. 
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significantly the generative approach, especially when there are few 
labeled data available. It does so by using fewer parameters than the 
generative approach and is faster to run. 
The above algorithm can be used with any other discriminant 
classifiers which also estimate the posteriors. We have performed 
experiments using neural networks and support vector machines but 
they did not show any improvement over the simple logistic 
regression method described here, which in turn performed slightly 
better than a pure linear classifier. 

5. DATA SETS 
A corpus of documents with the corresponding summaries is 
required for the evaluation. We have used a) the Reuters data set 
consisting of news-wire summaries [11], this corpus is composed of 
1000 documents and their associated extracted sentence summaries 
and b) the Computation and Language (cmp_lg) collection of 
TIPSTER SUMMAC [12]. This corpus is composed of 183 
scientific articles. For the latter, we have used the text-span 
alignment method described by [2] to generate extract-based 
summaries from the abstract of each article in the collection. In this 
method, extractive summaries required for training are automatically 
generated as follows: the relevance of each document sentence with 
respect to the human summary is computed, and highest score 
sentences are retained for the reference extract. 
In both cases, the data set was split into a training and a test set 
whose size was respectively 1/3 and 2/3 of the available data. The 
evaluation is performed for a generic summarization task, a query 
was generated by collecting the most frequent words in the training 
set.  

6. EXPERIMENTS 
6.1 Compression ratio 
A compression ratio must be specified or computed for extractive 
summaries. Empirical tests on the Reuters data set show that the 
compression ratio (summary size / document size) decreases with 
the size of the document. Figure 1 plots this ratio as a function of the 
document length. The graph is roughly hyperbolic, this suggests that 
the summary length, which is the product of the compression and 
the document length, is approximately constant. This is in agreement 
with [10] who found that summary length is independent of 
document length on similar databases. For each document in the 
Reuters data set, it was then decided to extract the same number of 
sentences than in its corresponding news-wire summary. 
For the cmp_lg collection we followed the SUMMAC evaluation by 
using 10% compression ratio [34]. 

. 
6.2 Sentence representation 
We consider here the same set of features than those proposed by 
Kupiec et al. to represent sentences (section 3.2). The main 
difference here is that we do not use discrete feature values as they 
do and use both continuous and discrete features. This has been 
found more efficient and mixed continuous-categorical features are 
easily handled by our model. Each sentence i is then represented by 
a 5 feature vector, ix

r
: 

),,,,( 54321 ϕϕϕϕϕ=ix
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ϕ 1 is the normalized sentence length: 
∑

j
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)( , ϕ 2 is the normalized 

frequency of cue words in sentence i: 
)(il

wordscueoffrequency , ϕ 3 

= Sim2(i, q) where Sim2 is the similarity introduced in section 3.1 for 
the baseline non trainable system, ϕ4 is the normalized frequency of 

acronyms in i: 
)(il
acronymsoffrequency  and ϕ 5 is the same 

paragraph feature as in [15]. 

6.3 Results 
Evaluation issues of summarization systems have been the object of 
several attempts, many of them being carried within the tipster 
program [24] and the Summac competition. This is a complex issue 
and many different aspects have to be considered simultaneously in 
order to evaluate and compare different summarizers [22]. For the 
extraction task we are dealing with, things are a bit easier. We 
compared the extract of a system with the desired summary and used 
the following Precision and Recall measures: 

summaries  target  thein sentences of # total
summaries target thein  are which system theby  extracted sentencesof#Recall

system by the extracted sentences of # total
summaries  target  in the are whichsystem by the extracted sentencesof#Precision

=

=

We first compare the systems trained in a fully supervised way. This 
gives an upper bound of their performances and provides a first 
ranking of the different algorithms. Results are in table 1.  

 
 

Figure 1. Compression as a percentage of document 
length on Reuters data set. 
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Table 1. Comparison between the baseline system and different learning classifiers on Reuters and cmp_lg test 
sets. All trainable systems are trained in a fully supervised way, using an expanded query. Accuracy is the ratio 
of correct classification for both relevant and irrelevant sentences. 

 Reuters data set Cmp_lg collection 

System Average Precision (%) Accuracy (%) Average Precision (%) Accuracy (%) 

Baseline 53,23 55,13 54,53 56,16 

Naive Bayes 61,02 63,03 61,83 63,48 

Generative-CEM 72,86 73,06 74,12 74,79 

Logistic-CEM 73,84 74,22 75,26 76,92 
 

 
For both collections, naive Bayes is approximately 8% better in 
precision and accuracy than the non-trainable baseline and the CEM 
algorithms are about 11% better than naive Bayes. The logistic 
classifier being slightly better than the generative gaussian. 
Precision-Recall curves (figure 2 top) confirm this ranking. From 
bottom to top, the curves correspond respectively to a random 
sentence selection, to the first sentences of a document, to the 
baseline system, to naive Bayes fully supervised, to the logistic-
CEM trained using 10% of the labels in the training set to generative 
and logistic fully supervised algorithms. The baseline system 
improves the break-even point performances respectively compared 
to random selection and first sentences by 15% and 6% on the 
Reuters data set and by 17% and 5,5% on the cmp_lg collection. 
Trainable systems clearly outperform the baseline system for all 
recall values and the two CEMs are clearly above the naive Bayes 
classifier. Obtaining similar results for both collections with training 
sets of respectively 330 and 60 documents suggests that the task is 
slightly easier for cmp_lg than for Reuters. This is confirmed by 
further experiments. 
Another interesting result is that both logistic and generative-CEM 
trained with semi-supervised, using 10% of labeled documents 
together with 90% of unlabeled documents on the training set give 
similar performances than the naive Bayes classifier trained with all 
labeled documents on the training set. This suggests that our 
classifiers are sound enough to take advantage of a small a priori 
information, and that unlabeled data do indeed contain relevant 
information for this task.  
Figures 2-bottom shows the average precision on both sets for semi-
supervised learning at different ratio of labeled-unlabeled 
documents in the training set, for the generative and logistic semi-
supervised algorithms. 10% on the x-axis, means that 10% of the 
labeled documents in the training sets were used for training, the 
90% remaining being used as unlabeled training documents. For 
comparison, we have also performed test with a logistic classifier 
trained only on the labeled sentences without using the unlabeled 
sentences in the training set (logistic-supervised in fig. 2 bottom). 
Logistic-CEM uniformly outperforms all other systems. This is 
particularly clear for SUMMAC cmp-lg, which is a small document 
set. In this case, the discriminant approach is clearly superior to the 
generative approach. With only 10% of labeled documents in the 
training set, the logistic-CEM approach is over the baseline non 
trainable system and using about 15% of labeled documents allows 
to reach half the performance increase we can get with fully 
supervised training with regard to the baseline non trainable system. 
Using unlabeled sentences do increase the performances (compare 

e.g. logistic-CEM and logistic-supervised curves in figure 2-bottom 
at 10%), this confirms the soundness of semi-supervised learning for 
this task. 

As for the complexity, logistic-CEM system uses only 6 β 
coefficients, one for each characteristic and one bias. Once trained, 
it is only needed to compute a weighted sum of the characteristics to 
rank sentences. The generative-CEM has 60 parameters since we 
used full gaussians (lower performances were obtained with 
diagonal covariance matrices here). Naive Bayes is approximately 
the same order of complexity than logistic. Logistic-CEM is then 
particularly cheap and fast to operate. 

The algorithms described here are generic, and different versions 
using different classifiers may be implemented (any conditional 
density model can be used for the generative system and any 
discriminant classifier whose score approximates the posterior class 
probabilities can be used for the discriminant CEM). They can 
operate on any categorical and/or numerical representation of 
sentences or more generally of text spans, so that richer 
representations may lead to better performances. They can also be 
extended to handle directly word sequences instead of fixed size 
representations as it is described here. We have performed tests on 
simple numerical sequential representations of sentences. The 
performances were roughly the same as above, using only 
automatically computed frequential information. This opens the way 
to the selection of arbitrary text spans not corresponding to 
sentences or paragraphs. Such text spans could be used in more 
sophisticated abstracting systems. The system can also be used in a 
fully unsupervised way: a non-trainable baseline system is used to 
provide an initial labeling of the sentences, and the classifiers then 
learn to improve this labeling using a variant of the algorithms 
presented here. This fully unsupervised scheme provided results 
similar to the semi-supervised methods trained with 10 % labeled 
data and to the Kupiec et al. fully supervised naive Bayes method. 
However, the two datasets we have been using are clean and 
documents are well structured. The algorithms should be evaluated 
on more noisy data and the scaling of this system on larger 
collections with heterogeneous documents has still to be 
investigated. Since our methods are fully automatic and learn from 
the data, and also because different machine learning techniques can 
be used within this general framework, there is hope that the system 
degrades gracefully for more complex tasks, but this remains to 
explore. 
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Figure 2. (Top) Precision recall curves for different systems. From bottom to top, the curves correspond respectively to a random 
selection of N first sentences, to the selection of N first sentences, to the baseline system, to Kupiec et al.’s system, to the CEM-
logistic with 10% of labeled data and to generative and logistic fully supervised algorithms. (Bottom) Average precision of 3 
trainable summarizers with respect to the ratio of labeled documents in the training set. The summarizers are the logistic and 
generative CEM algorithms and a logistic classifier trained only on x% labeled data. 

 Reuters Data set Summac cmp_lg collection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusion and future work 
We have proposed a new general semi-supervised approach for 
training text summarizers based on sentence segment extraction and 
performed an evaluation on two data sets, the news-wire summaries 
of Reuters data and the cmp_lg collection of TIPSTER SUMMAC. 
Our method has been compared to a non-trainable baseline system 
and to the Kupiec et al.’s fully supervised learning classifier. With 
only 10% labeled documents, our algorithm reaches the 
performances of these systems and outperform them using more 
labeled data. Experiments show that using only 10 to 20% of labeled 
sentences in the training set allows to reach half of the performance 
increase provided by a fully supervised approach.  

We have also compared discriminant and generative approaches to 
semi-supervised learning and the former has been found clearly 
superior to the latter for small collections. 

Finally we have briefly mentioned extensions of this system to 
sequential text representations and to unsupervised learning, which 
shows that this system is really flexible. 

In future work, we plan to evaluate our systems on large and 
heterogeneous data sets. 
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