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Econometrica, Vol. 39, No. 2 (March, 1971) 

THE USE OF VARIANCE COMPONENTS MODELS IN POOLING 
CROSS SECTION AND TIME SERIES DATA 

BY G. S. MADDALA' 

The paper argues that variance components models are very useful in pooling cross 
section and time series data because they enable us to extract some information about the 
regression parameters from the between group and between time-period variation-a 
source that is often completely eliminated in the commonly used dummy variable tech- 
niques. The paper studies the applicability and usefulness of the maximum likelihood 
method and analysis of covariance techniques in the analysis of this type of model, par- 
ticularly when one of the covariates used is a lagged dependent variable. 

INTRODUCTION 

THE USE OF analysis of covariance techniques in the problem of pooling cross 
section and time series data has now become a common practice in econometric 
work. Suppose we have data on N firms over T periods of time. The model usually 
used in pooling procedures is 

k 

Yij = (i + Tj + E > rXrij + Uij (i = 1, 2, ...N; j = 1, 2,. ..T), 
r= 1 

where ci are the firm "dummies," zj are the time "dummies," and Xr are the 
"covariates." One common argument that is made against the use of the dummy 
variable technique is that it eliminates a major portion of the variation among both 
the explained and explanatory variables if the between firm and between time- 
period variation is large. In some cases there is also a loss in a substantial number 
of degrees of freedom. Added to these is the basic problem that rarely is it possible 
to give a meaningful interpretation to the dummy variables. 

As a general approach to these problems, economists have now shifted their 
attention to models which treat the Lci (and J) as random-in which case we 
estimate, instead of the Na's, only two parameters, the mean and variance of the 
distribution of the Lc's (and similarly for the time effects).2 As far as the estimation 
of the slope parameters fl's is concerned, this procedure amounts to extracting 
some information on the fl's from the between firm and between time-period 
variation of the dependent and independent variables. We can also rationalize this 
procedure of treating the ci and j as random by arguing that the dummy variables 
do in effect represent some ignorance-just like the residuals ui. There is no reason 
to believe that this type of ignorance, which we might call "specific ignorance," 
should be treated differently than the "general ignorance" ui,. 

An earlier paper by Wallace and Hussain [4] analyzes this type of model and 
compares it with ordinary least squares and least squares with dummy variables. 

1 This research has been financed by the National Science Foundation under grant GS-1884. I wish 
to thank Marc Nerlove and Zvi Griliches for helpful comments. Responsibility for any errors is my own. 

2 For a study of this sort, see Balestra and Nerlove [1]. 
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Wallace and Hussain do not, however, consider the case of lagged dependent 
variables-a case that Nerlove is worried about [1,2,3]. The present paper 
investigates some aspects of the analysis of variance components models that arise 
from the use of likelihood methods and the presence of lagged dependent variables 
as covariates. In particular the applicability and inapplicability of the usual 
analysis of covariance techniques will also be discussed. 

The plan of the paper is as follows: Section 1 presents the model and the proper- 
ties of the generalized least squares (GLS) estimates for a model with only firm 
effects. In Section 2 we study the behavior of the likelihood function and in Section 3 
the applicability of the usual analysis of covariance techniques in the presence and 
absence of lagged dependent variables. In Section 4 an example is given to illustrate 
the nature of the biases discussed in Section 3. Section 5 presents an extension to 
the case of random firm and time effects. Section 6 presents an extension of the 
techniques to simultaneous equations methods. The final section presents the 
conclusions of the paper. 

1. THE MODEL AND THE GLS ESTIMATE 

Suppose we have observations on N individuals over T periods of time. The 
model we consider is y = XfB + u where y is an NT x 1 vector, X is an NT x k 
matrix on k variables which may be exogenous or lagged dependent, ,B is a k x 1 
vector, u an NT x 1 vector. 

We can write the residuals as 

Uij = Pi + Tj + Vij, 

where pui are the firm effects which are IN (0, a ), zj are the time effects which are 
IN (0, c2 ) and vij are IN (0, v2). We assume the pi, zj, and vij to be independent. 
For the purpose of using least squares methods and analysis of covariance tech- 
niques we do not need the assumption of normality; nevertheless we will make it 
since we need it for ML methods. Also, for ease of exposition, we will omit the time 
effects. If this is done, we have 

-A O ... O0 

O A .. 
E(uu') = Q2= U2_ 

............... 

O0 O ... A_ 

where A is the T x T matrix 

p [ ..K P 
............. 

_ p . . 1- 
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and a2 = a2 + U2, p = U2/U2. It is evident that A = (1 - p)I + pee' and hence 

(1.) A-' = Alee' + Z2I 

where Al = -pl(1 - p)(I - p + Tp), A2 = 1/(- p), and e is a Tx 1 vector 
with all elements unity. We can also write our model as 

Yi = Xi/f + ui (i = 1, 2 ... N). 

Given the assumptions we make, the GLS estimate of ,B, if p is known, is 

N i1 = N 

Noting the expression for A- given in (1.1), we see that 
N N N 

(1.2) E XA-'Xi = A, E X,ee'Xj + A2 Z X,Xi. 
i=l i=l i=l 

Define 
N 

TXX= XXi, 
i = 1 

lN 

BXX = T i (X,ee'Xi), 

Wxx= Txx -Bxx, 

with similar expressions for Tx, Bx, and Wx, These are familiar expressions in 
analysis of variance. The matrix BXX contains the sums of squares and sums of 
products between groups, Wxx is the corresponding matrix within groups, and TX, 
is the corresponding matrix for total variation. Now (1.2) can be conveniently 
written as 

(1.3) / = [Wx, + OBxx] 1 [Wxy + OBxy], 

where 0 = 1 + (A1T/A2) = (1 - p)/(- p + pT) = o/(i + Tr2). 
We see immediately that for fixed N, as T -+ oo, we have 0 -+ 0 and if ((1/NT)Wxx) 

and ((I/NT)Wxy) have finite (non-null) probability limits, then plim B = plim 
((1/NT)Wxx)-f((1/NT)WxY). But ((I/NT)Wxx)-f((1/NT)WxY) is the least squares 
estimate with dummy variables (hereafter to be denoted by LSDV). Also for fixed 
N and T, if p -- 0, then 0 -- 1, and /- TX-X1 Tx, which is the ordinary least squares 
(OLS) estimate. If p -+ 1, 0 -+0, and ,B WX1 W which is the LSDV estimate. 

In essence 0 measures the weight given to the between group variation. In the 
LSDV procedure, this source of variation is completely ignored. The OLS pro- 
cedure corresponds to 0 = 1. Table I illustrates how 0 varies with p for T = 10 
and T = 20. As the table indicates, in the lower range of p, errors in the estimation of 
p will produce large changes in 0 and hence result in substantial errors in the 
estimation of /B, if the between group variation is large. The between group variation 
is large, however, only when p is large, and in this range errors in the estimation of p 
do not produce any substantial changes in 0. 
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TABLE I 

T=10 T=20 

p 0 p 0 

.05 .655 .05 .487 

.1 .473 .1 .310 

.2 .286 .2 .167 

.3 .190 .3 .105 

.4 .130 .4 .070 

.5 .091 .5 .048 

.6 .063 .6 .032 

.7 .041 .7 .021 

.8 .024 .8 .012 

.9 .011 .9 .005 

Formula (1.3) in essence combines the between group regression estimate and 
the within group regression estimate of , by weighting them in inverse proportion 
to their respective variances. In case there are only exogenous regressors both these 
estimates are evidently unbiased and the estimate of , given by (1.3) is the best 
unbiased linear estimate (if p is known). It is thus evidently more efficient than the 
LSDV estimate or the OLS estimate. In case there are lagged dependent variables, 
neither of these estimates is unbaised. It will be shown in Section 3 that in general 
the biases of these two estimates run in different directions and the process of 
combining the between group and within group regression estimates poses more 
problems. 

A strong intuitive argument can be made for the pooling procedure suggested 
by (1.3). The usual procedures of OLS and LSDV are somewhat all or nothing ways 
of utilizing the between group variation. In the LSDV method, the between group 
variation is completely ignored. In OLS, the between group and within group 
variation is just added up. Usually, in pooling cross section and time series data, 
a test of significance is applied to test whether the constant terms are significantly 
different from each other. If the null hypothesis is rejected, one resorts to the 
LSDV method. If the null hypothesis is not rejected, one uses OLS. The GLS 
procedure implied in (1.3) is a compromise solution to this all or nothing way of 
utilizing the between group variation. Thus the procedure of treating the individual 
constant terms as random is a solution intermediate to treating them all as dif- 
ferent and treating them all as equal. A similar argument can be made even for 
those procedures that treat the slope coefficients as random. 

2. ML ESTIMATION 

If p is known, then the estimation of ,B is straightforward. The estimate is given 
by (1.3), which is also the ML estimate. In case there are lagged dependent variables 
among the regressors, we have to make some assumptions about the initial values 
of the y's, but this does not introduce any essential complications into this estima- 
tion problem. 
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If p is not known, two possibilities suggest themselves: (i) use the ML method; 
(ii) use analysis of covariance techniques to get unbiased estimates of a' and a' and 
use these in a two-step GLS procedure. If lagged dependent variables are present, 
procedure (ii) is ruled out because the analysis of covariance does not give unbiased 
estimates of a' and a'. In fact the between group mean square is a seriously biased 
estimate of the between group variance o2 + T Y. But some modifications of 
this procedure will be considered later. The ML method can be applied even if 
lagged dependent variables are present. However, a study of the behavior of the 
likelihood function in this model would be very fruitful. 

After differentiating the likelihood function with respect to ,B, we obtain the 
ML estimate of ,B as the expression given in (1.3), and substituting this in the 
likelihood function we get 

(2.1) - 2logL = const + NTlog 
U2+ 

Nlog[1 + 1P 

(2.1)~~~~~ 
+ I2[Wyy + OBYY - (Wyx + OByx)(Wxx + OBXx)-'(Wxy + OBxy)] 

where 0 = (1 - p)/(1 - p + Tp) and the other expressions are as defined earlier. 
Differentiating this with respect to U2 yields 

(2.2) NT62 = [Wyy + OBYY - (Wyx + OByx)(Wxx + OBxx) )(Wxy + OBxy)]. 

Hence, by substitution, the concentrated likelihood function in terms of p only is 
given as 

(2.3) -2 log L = const + NTlog UV + N log LI + 1 

This expression is now a function of p only. Differentiating this with respect to p 
gives us the ML estimate of p. However, the expression is not easy to manipulate. 
The behavior of expression (2.3) as p ranges from 0 to 1 can be more conveniently 
studied by computing the derivatives of (2.3) with respect to 0 given in (2.1). Note 
that as p increases from 0 to 1, 0 decreases from 1 to 0. 

Now log [1 + (Tp/(1 - p))] =-log 0, and log 0 is a steadily increasing function 
of 0. As for the behavior of UV, we have 

O(NTUV)= By- [Byx(Wxx + OBxx)f(Wxy + OBxy) - (Wyx + OByx) 
00 

x (Wxx + OBXX) 'Bxx(Wxx + OBxx)-'(Wxy + OBxy) 

+ (Wyx + OByx)(Wxx + OBXX) 'BXYI 

[1 i, LByy ByxI LI 
Bxy Bxx- A 

where A = (Wxx + OBxx) -'(Wxv + OBx,). Since the B matrix is positive definite, 
this expression is greater than zero. Hence we have UV2/00> 0 or 0 log UV/00 > 0. 
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Also noting that (OA/OO) =-[Wx + OBXX]- '[BXXA -Bx] we have 

0'(NTC")@00 = 2[A'Bxx(OA1OO) - Byx(OAOO)] = 2(A'Bxx- BY 

x [Wxx + OBxx] '(Bxx -Bxy) 

which is less than zero for 0 > 0. 
Thus the first derivative of NT log UV with respect to 0 is greater than zero and the 

second derivative with respect to 0 is less than zero. In Figure 1, curve I shows the 
behavior of NT log 62 (assuming a2 > 1) and curve II shows the behavior of log 0. 
The position of curve II is fixed. The position of curve I will vary but in any case, for 
finite N and T, NTlog UV has to be finite through the range 0 to 1 (as in curve III). 

/f 

FIGURE 1 

Three conclusions follow from this. 
(i) The maximum of the likelihood function cannot occur at the boundary value 

0 = O or p = 1. 
(ii) Since the maxima of the likelihood function correspond to the points where 

the distance between curves I and II is minimum, the number of maxima will 
depend on the relative curvature of the two curves. Since both the functions are 
increasing at a decreasing rate, however, there can be at most two maxima for the 
likelihood function in the range 0 < 0 < 1. (This implies that we have to guard 
against one local maximum.) 

(iii) If we confine 0 to the range 0 < 0 < 1, a necessary and sufficient condition 
for the occurence of a boundary solution at 0 = 1 (i.e., p = 0) is 

a[Tlog e2- log 0]O=1 < 0, a0[Tog 
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i.e., 

(2.4) Tyy-Y 'T,cx > T[Byy - 2'Bxy + axBxx2] 

where cx = T' Txy 
Note, however, that the ML estimate of p and the estimate obtained from the 

analysis of covariance are not the same. Hence there can be situations when the 
former method gives a boundary solution p = 0 whereas the latter method does 
not, and conversely. 

For instance, consider the case N = 25 and T= 10. If Byy = 113, Bxy = 60, 
BXX = 40, Wyy = 264, WXY = 40, and Wxx = 40, then the analysis of variance esti- 
mate of p is 0; but the likelihood function is increasing at p = 0 and hence the 
ML estimate of p is greater than zero. On the other hand, if Byy = 83, Bxy = 60, 
B =40, Wy = 240, WY = 40, and Wxx = 40, then the analysis of variance 
estimate of p is greater than zero since condition (2.4) is satisfied, we get a boundary 
solution at p = 0 by the ML method. 

3. ANALYSIS OF COVARIANCE ESTIMATES 

In the case where all the x's are exogenous, we can easily show that both 
the between group estimate BA-XJ,Bx and the within group estimate WA-' Wxy are 
unbiased estimates of f,. One could perform an analysis of covariance as shown 
in Table II. If we denote the between group mean square by BMS and the within 
group mean square by WMS, then WMS gives an unbiased estimate of U2 and 
(BMS - WMS)/T gives an unbaised estimate of U2. 

TABLE II 

Source Covariance matrix , Residual sum of squares Degrees of 
freedom E(RSS/d.f.) 

Between group BYYBYXBXX BB, By -BxBxxB N-1-k a2 + 
TU2 

Within group W.ywW Wx Wx 4-J' W1Wx-,WXy N(T-1)-k 72 

Total Tyx 'Ty T NT-1-k 

There is no guarantee that the estimate of U2 will be positive. In fact this is the 
familiar problem of negative variance components. One suggestion, common in 
analysis of variance literature, is to put a2 = 0 if BMS < WMS, which amounts 
to using the OLS estimate of ,B in this case. The other possibility is to say that the 
WMS is high because it "captures" variation due to other omitted effects (e.g., the 
time effects, if they are not already included), in which case the proper solution is to 
go back and examine the model and correct it for the omitted variables. 

In any case, as was pointed out earlier, the ,t obtained by pooling the between 
group estimate and the within group estimate using the variables estimated from 
the analysis of covariance does not give the ML estimate. The estimate we will be 
using is 

(3.1) fi = [Wxx + OBXX P[Wxy + OBxyI 
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where 0 = 6'/(Ta" + LCV): We can write /3 = / + [Wxx + OBXx]-P[Wxu + OBx"1 
Since the estimates of o2 and (Tr2 + 2) are obtained from the least squares 
residuals from the within group and between group regression, they can be easily 
shown to be independent of Wxu and BXU and hence it will follow that E(,B) = /3. 
Thus the GLS estimate is unbiased even if the variance components (and hence the 
covariance matrix of the residuals) are estimated. 

In the presence of lagged dependent variables (the case Nerlove was concerned 
about), neither the between group regression nor the within group regression 
estimates are unbiased. It is first important to see whether we can say anything 
about the direction of the biases. It is easier to determine the direction of the biases 
for the between group regression estimates. 

Consider the model: 

Yit = (Yi,t- i + /3xit + Uit. 

The between group regression estimates of a and /3 are computed from 

Yi = aZi + /xi + Ui (i = 1, 2, ... N), 

where yi = It Yit, xi = It xit, Zi = It yY,t- 1 . Noting that yi and Zi have (T- 1) 
observations in common, we would expect them to be highly correlated. Hence if 
M denotes the matrix of covariances of yi, Zi, xi, 

MYY MYZ MYX 
MZZ MZX 

.MXX 
then unless T is very small, we would expect M MY MZZ and MYX MZX 
(where denotes "approximately equal to"). Since 

I& IMxx + Mzx myx1 
mZx + L M MYZj 

where J = MZZMXX- MX we would expect the estimate a to be close to 1 and 
the estimate ,B to be close to 0. We would also expect the between group mean square 
to be seriously biased downwards because of the high correlation between yi 
and Zi. 

Hence, if we start with the true values 0 < cx < 1 and /3 > 0, we will find the 
between group regression estimates of cx upward biased and those of /3 downward 
biased. Nerlove, in his Monte Carlo studies [2, 3], does not report the estimates 
of the between group regression. But the example in the next section illustrates 
these conclusions. 

The direction of biases for the within group regression, viz., the LSDV, is not 
so easy to analyze. However, we can say something if we are able to prove that the 
elements of the vector fl(O) = [Wxx + OBxx] - 1[Wxy + OBxy] are monotonically 
increasing or decreasing functions of 0. Noting that 0 = (1 - p)/(l - p + pT) we 
see that for 0 = 0, we have the LSDV estimate; for some 0 in the range 0 < 0 < 1, 
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we have the GLS estimate; for 0 = 1, we have the OLS estimate; and for 0 very 
large, we have the between group regression estimates. Also noting that the 
between group regression coefficient of cx is close to 1, and the coefficient of ,B is 
close to 0, if &(0) is a monotonically increasing function of 0 and fl(6) is a mono- 
tonically decreaging function of 0, then we can show that the OLS estimate of cx 
will be upward biased and of fl downward biased; and the LSDV estimate of cx 
will be downward biased and of /3 upward biased, which is what Nerlove finds in 
his Monte Carlo study [3]. 

It has not been possible to establish any general conclusions of this sort because 
the condition involves some complicated expressions involving the within group 
and between group covariances. In the case where there is only one covariate, it is 
very easy to show that /l(O) is a monotonically increasing or decreasing function 
of 0. In the general case too, it appears that a similar result holds good in a large 
number of situations, at least within the range 0 < 0 < 1. The example given in 
the next section illustrates these conclusions about the biases in the within group 
and the between group regressions, and the monotonic behavior of 0(0) and fi(O). 

Since the between group regression and the within group regression are both 
biased (and the biases run in opposite directions), we should be able to do better 
by taking a linear combination of these two regressions. Now it is also clear that 
if the between group mean square is biased downwards, giving these two regression 
estimates weights inversely proportional to their variances will give unduly heavy 
weight to the between group regression. Hence we cannot rely on any estimates 
obtained from the analysis of covariance similar to that mentioned in Table II. 

In the case of ML too, noting that the between group covariance matrix will be 
close to singularity in the presence of lagged dependent variables, the condition 
(2.4) will also be satisfied more often. Hence the ML method will also give boundary 
solutions more often in this case than in the case of purely exogenous variables. 

In view of these results, Nerlove has suggested an alternative procedure. His 
suggestion is to use the within group mean square as an estimate of a 2 and to 
estimate U2 as the variance of the estimated dummies in the within group regression. 
This estimate can be written as 

a =1 [Ni.- 
_ 

. k 2- 1 

where 
1 ~~~~~~~~1 yi. yi" Y.= yyi., Yi*=T EYt, N E i* 

with similar expressions holding for the k covariates Xr.; fr are the estimates of fir 
obtained from the within group regression. 

In the case where the x's are all exogenous, the expected value of this estimate is 
a2 + (U2 /T) which is slightly upward biased. Though this estimate is upward 
biased, it has the advantage of being always positive. 

In the case where there are lagged dependent variables, the bias in this estimate 
is harder to evaluate, particularly because the Ar obtained from the within group 
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regression are themselves biased. The indication from Nerlove's Monte Carlo 
study [3] is that it is strongly biased upwards. As for a" too, it is no longer an 
unbiased estimate of a' in the presence of lagged dependent variables. 

4. AN ILLUSTRATIVE EXAMPLE 

The following artificial example illustrates the results presented in the previous 
sections. In view of the fact that Nerlove has done extensive Monte Carlo studies 
[2,3], we have investigated only one sample. The main purpose of this example is 
to investigate certain aspects of the model that were not investigated by Nerlove- 
in particular the results of the between group regressions, and the monotonic 
behavior of 4(0) and f(O), and the possibility of multiple maxima for the likelihood 
function. 

Data were generated on the following models: 

Yit = 1.0 + xyi,t- 1 + uit (Model 1), 

yit = f3xit + uit (Model 2), 

yit = xyi,t- 1 + f3xit + uit (Model 3), 

(i= 1,2,...N;t= 1,2,...T). 

Model 1 has a lagged dependent variable, Model 2 has an exogenous variable, and 
Model 3 has both. The uit are assumed to have a normal distribution with covari- 
ance matrix Q given in Section 1. The parameters chosen were: oc = 0.7, ,B = 0.5, 
a2 = 1.0, p = 0.4, N = 25, and T = 10. The exogenous variables were picked up 
from Nerlove's Monte Carlo study [3]. The same uit were used for all models. The 
initial values yi, were taken as yi, = ui 1 _ C2 for Model 1 and yi, = Axl + 
ui1/ 1 - O2 for Model 3. In all, twenty values were generated for each i, but the 
first ten were discarded so that T = 10. The results of the within group and between 
group regressions were as follows. 

For Model 1, 

within group: Q = .4747, R2 = .48, M. Sq. = .1211; 
between group: Q = .9888, R2 = .93, M. Sq. = 2.7433. 

For Model 2, 

within group: ,B = .3422, R2 = .10, M. Sq. = .48; 
between group: , = .4710, R2 = .85, M. Sq. = 3.6393. 

For Model 3, 

within group: Q = .3178, = 1.0535, R2 = .80, M. Sq. = .26; 
between group: Q = 1.000, , = .1032, R2 = .9994, M. Sq. = .12. 

Note that the between group estimate of a is biased towards 1 as expected. 
Further, condition (2.4), for the occurrence of a boundary solution by the ML 
method is satisfied only in Model 3. This is also the case where the within group 
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mean square is greater than the between group mean square and hence the analysis 
of covariance estimate of p is negative (though, as discussed in the text, there is no 
basis for the use of this method in the presence of lagged dependent variables). 
Both the estimates oc and , are functions of 0. 

In this particular example 

(o = 3302.89 02 + 334.76 0 + 8.62 

which is greater than 0 for 0 > 0. Also afi(0)/aO = -4376.88 02 - 466.32 0 - 

13.43 which is less than 0 for 0 > 0. Hence, oc(0) is a monotonically increasing 
function of 0 and gB(0) is a monotonically decreasing function of 0. 

Finally, to investigate whether the boundary solution at p = 0 in Model 3 
gives a local maximum or a global maximum, the likelihood function was tabulated 
over the entire range p = -.10 to p = .99 at intervals of 0.01. It was found that 
the maximum at p = 0 was in fact a local maximum. The values of log L up to a 
constant are shown in Table III for selected values of p. There is a local maximum 

TABLE III 

A = log L + const. for Model 3a 

p A p A 

-.10 -24.68 .50 -6.96 
-.09 -15.67 .60 - 3.75 
-.08 -13.80 .70 -0.76 
-.07 -13.34 .72 -0.24 
-.06 -13.50 .74 0.24 
-.05 -13.75 .76 0.67 
-.04 -14.12 .78 1.05 
-.03 -14.42 .80 1.33 
-.02 -14.75 .82 1.52 
-.01 -15.03 .84 1.58 

.00 -15.27 .86 1.47 

.05 -16.05 .88 1.12 

.10 -16.12 .90 0.45 

.15 -15.73 .92 -0.70 

.20 -15.01 .94 - 2.63 

.25 -14.02 .96 -6.01 

.30 -12.85 .98 -12.95 

a There are two maxima, a local maximum 
at p = -.07 and a global maximum at 
p = .84. 

at p =-0.7 and a global maximum at p = .84. In the case of Models 1 and 2 
there was only one maximum for the likelihood function. The relative likelihoods 
of p for the three models are plotted in Figure 2. They do confirm the large bias in 
the ML estimate of p that Nerlove talks about, though the direction of the bias is 
towards the LSDV estimate rather than towards p = 0. This bias is large for the 
models with lagged dependent variables but not for the model with only exogenous 
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variables. Further, the likelihood functions are not flat around the maximum, thus 
indicating that the problem is not one of likelihood functions spread over a wide 
range of values of p and of our picking a maximum point on the likelihood function 
that cannot be adequately distinguished from other values. Finally, in Model 3 
there was a local maximum at p = -0.7 but the relative likelihood at this point 
(relative to the value of the likelihood function at the global maximum p = .84) 
was negligibly small. It is important to guard against such local maxima in finding 
the ML estimate. 

5. ANALYSIS OF THE MODEL WITH RANDOM TIME EFFECTS 

The analysis contained in the previous sections can be very easily extended to 
the case where there are random time effects in addition to random firm effects. 
The rationalization for treating the time dummies as random is precisely the same 
as that for treating the firm dummies as random. 

The model now is y = XfB + u where u is an NT component vector, the i,jth 
element uij being equal to ,ui + Tj + vij where ,ui are the firm effects and Tj are the 
time effects. We shall assume that pi are IN(O, o'), Tj are IN(O, o'), vij are IN (0, o'), 
and that these are mutually independent. We shall also assume that all variables 
are measured as deviations from their respective means. 

We can, as before, decompose the variances and covariances (let us call these 
TXX TxyI and Tyy) into three parts: (i) between firms (let us call these BXX Bxy 
Byy); (ii) between time periods (let us call these Cxx, Cxy Cyy); and (iii) the residual 
(let us call these Wxx, Wxy, Wyy). Define 01 = oa'/(' + Tu') and 02 = v/(v + NT). 
Then the GLS estimate of , can be easily shown to be equal to 

(5.1) ,B-[Wxx + 01BXx + 02Cxx-l[Wxy + 01Bxy + 02CBx. 

This is a generalization of formula (1.3). As N -x oc and T -o, ,W- X W 
which is the LSDV estimate. For 01 = 1 and 02 = 1, we get the OLS estimate. 

What formula (5.1) does is to combine the regression estimates obtained from 
the between firm variation, between time-period variation and the residual 
variation, weighting them in inverse proportion to their variances. In case there 
are only exogenous variables present, all three of these estimates are unbiased 
and the estimate of / given by (5.1) is the best unbiased linear estimate (if 01 and 
02 are known). It is thus evidently more efficient than the LSDV or OLS estimates. 
In case there are lagged dependent variables present, however, none of these three 
estimates is unbiased. As before we can argue that the between firm and between 
time-period regression estimates are biased, the coefficient of the lagged dependent 
variable being biased towards 1 and the coefficient of the exogenous variable 
being biased towards 0. Again, the intuitive argument in favor of the pooling 
procedure suggested by (5.1) is that the usual procedures of OLS and LSDV are 
all or nothing ways of utilizing the between time-period variation and the GLS 
procedure implied in (5.1) is a compromise solution. 

The analysis of the behavior of the likelihood function contained in Section 2 
can be extended to this case. But no simple conclusions are possible because of 
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the presence of some interaction terms. First, we note that the determinant of the 
covariance matrix Q is given by 

log I= (N - 1)(T- 1) log a' + (N - 1) log(a' + Ta2) 

+ (T- 1) log ( + N ) + log(V + T 11 + NT) 

which can be written in terms of 01, 02, and <2. After the simplifications used in 
Section 2 we can write the concentrated likelihood function as 

(5.2) -2 log(01 ,02)= const. + NTlog UV - N log1 - T logO2 

+ log(01 + 02 0102) 

where 

(5.3) NT62 = [Wyy + 01BYY + 02Cyy- (yx + 01Byx + 02Cyx) 

x (Wxx + OBXx + 02Cxx) l(Wxy + 01Bxy + 02Cxy)]. 

Now log 01 is a steadily increasing function of 01 and log 02 is a steadily increasing 
function of 02. Also, as before, we can easily show that 

O(NT6V2) 1, By B Irl 

a01 [ BXY BXX- -A- 

and 

O(NT6V2) , cy C Il 

a02 = Cxy cxx 

wherei = [Wxx + 01Bxx + 02CxxP 1[Wxy + 01Bxy + 02Cxy], and since the B and 
C matrices are positive definite, these expressions are greater than zero. Also 

a2(NT6V) = _2G'BX-Byx)[Wxx + O0Bxx + 02Cxx] 3(Bx.-BXY) 

and 

a2(NT ) - 

C~C2(A2CX -C)[WC + 01BXx + 02Cxx] '(CXX -cxy) 

which are less than zero for 01 > 0 and 02 > 0. Thus, the first derivative of NT 
log UV with respect to 01 is greater than zero and the second derivative is less than 
zero, and similarly for the derivatives with respect to 02. But because of the 
presence of the interaction term log (01 + 02 - 0102), no simple conclusions such 
as those in Section 2 can be deduced. If we assume that this factor is dominated by 
the other factors in (5.3) so that it can be ignored, then we can show that a boundary 
solution will occur (i) at 01 = 1 if 

Wyy + Byy C- x' (Wx + BxX 
+ 02Cxx) 

> T(Byy- 2Cyy + x1B02x1)X 
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or (ii) at 02 = 1 if 

Wyy + 01Byy + Cyy - x'2(Wxx + OBxx + Cxx*)2 

> N(Cy - 2c2Cx + c4C2x2xX2) 

where 

x1 = (Wx + BXX + 02Cx) l(Wxy + Bxy + 02Cxy) 

and 

2 = (Wxx + OBxx + Cxx) l(Wxy + 01BxY + Cxy) 

In any case these conclusions are not very useful because there is no way of deciding 
a priori whether or not these boundary solutions correspond to global maxima of 
the likelihood function. 

6. SIMULTANEOUS EQUATIONS MODELS ESTIMATED ON A TIME SERIES OF 

CROSS SECTIONS 

The results in the previous sections can be easily extended to simultaneous 
equations models. Since the algebraic manipulations are similar, only the final 
results will be stated here. 

If one is interested in estimating only the reduced form equations, since the 
residuals of the reduced form equations have the same structure as the residuals 
of the structural equations, we obtain three estimates for the reduced form para- 
meters: one from the between firm variation, one from the between time-period 
variation, and one from the residual variation. Also by virtue of the well known 
result that simultaneous estimation of the system of unrestricted reduced form 
equations is equivalent to estimating each equation separately, we can use the 
variance component technique separately for each equation. If there are no lagged 
endogenous variables in the model, then one can use the analysis of variance 
described in Section 3 and get estimates of the variance components. The sub- 
sequent estimates of the reduced form parameters obtained on the basis of these 
estimated variance components are still unbiased. If there are lagged endogenous 
variables in the system, then, as mentioned earlier, none of the estimates (from the 
between firm, between time-period, and residual variation) is unbiased. The 
problem of optimal estimation of variance components has been discussed 
earlier and nothing needs to be added to the earlier analysis. 

Things get complicated when it comes to structural estimation. Suppose we are 
interested in estimating the first structural equation by two-stage least squares 
(2SLS). Again, a decomposition of the error into three independent components 
(between firm, between time period, and residual) leads us to three independent 
estimates for the parameters concerned. One can decompose the variance-co- 
variance matrix of the endogenous and exogenous variables into three compo- 
nents: (i) between firms-say the B matrix; (ii) between time periods-say the C 
matrix; and (iii) residual-say the W matrix. Let T = B + C + W. Then one can 
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compute 2SLS estimates from each of these covariance matrices. The 2SLS 
estimates obtained from the T matrix are the estimates from the pooled sample. 
The 2SLS estimates obtained from the W matrix are the estimates obtained if the 
data are pooled but firm and time-period dummies are introduced. If only firm 
dummies are used, then we use the (W + C) matrix. The efficient variance compo- 
nent estimates are obtained by weighting the independent estimates from B, C, 
and W in inverse proportion to their variances. 

The problem we run into, however, is that the covariance matrices of these 
three estimates (in addition to involving the unknown variance components) 
are the asymptotic covariance matrices, and if we resort to asymptotic arguments, 
we again encounter the old problem that the variance component estimator and the 
usual estimator with dummy variables are equivalent. In any case if one is faced 
with the problem of estimating a simultaneous equations model on the basis of 
data consisting of a time series of cross sections, it is advisable to compute in prac- 
tice the 2SLS estimates (or any other estimates being used) from each of the above 
mentioned sources of variation in addition to the total. Often, it might happen 
that there would not be enough degrees of freedom available in the B matrix or the 
C matrix. If this is so, this matrix should be pooled with the W matrix. 

Alternatively one could obtain the 2SLS estimates from the covariance matrix 
(W + 01B + 02C) where 01 and 02 lie between 0 and 1. One could compute these 
estimates for different values of 01 and 02 (say at intervals of 0.1) and choose that 
set of estimates for which the generalized variance of the estimated covariance 
matrix is minimum. These techniques will be illustrated with an example in a 
subsequent paper. 

7. CONCLUSIONS 

The paper argues that variance components models are very useful in pooling 
cross section and time series data because they enable us to extract some inform- 
ation about the regression parameters from the between group and between time- 
period variation-a source that is often completely eliminated in the commonly 
used dummy variable techniques. We can also rationalize this procedure of treating 
the firm effects and time effects as random by arguing that these effects too, like 
the over-all residual, measure our ignorance and there is no reason to treat one 
source of ignorance as random and the other as fixed. The paper studies the 
applicability and usefulness of the maximum likelihood method and analysis of 
covariance techniques in the analysis of this type of model-particularly when one 
of the covariates used is a lagged dependent variable. The paper first analyzes 
a model with only random firm effects and then extends the analysis to one with 
random firm and time effects. Since the conclusions are similar, we shall summarize 
the conclusions for a model with only firm effects. There are four conclusions. 

(1) When we write the likelihood function in its concentrated form, it consists 
of two components, one a steadily increasing function of the parameter p, and the 
other a steadily decreasing function. The likelihood function cannot attain a 
maximum at the boundary value p = 1 (corresponding to LSDV). But it can 
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attain a boundary solution at p = 0 (corresponding to OLS) if the range of p is 
confined to 0 < p < 1. The condition for the occurrence of such a boundary 
solution has been derived. It shows that the boundary solution can occur even 
when the covariates are exogenous, though the boundary solution could occur 
more often if the covariates contain lagged dependent variables since the between 
group covariance matrix may then be close to singularity. This boundary solution, 
however, can correspond to just a local maximum rather than a global maximum 
as illustrated by the example in Section 4. 

(2) As for the usefulness of covariance techniques, when only exogenous 
variables are present, both the between group and within group regressions 
give unbiased estimates of the slope coefficients. In general we could combine 
these two estimates by weighting th-em in inverse proportion to their variances, 
as obtained from the usual analysis of covariance. This does not amount to using 
the ML method. Pooling on the basis of estimated variances and pooling with the 
use of the likelihood function are not the same. 

(3) In the case where there are lagged dependent variables, neither the between 
group nor the within group regression gives unbiased estimates of the slope co- 
efficients. The between group regresson estimates are badly biased-the co- 
efficient of the lagged dependent variable is biased towzards one and the coefficient 
of the exogenous variable towards zero. Also, the between group mean square is 
biased downwards. Hence analysis of covariance techniques cannot be relied on 
to give optimal estimates. The method of ML, too, has its drawbacks since it often 
gives boundary solutions. The solution offered by Nerlove does not get us into 
this problem, and as shown by his Monte Carlo studies, it gives better estimates 
than the method of ML or the LSDV method. However, as our analysis indicates, 
it is expected to be biased towards the LSDV method. 

(4) Those working with problems of pooling cross section and time series 
data usually present either the OLS or the LSDV estimates. It is, however, advisable 
to present, in addition, the estimates obtained from the between group and 
between time-period variation. 

Since the analysis in this paper can be easily extended to simultaneous equations 
models based on time series of cross sections, these conclusions hold good for 
such models too. One important assumption, however, that is needed for the 
validity of the analysis in this paper is that the "specific ignorance" be assumed 
to be independent of the regressors-an assumption that may not always be valid 
and that is not needed for the consistency of the least squares with dummy variable 
techniques. 

University of Rochester 
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