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Abstract

Potential measures of muscularity derived from X-ray computer tomography (CT) were assessed using data for 160

sheep (50 Suffolk males, 50 Suffolk females, 40 Texel males and 20 Charollais males). One-fifth of the lambs within

each breed and sex were slaughtered at each of 14,18 or 22 weeks ofage and two-fifths slaughtered at 26 weeks. All

lambs were CT scanned prior to slaughter with longitudinal and cross-sectional scans taken at three positions along

the body LSth lumbar vertebra (LV5), mid-shaft of the femur (FEM) and ischium USC)]. After slaughter, linear

measurements of side length (SL) and M. longissimus thoracis et lumborum (LTL) width (A) and depth (B) (12/

13th thoracic vertebra) were taken on the left side of the carcass. The side was dissected and femur length (FL), the

weight of three muscles surrounding the femur (M3) and the total muscle weight in the side (TM) were recorded.

Five muscularihj measures were calculated for the carcass. Two for the LTL muscle (A/SI, B/SL), one for the hind

leg (-.1M3 / FLS ) and one for the whole carcass (--JTM / SLJ ).

Correlations between spine length measured on the CT longitudinal scans and side length measured on the carcass

were high (> 0·62), while correlations between measurements of LTL width and depth on the carcass with those on

the LV5 scan were moderate (> 0·41). CT measures of musculariiu were derived using linear measurements taken

on CT scans together with a prediction of total muscle weight using CT tissue areas. Correlations between CT

measures and dissection measures of LTL and whole carcass muscularity were moderate to high (0·33-0·54).

Correlations between the dissection measure and four CT measures of hind leg muscularity were higher (0·48

0·60). These results clearly show that good in vivo measures of muscularity can be obtained for sheep by using

measurements that can be taken on CT scans. This will be a useful tool for selection programmes aiming to improve

sheep carcass shape, particularly those already using CT scanning to increase rates ofgenetic improvement in lean

tissue growth.

Keywords: computed tomography, live estimation, muscles, sheep.

Introduction
Muscularity has increasingly been advocated as
being preferable to conformation as a measure of the
shape of a lamb carcass (Kirton et al., 1983; Purchas et
al., 1991; Waldron et al., 1992; Abdullah et al., 1993;
Hopkins, 1996; Jones et al., 2002). That is because,
unlike conformation, muscularity when defined as

387

'the thickness of muscle relative to a skeletal
dimension' (de Boer et al., 1974) is independent of
carcass fatness. Moreover, whereas conformation can
only be assessed subjectively, objective measures of
muscularity can be obtained using the ratio of a
muscle thickness to a bone length or muscle weight
to a bone length, as proposed by Purchas et al, (1991).
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If the shape of the carcass and hence muscularity is
considered commercially valuable then it should be
considered as a selection goal in breeding schemes
for meat breeds of sheep. For this to be done
effectively, methods of accurately assessing the
muscularity of a live animal will be required. Such
methods are not available at present.

The aim should be to develop in vivo measures that
are closely associated with measures considered
most important in describing the muscularity of a
carcass. Jones et al. (2002) proposed that muscularity
measures based on the M. longissimus thoracis et
lumborum (LTL) muscle and hind leg were the most
important since they affect the shape of the most
valuable joints (loin and leg). In their study,
phenotypic correlations between muscularity
measures in the loin and leg were low for Suffolk
and Charollais lambs, indicating that measures
would be required for both regions to describe
muscularity of a carcass in these breeds. However, a
single measure of whole carcass muscularity was
found to provide a good measure of muscularity
throughout the carcass for Texellambs.

The measures of muscularity for the carcass derived
by Jones et al. (2002) were based on the ratio of two
components. Measures for the loin were based on the
ratio of a LTL cross-section dimension to carcass side
length. Measures for the whole carcass and hind leg
were derived using the approach of Purchas et al.
(1991), whereby muscularity was calculated as
(~(WtIL8) ]lL8, where Wt is the weight of muscle
and LB is a closely associated skeletal dimension.
Whole c a r ~ a s s ~ u s c u l a r i t y was derived using total
m u ~ c l e .weight ill the half carcass and side length,
while hind leg muscularity used the weight of three
~ u ~ c 1 e s s u r r o u n ~ i n g the femur and femur length.
Similar muscularity measures for the live animal
could be derived if reliable measurements of the
same components could be obtained.

The most Widely used method for in vivo
measurement of carcass components in sheep is
ultrasonic scanning. Although good measurements
of the depth of the LTL muscle can be obtained the
image produced is relatively poor and measurements
of LTLwidth and area are less precise (McEwan et al.,
1989; Edwards et al., 1989; Hopkins et al., 1993; Binnie
et al., 1995). In addition, the technique does not lend
itself readily to the measurement of muscle depth in
other areas of the body nor for in vivo measurement
of bone lengths.

Considerable research has been conducted over
recent years into the application of more advanced
imaging techniques for in vivo scanning of medium

sized livestock, such as sheep or pigs, with the main
focus being their value for predicting composition.
Techniques investigated include X-ray computer
tomography (CT), magnetic resonance imaging
(MRl) and dual-energy X-ray absorptiometry
(DEXA) (Standford et al., 1998, review; Sehested,
1984; Young et al., 1987 and 1996, 1999; Mitchell et al.,
1998a). The majority of the research has focused on
the use of CT and MRt with DEXA only being used
relatively recently for in vivo scanning having
previously been used for scanning carcasses
(Mitchell et al., 1998b; Clarke et al., 1999). Accurate
predictions of body composition have been achieved
using both CT and MRI. However, the relatively
lower cost associated with CT scanning has generally
resulted in its emergence as the most preferred
method (Standford et al., 1998). CT scanners for
scanning livestock are now available in Norway,
New Zealand and the UK, with commercial services
being provided in the latter two countries (Standal,
1984; Davies and Fennessy, 1996; Young et al., 2001)

Using CT, detailed images of sections through
various regions of a sheep's body can be obtained.
Excellent predictions of carcass composition have
been achieved by using the area of tissues in cross
sectional scans and live weight in prediction
equations (Sehested, 1984; Young et al., 1987, 1996
and 1999). In the most recent study Young et al.
(1999) showed that, by using live weight and tissue
areas from three scans, a prediction accuracy (R2) of
96,98 and 89% could be achieved for the total weight
of muscle, fat and bone, respectively, in the carcass
for Suffolk lambs. Muscle weight in different parts of
the carcass (i.e, leg/chump) could also be predicted
accurately using live weight and muscle area from
just one cross-sectional scan (R2> 91%).

Given the high quality of images produced, accurate
in vivo measurements of cross-sectional dimensions
on the LTL muscle and of skeletal dimensions may
be possible. Such measurements, along with the
predictions of muscle weight, could be used to
develop in vivo measures of muscularity similar to
those derived for the carcass post slaughter by Jones
et al. (2002). The value of CT for measuring such
dimensions in vivo has not been investigated in
previous studies.

The aim of this study was to investigate whether
u s e ~ , objec.tive measures of muscularity could be
denv.ed for live sheep, using data extracted from CT
scan lll1ages.

Material and methods
Data were collected in 1997 at the Scottish
Agricultural College (SAC) on SO Suffolk male, 50
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Suffolk female, 40 Texel male and 20 Charollais male
lambs. Suffolk lambs were obtained from the SAC
Suffolk flock and consisted of equal numbers within
sex from the lean growth selection and control lines.
Texel lambs were obtained from the flock at the
Institute of Rural Studies (IRS), Aberystwyth and
consisted of equal numbers from the lean growth
and leg conformation selection lines. Charollais
lambs were obtained from two commercial pedigree
flocks. Jones et al. (2002) provides further details
about the origin and management of these lambs.

One fifth of lambs within each breed-sex category
were slaughtered at 14, 18 and 22 weeks of age. The
remaining two-fifths were slaughtered at 26 weeks of
age. All lambs were ultrasound and CT scanned 24 to
72 h prior to slaughter.

Slaughter measurements

Live weights were recorded prior to slaughter. After
slaughter carcasses were chilled for 24 h and then
weighed. The carcass was then split and side length
(SL) was measured as the distance from the anterior
end of the symphysis pubis to the anterior dorsal
edge of the first thoracic vertebra. The left side of the
carcass was frozen and retained for subsequent
dissection.

After thawing the depth (B) and width (A) of the LTL
muscle were measured on the posterior surface when
the side was cut between the last and second to last
thoracic vertebrae (Palsson, 1939).The left side of the
carcass was separated into eight joints as described
by Cuthbertson et al. (1972). Each joint was weighed
and then dissected into muscle, bone, fat
(subcutaneous and inter-muscular) and waste. Three
muscles from the hind leg (m. semitendinosus,
m. semimembranosus and m. gluteobiceps) were
individually separated and their weights recorded.
The length of the femur (FL) was measured. Jones ei
al. (2002) provides further details of the carcass
measurements collected.

Dissection measures ofmuscularity

Two measures of muscularity were derived for the
LTL: the ratio of LTL width to side length (ASL) and
the ratio of LTL depth to side length (BSL). One
measure of muscularity for the hind leg and one for
the whole carcass were derived using the approach
of Purchas ei al. (1991). The hind leg measure was
based on the length of the femur and the combined
weight of the three dissected muscles (M3FL), while
the whole carcass measure was derived using the
total weight of muscle in the side and side length
(lMSL). Further details of how these measures were
calculated are given in Table 2.

Ultrasound scanning

Measurements of LTL depth were taken by
ultrasound with a view to comparing results with
those obtained using CT. Measurements were taken
on the right side of the lambs at the position of the
12/13th thoracic vertebrae using a Vetscan real-time
B-mode ultrasonic scanner with a 3·5 mHz
transducer, within 24 h of CT scanning. Muscle depth
was measured vertically at the deepest point of the
muscle. The resolution of measurements taken using
this machine was 1 rom.

CT scanning

All lambs were fasted for a minimum of 4 h before
scanning to minimize any risk of pneumonia due to
inhalation of regurgitated fluid. Fifteen minutes prior
to scanning lambs were injected intramuscularly
with a mild sedative to minimize the amount of
movement during the scanning process [0-1 to 0·2 mg
xylazine hydrochloride per kg body weight
(ROMPUN.2'Yo, Bayer P:1. c., Animal Health Business
Group, Bury St Edmonds, UK)}. Body weights were
measured just prior to injection to determine the
correct dosage.

Once sedated, lambs were placed on their backs in a
semi-cylindrical plastic cradle for scanning. Foam
pads and straps were used to restrain the lamb with
the hind legs extended and the fore legs held.along
its chest. Each lamb was scanned followmg. a
standard scanning protocol. Firstly, two partly
overlapping longitudinal scans of the body were
taken (topograms), one covering predominantly ~ h e

thoracic region (topogram 1) and the other covermg
the abdomen and thighs (top0 gram 2). When
combined, the scans covered the area from just below
the knee joint (caudal to the ischium) to just cranial
of the first rib. A series of cross-sectional scans
(tomograms) were then taken at specific sites
identified and positioned in relation to bony
landmarks on the topograms. The time taken to scan
each lamb, once they were strapped in the cradle,
was approximatelyS min.

A total of seven tomograms were available for each
lamb, having been taken as part of a separate trial
(see Young'et al., 1999). Three of these were selected
for use as part of the current study. These were
positioned(i) through the 5th lumbar vertebra (LV5),
(ii) throughthemid-shaft of the femur (FEM), and
(ill) through-the ischium (lSC). The LV5.scan :was
chosen to obtain measurements of LTL dimensions
since a scal1.::through the 12/13th thoracic vertebrae,
where ultdisoUnd and carcass measurements were
taken, was not available. An example of the image
obtainedfromthe topograms depicting positions of
the three tomograms is shown in Figure 1.
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Image analysis
Analysis of scan images was undertaken using the

Figure 1 Yen.tral view of the skeleton, as obtained from the
two longltudm~l scans (topograms), and the position of the
three cross-sectional scans (tomograms) used.

Sheep Tomogram Analysis Routines software (STAR,
version 0·6), which was developed jointly by
Biomathematics and Statistics Scotland (BioSS) and
SAC. The software was used to determine the total
area of fat, muscle and bone in each image and to
measure linear dimensions and areas of individual
tissue units on CT scans. TIle resolution for these
measurements is determined by the resolution of
images. Since each image is composed of a number
of 2 nun X 2 nun pixels, measurement resolution was
2mm.

Prediction of total carcass muscle weight

Young et al. (1999) showed that the total weight of
muscle in the carcass of Suffolk lambs could be
predicted accurately (R2 =96%) using equations that
included live weight and the area of muscle on CT
scans from the 8th thoracic vertebra (TV8), LVS and
ISC positions. Similar breed-specific equations,
which included the same predictors were also
developed for Charollais and Texel sheep (using the
data described here), with prediction accuracies (R2)
of 98 and 96% respectively (M. J. Young et al.,
unpublished). The relevant equation was used to
predict the total weight of muscle (TMcr) for each
lamb in the current study.

Linear measurements

Spine length. The exact position of the Symphysis pubis
was not always clear on the topogram 2 scan, but the
disc between the pelvis and the last lumbar vertebrae
could be seen. The length of the lumbar-thoracic
spine was therefore measured in preference to side
length. Since the whole spine could not be seen on a
single topogram, separate measurements of the
thoracic and lumbar sections were taken. The length
of the thoracic section of the spine (SPLn,or) was
measured on the topogram 1 scan as the distance
from the first disc caudal to the last rib to the first
disc cranial to the first rib. The length of the lumbar
section (SPLLum) was measured on the topogram 2
scan as the distance from the disc on the cranial side
of the pelvis to the first disc caudal to the last rib. The
number of vertebrae in each of the measured sections
was also recorded. Overall spine length (SPL) was
calculated as the sum of the lengths of the two
sections. Diagrammatic representation of these
measurements is shown in Figure 2.

M. longissimus thoracis et lumborum (LTL) dimensions.
Measurements of width and depth of the cross
section through the LTL muscle were taken on both
the left and right muscles on the LVS CT scan using
the method described by Palsson (1939) for
measurements on the carcass (see Figure 3). Care was
taken to exclude skin and subcutaneous fat when
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Topograrn 1

Topograrn 2

Figure 2 Diagrarnatic representation of the measurements
of length of the thoracic and lumbar regions of the sp ine
taken on the two topogram scans. The broken white line
represents where the two topograms have been overlapped
to show the complete longitudinal scan of the body.

measuring LTL depth. Means of measurements made
on the two sides were used subsequently.

Hind leg. Both femurs could clearly be seen on the
topogram 2 scan and the length of each femur was
measured as the distance from the central point on
the head to the deepest paint in the intercondyloid
fossa . Coefficients of determination (R2) for the
regression of femur length, measured directly on the
dissected carcass, and the mean of the two
measurements on the topogram 2 scan were,
however, consistently low « 5%), indicating that
these measurements were a poor indicator of actual
fem ur length.

Indirect measures of hind leg muscularity were
therefore considered as an alternative approach. Four
dimensionless ratios, two on the FEM scan and two
on the ISC scan, were derived . These were based on
the ratio of two linear measurements taken on the
same scan, one of the width and the other of length
of the thigh. Measurement positions on the scans
were defined in relation to anatomical features that
were reliably present and distinguishable on scan
images with the aim of achieving highly repeatable
measures. Measurements were taken on the right
and left thighs in a scan and the mean value used.

Thigh length (LFai and L]sd was measured on each
scan as the distance from the centre of the ischium
bone to the tip of the leg. This measurement passed
through the femur. Two width measurements were
taken on the FEM scan. The first was defined as a
straight line from the furthest point (from the femur)
on the gracilis muscle to the lateral muscle boundary,
crossing the 'length line' at 90°(WlFEM)' The second
width measurement was defined as a straight line
from the medial to the lateral muscle boundary
passing through the fat depot between the adductor/
gracilis and semimembranosus muscles, and crossing
the 'length line' at 90°(W2FEM). Two width
measurements were taken on the ISC scan. The first
was defined as a straight line from the medial to the
lateral muscle boundary, passing through the
popliteal fat depot and crossing the 'length line' at
900(W

lsd. The thickness of the popliteal fat depot on
this line (Plsd was also measured and then
subtracted from the initial thigh width to obtain a
second width measurement, that due only to muscle.
Care was taken to exclude any skin and visible
subcutaneous fat when width measurements were
taken on both scans. Measurements taken on the
tomograms are shown in Figure 3.

CT measures of muscularity
Seven CT measures of muscularity were
derived : two for the LTL, one for the whole carcass
and four for the hind leg. LTL measures were
calculated as the ratio of LTL width to spine length
(ASPLcr) and the ratio of LTL depth to spine length
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Figure 3 Examples of tomograms obtained from the three
positions and diagramatic representation of the
measurements taken on each scan.

(BSPLcr) · The whole carcass measure was based on
~ h e approach of Purchas et al. (1991), and
m c o r p ~ r a t e d the predicted carcass muscle weight
and spme length (TMSPLcr). Further details about
the calculations for these measures and the four

dimensionless measures for the hind leg (W1LFEl\1'
W2LFEM1 WLrsc and WPL1SC) are given in Table 5.

Statistical analysis
Data for two Suffolk males and three Suffolk females
were removed. Their live weights were greater than
two standard deviations below the mean for their
respective slaughter age groups (within breed-sex)
causing the distribution to be highly skewed
(P < 0.05). Data for one Texel lamb were also
removed due to poor quality of CT images.

Repeatabilitu of measurements on scans
CT scans for 15 male Suffolk lambs from a single
slaughter age group were used to assess the within
and between-operator repeatability for each of the
CT linear measurements defined. One operator first
repeated the same set of measurements three times at
approximately 24-h intervals. Three other operators
then measured this same set of CT scans once .
Repeatability was assessed as the intra-class
correlation between measurement occasions, either
within operator or between operators as appropriate.
Within and between animal variances were obtained
using analysis of variance (ANOVA) .

Correlations
Simple and residual correlations (after regressing
each variable on live weight) between corresponding
measurements taken on the carcass and by CT or
ultrasound were initially derived for each breed-sex.
Differences between correlation coefficients for each
breed-sex category were then tested following a
Fisher transformation of these coefficients to z values
(Zar, 1996). Comparisons were conducted across all
four breed-sexes using a multiple sample test

Table 1 Within and between operator repeatability (%) for

measurements taken on the CT scanst

Measurement Within Between

SPLwm 99 98
SPLn- 92 87
SPL:j: 86 79
A § 99 92

~::§ 95 90
99 99

W1fEl,\§ 98 95

~FI§ 91 85
99 99

W
ISC§ 91 82

PISC~ 97 91

t Diagrammatic representations ofeach of the measurements
are shown in Figures 2 and 3.

:j: Sum of SPLt.um and SPI..",or'
§ Mean of the measurements taken on the left and right side
of the image.
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(experiment wise error rate of 5%). Correlation
coefficients were not different (P < 0·05) between
breed-sex categories for the same pair of variables
and therefore a common (pooled) coefficient was
calculated across breed-sexes.

Sideand spine length
Correlation coefficients between side length (SL) and
the individual lengths of the lumbar (SPLLum) and
thoracic regions ( S P ~ o r ) ' and their sum (SPL), were
determined. The correlation of SL with SPLLum and
S P ~ o r individually was used to investigate the
possibility of using just one of these measurements to
represent spine length.

LTL dimensions
Correlations between the CT dimensions and their
corresponding carcass dimensions were determined,
and between the ultrasound measurement and
corresponding carcass LTLdepth.

CT and dissection measures of muscularity
Correlations between each of the four dissection
measures of muscularity and the equivalent CT
measures of muscularity were determined. These
included, between ASL and ASPLcr; BSL and
BSPLcr; TMSL and TMSPLcr and between M3FL and
each of WILFEM, W2LFEM, WL1SC and WPLISC•

Regression analysis
Although correlation coefficients between the CT and
dissection measures of hind leg muscularity were not
different between breed-sexes, preliminary
investigations suggested that the nature of the
relationships differed. These differences were further
investigated using regression analysis. Data across
breed-sex categories were combined and the effect of
breed-sex and the linear regression of hind leg
muscularity on a CT scan ratio were fitted . In
preliminary investigations, slopes for the regression
on each individual ratio were not different between

+ Pooled w ithin breed-sex estimates; residual s. d. is after adjustment for live weight.
:t: LTL=m. longissimusthoracis et Iumborum.
§ Measurements were taken at the 12/13th thoracic vertebrae.
1 ASL =(A/5L) X 10; B5L =(8/5L) X 10; TMSL =NTM / 5L3) X 1000; M3FL =<--1M3 / FU) X 10. TM is the total weight of
muscle in the left side of the carcass (kg); FLis the length (an) of the femur; M3 is the combined weight of the m. semitendinosus,
m . semimembranosus and m. gluteobiceps muscles dissected from the hind leg (g).
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breed-sexes (P > 0·05), although intercepts differed
(P < 0·05). A single common slope was therefore
fitted. Once the regression on any CT scan ratio was
fitted the additional affect of live weight was not
important (P> 0·05) and therefore was excluded
from the model. All statistical analyses were
performed using Genstat (1998).

Results
Repeaiabilitu of measurements on scans
Within- and between-operator repeatability for each
of the key measurements taken on CT scans are
shown in Table 1. Generally repeatabilities were high
indicating that measurement positions could be
dearly identified on each scan with low
measurement error. The repeatabilities for overall
spine length (SPL), although lower than for both
component measurements, were also high.

of the four measures in the hind leg were in ,!he
range of 0·04 to 0·06.

Although mean live weights differed between b r ~ d .
sexes, a number of general trends were a p p a r e n t . ; " ~ 
measured spine length (SPL) was consistently Q·82pf
side length measured on the carcass (SL). Similarly,
for the CT measurements the thoracic region or-the
spine accounted for around 0·58 of the total spine
length across breed-sexes. The relative differences
between the ultrasound and CT measurement of LTL
depth were also fairly consistent, the former being
0·73 to 0·77 of that measured using CT at the more
caudal position along the spine. This was not
unexpected given that the LTL muscle becomes
deeper moving from the last rib towards the pelvis
(Davies et al., 1987).

Table 3 Pooled simple and residual correlation coefficients (acr~
breed-sex) beiueen measurementson thecarcass and correspondmg
Or similar measurements taken using CT or ultrasound t

t Residual correlations (after regressions On Jive weight) are
shown in parentheses. Correlation coefficients differ from. zero
(P < 0·05), except for the residual correlation between S P ~
and S P ~ . Abbreviations are defined in Table 2.

Summary statistics

Table i details simple means, pooled standard
deviations and pooled residual standard deviations
(after regressing on live weight) within breed-sex for
each of the individual carcass, CT and ultrasound
measurements, and the dissection measures of
muscularity. Pooled estimates of standard deviations
and residual standard deviations are presented since
within breed-sex estimates were found not to be
different when tested using a Bartlett's test (P > 0·05).
Within breed-sex means for CT muscularity on the
hind leg are not shown, but these ranged from 0·85 to
0·81 for WILPEMr 0·67 to 0·64 for W2LFEM, and 0·65 to
0·59 for WPL1SC, with Texels consistently having the
highest means and Charollais lambs the lowest.
Means for WL1SC ranged from 0·74 to 0·70, and were
lowest for Charollais, but in contrast to the other
measures, means for both Suffolk sexes tended to be
higher than that for Texels. Although not tested this
is likely to be the result of a tendency for Suffol.ks to
have a greater thickness of popliteal fat in the hind
leg in comparison with the Texels. Pooled standard
deviations and residual standard deviations for each

Side and spine
length SL

SL
SPL 0·92 (0·62)
SPLt.um 0·76 (0·40)
Spr.rn,r 0·86 (0·48)

LTLdepth B

B
Bcr 0·70 (0·45)

Bus 0·59 (0·42)

LTLwidth A

A
Acr 0·64 (0·41)

SPL

0·86 (0·71)
0·90 (0·66)

0·66 (0·50)

SPLt.um

0·54 (-0·09)

Table 4 Proportion of Jambs within each breed-sex with each thoracic and lumbarvertebrae numbercombination

No. of vertebrae

Suffolk males Suffolk females Charollais Texel
Thor. Lumb, (no. = 48) (no. :47) (no. :20) (no. :39)

12 6 0 0 0 0,.03
12 7 0·02 0 0 0:10
13 6 0·17 0·23 0·30 0·69
13 7 0·75 0·74 0·55 0;15'
14 6 0·06 0·02 0·15 ,0,OSe
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Correlations

Side and spine length. The correlation between side
length measured On the carcass and the combined
length of the thoracic and lumbar regions of the
spine was high (Table 3). However, the correlations
between side length and the length of the individual
r e ~ o n s was lower, indicating that the length of both
regions needs to be measured to ensure a reliable
gauge of side length in. the carcass.

The lower correlation between side length and its
two components was expected given that the
correlation between the individual regions
themselves was low (residual correlation -0·09). This
low correlation was in part because of variation in
the number of vertebrae found in the two regions
between lambs within each of the breed-sex
categories (Table 4). When the correlation was
estimated within groups of lambs with the same

Table 5 Pooled simple find residual correlation coefficients (across
breed-sex) between corresponding dissection and CT measures of
muscularityt

Carcass CT Corr.:j:

LTL ASL ASPLcr 0,32 (0·33)
BSL BSPLcr 0·44 (0·45)

Whole carcass TMSL TMSPLcr 0·55 (0·54)
Hind leg M3FL W l ~ 0·49 (0·48)

M3FL W2L
FEM 0·64 (0·60)

M3FL

~
0·69 (0·60)

M3FL 0·63 (0·57)

t ASPLcr = (Ar-r/SPL)*10; BSPL
CT

= (B
CT/SPL)*10;

TMSPLcr = (--J'fMc:,.fSP[3)*1000· W1L =WI /L .
W2L",.,.. = W~/~; WL,.,... =w' /L.sc ~d WP~= (VJM'
- P ~)7L.sc. TMcr is the predicted c ~ c a s s muscle weight (kg).
Abbrevia tions for other components and the carcass measures
of muscularity are defined in Figure 3 and Table 2.
:f: Residual correlations (after regressions on live weight) are
shown in parentheses, All correlation coefficients differ from
zero (P < 0·05).

number of lumbar and of thoracic vertebrae, the
correlation between the length of full spine and the
individual regions was higher.

Although numbers of vertebra in both regions of the
spine varied within each breed-sex, it is worth noting
that the Texels tended to have fewer vertebrae than
the other breed-sexes (Table 4). Whilst 13 thoracic
vertebrae was most common in all breed-sexes the
incidence of 12 thoracic vertebrae was higher in Texel
lambs. Similarly in the lumbar region, six rather than
seven vertebrae occurred more often in Texel lambs.

LTL dimensions. CT measurements of LTL depth and
width were moderately correlated with equivalent
measurement on the carcass (residual correlation >
0·41, see Table 3). The CT measure of LTL depth was
more strongly related to the equivalent carcass
measurement than was the ultrasound measurement
although the difference between the residual
correlations was small.

CT and dissection measures of IItllsclIlarih)
Correlations between dissection muscularity and CT
muscularity are shown in Table 5. Accounting for
differences in live weight had very little effect on
correlations with both simple and residual estimates
being similar for the same pair of measures. All
estimates were moderate to high in magnitude,
residual correlations ranging from 0·33, for muscle
wid th to skeletal length, to 0-60 for hind leg
muscularity, Of the four CT measures of muscularity
for the hind leg, three (W2LfEM' WL1SC and WPL,sd
had similar high residual correlations with the
dissection measure (0·57-0·60). This suggests that
any of these three measures would provide a good
prediction of the dissection measure. The residual
correlation. with the remaining W1LFEM measure,
although still high, was lower in comparison (0·48),
suggesting that it was less reliable than the other
three measures.

Table 6 Intercepts (0:) for each breed-sex and common slope (13) for tire regression of dissection hind leg muscularirf on each offOllr CT
measures ofmuscularity in the hind leg

0:

Ytt Xt Suffolk male Suffolk female Texel Charollais p R2

M3FL W 1 ~ 1·947 (0·324)1> 1·864 (0'327)1>< 2,196 (0·327)" 1·765 (0-315)< 2·635 (0·385) 48·0
M3FL W 2 ~ { 1·561 (0·252)1> 1·464 (0·255)< 1·736 (0-257)" 1·378 (0-247)< 3·967 (0-383) 57·1
M3FL W ~ 1-983 (0·186)1> 1·930 (0·186)1> 2·272 (0·182)· 1·828 (0·180)< 2·942 (0·250) 61·6
M3FL W P ~ 2-485 (0·170)b 2·484 (0·165)1> 2·692 (0·173)" 2·363 (0·160)< 2·593 (0·261) 55·3

......c.d \-Yitrun rows, intercepts with different superscripts differ (P < 0·05). . . ..
1- Y is the response (dependent) variable and X is the independent variable. Other abbreviations are defined In Tables 2 and 5.
:1= Raw standard deviation for M3FLacross breed-sexes is 0·29.
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Regression analysis
Intercepts for the regression of hind leg muscularity
on each of the cr measures differed between breeds
(P < 0·05i Table 6). However, the intercepts were not
different between the male and female Suffolk's,
with the exception of W2LFEM· The estimates were
consistently highest for Texel lambs followed by
Suffolk and then Charollais Iambs. This indicates that
if any of these CT measures were to be used to
compare across breeds, breed specific equations to
predict hind leg muscularity would need to be
developed. Using a single equation across breed-sex
categories would result in under prediction of hind
leg muscularity for the Texels and over-prediction for
the Charollais.

Discussion
Sideand spine length
In the past, skeletal dimensions could be
approximated on the Jive animal only by using
external measurements on the body measured with a
tape measure, ruler or calliper. Even when dear
measurement protocols have been developed,
measurement positions are often obscured by
subcutaneous fat or wool (where lambs are not
sheared) and this can lead to high measurement
errors. This is the case for measurements of body
length (e.g. anterior point of shoulder to posterior
extremity of the pin bone), which is similar to the
spine length used here (Taneja, 1955; Tallis et al.,
1964).

These problems were not encountered with the CT
measurement of spine length since measurement
position could be clearly delineated on each
topogram. Measurement errors would therefore be
expected to be less. Although the external
measurement of body length has been used in
numerous sheep studies as a measure of skeletal size,
the correlation with side length measured on the
carcass has not been estimated (Taneja, 1955; Tallis et
al., 1964; Weiner and Hayter, 1974i Wolf et al., 2001).
Therefore direct comparisons with the results
presented here was not possible. Nevertheless,
Taneja (1955) and Tallis et al. (1964) reported the
repeatability of measurements of body length taken
on the same animal by a single operator as 0·61 and
0·49 respectively. Taneja (1955) reported the
repeatability between two measurements taken at the
same catching and thus is similar to the within
operator scenario reported in this study. However,
Tallis et al. (1964) calculated the repeatability across
four measurements, two at each of two catching
events. Between-scanning repeatability of CT
measurements of spine length was not estimated in
this study; but this has been estimated in a small
separate trial at SAC (no. =15; H. Jones and M. J.

Young, unpublished). The repeatability was found to
be 0·75, despite repeated measurements being t ~ e n
at 3-weekly intervals. This supports the expectation
of higher accuracy for the CT measurements.

LTL dimensions

The images produced using CT were much clearer
than those produced using ultrasound. Nevertheless,
the partial correlation with the carcass measurements
of LTL depth was only marginally higher for the CT
as opposed to the ultrasound measurement and both
estimates were similar to those reported for
ultrasound in previous sheep studies (McEwan et al.,
1989; Ward et al., 1992; Hopkins et al., 1993). This
suggests that there was little benefit in using CT over
ultrasound for measuring LTL depth. A number of
factors may account for this finding. The position of
the CT scan used was different from that for the
carcass and ultrasound measurements (5th lumbar
versus 12/13th thoracic), and the resolution of the
measurements on CT scans was lower in comparison
to that for ultrasound (2 v. 1 mm). Furthermore,
operators of ultrasound scanners can adjust the
position or orientation of the scanner head to account
for the animal's posture, whereas such corrections
cannot be made using CT. Some increase in the
correlation between the CT and carcass LTL depth
may be achieved by the measures being taken at the
same anatomical position, but the increase is unlikely
to be large. In preliminary analyses, correlations with
measurements taken on a scan at the LV2 position,
which is closer to the position on the carcass, were
very similar to those obtained with measurements on
the LV5 scan.

The partial correlation between the carcass and CT
measurement of LTL width was substantially higher
than previous estimates for ultrasound, which are
typically less than 0·10 (McEwan et al., 1989i Hopkins
et al., 1993; Binnie et al., 1995). Thus CT scanning is
better than ultrasound for measuring this dimension.
Ultrasound is considered to be less effective for
measuring LTL width than depth because the
reflective characteristics and hence image definition
of the lateral boundary of the muscle is poor
(McEwan et al., 1989). X-ray CT images, in contrast,
are based on the absorption of X-rays, which differs
between tissues; all tissue boundaries are therefore
clearly delineated allowing equally good
measurements of both LTL width and depth (Young
et al., 1996). LTL area can also be measured with CT.
However, LTL area was not measured on the
~ a r c ~ s s e s in ~ h i s study and so a direct comparison of
In ViVO and dissection LTL area could not be made.

In previous studies, correlations between in vivo
measurements and the corresponding dissection
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measurement have been interpreted as a measure of
the accuracy of the in vivo measuring technique (i.e.
Houghton and Turlington, 1992). However, these
correlations are likely to be an underestimate of the
'true' accuracy of the technique in most studies, and
particularly in this study. That the shape of the LTL
muscle can change post slaughter as a consequence
of the carcass being hung, chilled and split is widely
accepted (Fortin and Shrestha, 1986; Binnie et al.,
1995). Some increase in area and depth likely result
due to the effects of cold shortening of the muscle
prior to the onset of rigor mortis. This is particularly
true where carcasses have been hung by the Achilles
tendon as opposed to the pelvis, as was done in the
current study, since the skeletal restraints on the LTL
muscle are reduced (Lawrie, 1991; Houghton and
Turlington, 1992). The degree of cold shortening has
been shown to vary with time delay before chilling,
chilling conditions, body size and, in particular,
fatness (Smith et al., 1976). The lambs used in this
study were slaughtered at four different ages and
varied in fatness and body size both within and
betvveen breed-sex categories (Jones et al., 2002).
Although reducing the amount of variation present,
the regression on live weight used in the analysis
would not be expected to fully account for variation
in both fatness and body size between lambs. In
addition to this, the carcass measurements of LTL
dimensions were taken on the thawed carcass. Once
thawed the muscle is fairly pliable and can be
distorted with handling such that measurement
errors on the carcass are likely to be higher than if
measured on the chilled or frozen carcass as done in
other studies (McEwan et at, 1989; Binnie et al., 1995).

CT and dissection measures ofmuscularitu

LTL and whole carcass. Since each of the carcass and
CT muscularity measures derived were
dimensionless, the small size of the difference
between the simple and residual correlations for
these measures was not surprising. For the LTL and
whole carcass measures the magnitude of the
correlations generally reflected how well the
individual components were predicted by the CT
measurements. The upper limit for the estimates was
likely determined by the correlation between the CT
spine length and side length on the carcass (0·62),
and hence all estimates were lower than this. That
the highest correlation was between the whole
carcass measures was also to be expected given that
total muscle weight was predicted with near perfect
accuracy for lambs of each breed from CT
information using the prediction equations available
(R2= 96-98%).

Hind leg. In contrast to spine length the relationship
be tween femur length measured on the topograrn

and actual measurement on the dissected carcass was
poor. The orientation of the spine relative to the
plane of the topogram is relatively constant. In
contrast, the angle of the hind leg can vary in the X, Y
and Z planes but the topogram only displays an X-Y
image. Hence we cannot account for variation in leg
angle relative to the Z-dimension from just one
topogram, Some improvement may be achieved by
modifying the way in which the lamb's hind legs are
restrained in the scanning cradle but this is unlikely
to be sufficient to allow good measurements of femur
length to be obtained.

This study used the ratio of two perpendicular
measurements on a CT scan to characterize hind leg
muscularity. It was assumed that as the angle
between the plane of the CT scan and the femur
changed both the length and the width of the thigh
would change to a similar extent such that changes
in their ratio would be small. Whether this
assumption is correct remains to be tested.

CT muscularity was a good predictor of dissection
muscularity in the hind leg. The ischium scan is one
of the three tomograms used in the prediction of
composition in terminal sire breeds of sheep (Young
et al., 1999). From a practical perspective, a measure
of hind leg muscularity on this scan would therefore
be preferred, so that additional scans are not
required.

The correlation of carcass hind leg muscularity with
the ~ measure was marginally higher than with
W P ~ . This is likely the result of measurement
errors being higher for WPL1SC compared to. WL1SC,

through the additional measurement of popliteal fat
thickness, which was often small and approached the
resolution of the image (2 mm). Nevertheless,
ignoring the thickness of the popliteal f ~ t depot ~ a y
be undesirable if doing so results m a positive
association between the measure of leg muscularity
and carcass fatness. A further investigation of the
relationship between WPLlSC and WL1SC with fatness
would be required for this to be established.

Use ofcr in selection programmes

In comparison to ultrasound methods, the cost of X
ray CT scanning is high': Co.st effective U S ~ of the
technology is therefore only likely to be achieved as
part of a two-stage selection programme, where a
subset of lambs are put forward for CT sca~g
following initial scanning of the larger population
using more practical and less costly methods, such as
weighing and ultrasound scanning (Jopson et al.,
1995 and 1997). Recent work in the UK involving the
tenninal sire breeds considered in this study indicate
that economic returns, net of the costs of CT
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scanning, will be highest in breeding schemes that
CT scan the best 10-20% of rams, as judged by
ultrasound scanning on farm (R. M. Lewis et al.,
unpublished).

If CT scanning was used as part of a two-stage
selection programme to obtain accurate predictions
of lean and fat weights, the additional cost of
obtaining the in vivo measures of muscularity would
be low. This is because no additional scanning would
be required, as the linear dimensions used in this
study to derive the in vivo measures were taken on
the same scans that are used to predict lean and fat
weight.

Conclusions

This study has shown that good in vivo
measurements of the width and depth of the LTL
muscle and of the length of the spine can be obtained
from CT scans. By using these measurements and
total muscle weight (also predicted using CT),
measures of muscularity for the whole body and the
LTL can be obtained for live sheep. Furthermore,
good in vivo measures of hind leg muscularity are
also possible using CT scanning.

If in vivo muscularity measures are to be included in
selection programmes for sheep, estimates of genetic
and phenotypic parameters for such m e a ~ u r e s and
the correlations between them and other important
traits are required. Obtaining these estimates should
be the main focus of future work in this area.
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