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The User-Level Scheduling of Divisible Load Parallel
Applications With Resource Selection and Adaptive

Workload Balancing on the Grid
Vladimir V. Korkhov, Jakub T. Moscicki, and Valeria V. Krzhizhanovskaya

Abstract—This paper presents a hybrid resource management
environment, operating on both application and system levels de-
veloped for minimizing the execution time of parallel applications
with divisible workload on heterogeneous Grid resources. The
system is based on the adaptive workload balancing algorithm
(AWLB) incorporated into the distributed analysis environment
(DIANE) User-Level Scheduling (ULS) environment. The AWLB
ensures optimal workload distribution based on the discovered
application requirements and measured resource parameters.
The ULS maintains the user-level resource pool, enables resource
selection and controls the execution. We present the results of per-
formance comparison of default self-scheduling used in DIANE
with AWLB-based scheduling, evaluate dynamic resource pool
and resource selection mechanisms, and examine dependencies of
application performance on aggregate characteristics of selected
resources and application profile.

Index Terms—Adaptive workload balancing, grid, resource se-
lection, user-level scheduling.

I. INTRODUCTION

L ARGE Grid infrastructures, such as enabling grids
for E-science (EGEE) Grid [1], provide access to the

computing resources at unprecedented scale. Designed for
high-throughput applications, the Grid middleware and infra-
structure comes with little support for the high-performance
use-cases, especially the ones using a set of heterogeneous
resources for a single application. Submitting, scheduling and
mapping jobs on the Grid can take up to few orders of magni-
tude more time than the execution [2]. This is especially true for
low-latency and short-deadline scenarios which are pervasive
in a number of application domains from medical applications
to physics data analysis. User-level scheduling (ULS) is one of
the most promising ways to eliminate the difference in scale
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between short execution times and the large grid middleware
latencies. The ULS system contains application-specific knowl-
edge therefore it may provide customized resource selection
and control mechanisms—a feature indispensable for enabling
high performance applications on the Grid.

Efficient execution of parallel applications on heterogeneous
and dynamic Grid resources is a challenging problem that re-
quires the development of adaptive workload balancing algo-
rithms that would take into account the application requirements
and the resource characteristics. Generally studies on load bal-
ancing consider distribution of processes to computational re-
sources on the system/library level with no modifications in the
application code [16], [17]. Less often, load balancing code is
included into the application source-code to improve perfor-
mance in specific cases [18], [19]. Some research projects con-
cern load balancing techniques that use source code transforma-
tions to speedup the execution [20]. In the proposed integrated
system, a hybrid approach is employed, where the balancing de-
cision is taken in interaction of the application with the execu-
tion environment.

A number of semiautomatic load balancing methods have
been developed (e.g., diffusion self-balancing mechanism, ge-
netic networks load regulation, simulated annealing technique,
bidding approaches, multi-parameter optimization, numerous
heuristics, etc.), but most of them suffer one or another serious
limitation, most noticeably the lack of flexibility, high over-
heads, or inability to take into consideration specific features
of the application. Moreover, all of them lack the higher-level
functionality, such as the resource selection mechanism and job
scheduling. By developing a hybrid resource management en-
vironment, we make a step forward towards efficient and user-
friendly Grid computing.

In this paper we suggest an approach based on the integration
of the distributed analysis environment (DIANE) ULS environ-
ment [2], [3] with the adaptive workload balancing algorithm
(AWLB) [4]–[6]. The benefits of the integration are twofold:
the AWLB is enriched with the capability to select resources
most suitable for the application, and the ULS environment is
equipped with an advanced strategy to optimize resource usage.
Optimization of the workload performed by the AWLB is adapt-
able to the resource characteristics (CPU power, memory, net-
work bandwidth, input/output (I/O) speed, etc.) and to the cor-
responding application requirements. The ULS environment ac-
quires the most appropriate resources to the user-level resource
pool, and the AWLB controls the workload distribution. We per-
form the studies using a model application with tunable charac-
teristics (communication to computation ratio, memory usage,
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communication topology, etc.). In this paper, we show some re-
sults for the master-worker communication model, one of the
most popular and widely used in scientific applications.

This paper is organized as follows. Section II presents the
overview of related work on application-level scheduling;
Section III briefly summarizes the AWLB algorithm, intro-
duces the resource pooling and adaptive resource selection, and
describes the strategy for integration of the adaptive workload
balancing algorithm with the user-level scheduling environ-
ment; Section IV gives an overview of the DIANE user-level
scheduling environment used for implementation and exper-
iments, describes mapping of the real-life applications onto
the synthetic model application used for experiments, and
shows experimental results comparing the AWLB with the
standard self-scheduling algorithm. Additionally, the results of
adaptive resource selection for applications of different types
are discussed. Section V concludes this paper.

II. RELATED WORK

One of the inherent features of Grid resources is their dy-
namics, both in terms of resource parameters varying over time
and resource reliability, e.g., as follows:

• multiple jobs from different users may run concurrently on
the same worker node creating dynamically changing load;

• computing elements are connected by unreliable wide-area
networks;

• infrastructure is asynchronously upgraded and modified,
etc.

Moreover, a typical Grid infrastructure is built of classical
batch farms and the access to the resources is optimized for
high-throughput computing that can incur arbitrary delays in
job execution. Additionally Grid scheduling (which involves
a hierarchy of intermediate services: resource brokers, com-
puting elements, batch queues) offers only very coarse, appli-
cation-unspecific mechanisms to handle failures and resubmit
jobs. Therefore many efforts in the Grid research have been fo-
cused on customization layers which would overcome the defi-
ciencies of the generic infrastructure and middleware.

Numerous software packages have been developed as
hard-wired solutions to specific applications. gPTM3D [12] is
a Grid-enabled implementation of medical image reconstruc-
tion program in a master/worker model with self-scheduling.
MPI-BLAST [15] is a parallel implementation of the genomic
alignment search tool and may be run in-conjunction with
Grid-enabled MPI implementations such as MPICH-G2 [29].
Client-server architecture has been exploited as ad-hoc solution
for parallel earthquake source determination in EGEE Grid
[13]. While being useful for their respective applications such
implementations may not be easily reused in other contexts and
outside of their application domains.

Some large virtual organizations (VOs), such as the ones in
high energy physics (HEP), require central coordination of the
Grid activities for data production, simulation, and analysis.
Alien [10] and DIRAC [11] are the systems that have been
implemented as end-to-end solutions deployed on the Grid at
the level of HEP VOs. Job scheduling is based on pilot agents
executing on the ordinary Grid resources and pulling tasks
from central VO task queue. Resource negotiation sometimes

involves additional services deployed at directly at the Grid
sites. Alien and DIRAC systems support thousands of concur-
rent jobs from hundreds of users with higher efficiency than the
generic Grid middleware. However, central and site services
require systematic deployment and maintenance which can
only be afforded by very large collaborations. Additionally,
such systems also tend to be application-specific and difficult
to reuse.

Finally, a number of reusable application-level scheduling
systems have been developed in recent years. Nimrod [9] is a
top-down solution for parameter-sweep applications which is
able to negotiate resources using standard Globus protocols.
Nimrod handles file transfers and automatic partitioning of
the computation based on the user-supplied declarations in
a special-purpose language. Based on the declarations the
job wrapper scripts are automatically created for black-box
application executables. Nimrod then controls the execution of
jobs and resubmits the failed ones if necessary. The resource
performance monitoring uses the Network Weather Service.

AppLES [8] provide generic templates for creating applica-
tion-level schedulers and AppLES Parameter Sweep Template
(APST) is an AppLES-based execution environment for param-
eter-sweep applications. XML-based specification is used for
the description of the execution workflows and customization
of task scheduling priorities. In this respect the APST supports
more flexible application execution models than Nimrod. Both
approaches aim at the “farming” applications, such as parameter
sweeps, and lack sufficient support for resource-adaptive sched-
uling of parallel applications.

III. INTEGRATED ENVIRONMENT

In [4] and [5], we developed an application-level AWLB for
parallel applications on heterogeneous resources and validated
its MPI implementation on the Grid. Intensive experimentation
showed the necessity of a combined resource management on
system and application levels. In [6], we introduced such an ap-
proach, where the environment selects and acquires resources
according to the application requirements, while the applica-
tion controls workload distribution. In this section we further
develop this approach.

The application consists of a set of parallel tasks that process
the workload scheduled by the Master task bound to the ULS en-
vironment. The ULS collects the information about the available
resources and monitors the application responses. As the appli-
cation may comprise heterogeneous tasks executed at different
times with different performance characteristics the total appli-
cation performance requirements may vary at runtime. Simi-
larly, the capacity of Grid resources may vary with time due
to inherent Grid dynamics. The ULS may respond to changing
application or resource conditions and more suitable resource
set may be selected to execute the application at a given time.
This may happen at the individual task execution boundary or at
other natural boundaries specific to the application model (for
example at each iteration for the iterative simulations). This is
a distinctive feature, in contrast to the traditional parallel pro-
grams where resources are allocated once and fixed during the
execution (unless special migration libraries are used like Dy-
namite [17]). To support the replacement of resources during
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runtime, the concept of user-level resource pool is employed.
This resource pool is maintained and supplied by the ULS envi-
ronment which dynamically selects the resources most suitable
for the application. The suitability of resources is determined by
the application requirements; for traditional parallel computing
applications considered here as a test case, it depends on the
processing power and network connectivity correlated with the
application communication to computation ratio.

After resources have been selected and assigned to the tasks,
the workload balancing is performed. The AWLB algorithm is
summarized in Section III-A. The computation is performed
as an iterative process; at each iteration the distribution of the
workload is reevaluated on a new set of resources, and the
AWLB parameters are reestimated.

A. AWLB Algorithm

In this section, we briefly summarize the approach for AWLB
of parallel applications on heterogeneous resources, introduced
in [4] and [5]. The AWLB provides an optimal distribution of the
divisible workload between participating processors according
to the computing environment characteristics and the applica-
tion requirements.

The main generic parameters that define a parallel application
performance are as follows.

• The application parameter , where
is the total amount of application communications,

i.e., data to be exchanged (measured in bit) and is the
total amount of computations to be performed (measured
in Flop);

• The resource parameters , where is the avail-
able performance of the th processor (measured in Flop
per second) and is the network bandwidth to this node
(measured in bits per second).

The AWLB algorithm is based on the benchmarking of the
available resources capacity, defined as a set of individual re-
source parameters , and experimental estimation of
the application parameter . The value of the application pa-
rameter is determined by running through the space of pos-
sible and finding the value which provides minimal run-
time of the application on this set of resources.

The suitability of resources is determined by the applica-
tion requirements; for traditional parallel computing applica-
tions considered here as a test case, it depends on the processing
power and network connectivity correlated with the application
communication to computation ratio. Thus the combination of
and determines the distribution of the workload between the
processors. To calculate the amount of workload per processor,
we assign a weight-factor to each processor according to its
processing power and network connection. In [5], we derived an
expression for the weighting factors

where is the resource heterogeneity metric also introduced in
[5]. The workload for a processor is given by , where

is the total application workload. To evaluate the efficiency

of the workload distribution we introduce the load balancing
speedup as

where is the execution time without load bal-
ancing, and is the execution time using load balancing
on the same resource set (the time taken to execute the algo-
rithm itself is included). The algorithm is flexible, lightweight
and suitable for different types of applications, e.g., I/O inten-
sive ones [6].

B. Resource Pooling and Selection

Resource pooling provides for the acquisition, maintenance
and refinement of a set of Grid resources. The user-level en-
vironment controls the resource pool and maintains a desired
amount of resources with certain parameters best fitting the ap-
plication requirements.

The refinement of resource selection in the pool is based on
the basic optimality principle in divisible load scheduling prob-
lems. The optimality principle states that to obtain the optimal
processing time, all the participating processors must stop com-
puting at the same instant in time [30]. Although the optimality
principle remains valid for arbitrary network topologies, the
optimal time performance depends crucially on the selection
of a proper subset of the available processors: elimination of
slow processor-link pairs may lead to better performance if it
improves the load distribution. Thus, using a larger set of nodes
may yield an inferior performance compared to an optimal
subset of nodes among which the load is distributed according
to the optimality principle.

Division of resources into fast and slow may be done with a
help of a ranking algorithm. Evidently, the meaning of “fast”
and “slow” for a resource depends on the type of application
it is supposed to run. Thus, we have to introduce a metric for
appropriate resource ranking dependent on of a particular
application.

To rank the resources, the metric similar to the one used for
processor weighting in AWLB

where is the rank of processor .
For the application to run the first processors with highest

rank are selected where is defined as the number of proces-
sors that give a reasonable speedup. is refined during the sub-
sequent application iterations with increasing number of proces-
sors used, starting from 1 and growing up to the value not giving
a significant application speedup growth any more

while

(1)

where —execution time of an iteration on processors
with highest rank, —threshold of minimal acceptable speedup
growth. The rank is called a border rank.
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To support dynamic behavior of resources the value is
evaluated each time a resource with rank joins or leaves
the pool. In case of such resource joining, it is inserted into
the sorted resource list as: ,
thus is excluded from the first processors with highest
rank. To evaluate new speedup behavior on the updated re-
source pool the algorithm (1) is applied again (starting from

resources) to determine the current value for . Similar
procedure is performed when a resource ranked
leaves the resource pool. The sorted resource list looks like

, and the new value of is up-
dated to be equal to . The algorithm (1) is applied to
find out if speedup dependency has changed, and value and
the border rank can be updated.

C. Structural Scheme of the Approach

The outline of adaptive workload balancing in ULS environ-
ment is presented in Fig. 1 as a meta-algorithm based on the
concepts introduced in Sections III-A, III-B, and in [6]. The ap-
plication execution control is performed within the framework
of the ULS environment, and two levels are distinguished: the
resource pool level and the application level. The resource pool
is managed by the ULS environment that receives the appli-
cation feedback on the changing performance requirements. In
turn, the application level retrieves the information on available
pooled resources and controls the workload distribution on these
resources using AWLB. The dynamic application requirements
determined and updated by AWLB are forwarded to the ULS
environment to be used in resource selection and pooling.

The interaction between the resource pool and application
levels is performed via the Master task (in the current version
of the environment we consider the Master/Worker model) that
can access the resource information retrieved by ULS. This is
the part of the application that has to be modified in case of
porting existing codes to the integrated AWLB ULS environ-
ment. The master task retrieves the resource pool information
from the ULS, controls the workload distribution using AWLB,
updates application requirements and forwards them to ULS to
be used for resource selection.

Explanation of the steps in Fig. 1 is provided as follows.
I. Resource pool level. In parallel to the application execu-
tion, the resource pool is being monitored and updated by
the ULS environment.
Step R1. Update the pool: Discover available resources
using Grid information services, acquire them to the pool
if they meet the application requirements. Check resources
for availability, remove no longer available ones.
Step R2. Benchmark resources: Measure the worker node
parameters such as the computational power, memory,
bandwidth of the network links, hard disk capacity and I/O
speed. In a more generic sense of resources, some other
metrics may be added characterizing the equipment and
tools associated with a particular Grid node.
Step R3. Rank resources: Update and reorder the list of
pooled resources (used by the resource selection procedure
in Steps A2 and A3).

Fig. 1. Iterative execution of a parallel application in the integrated ���� �
��� environment with a dynamic resource pool.

II. Application level. The load balancing, resource
matching and task mapping is performed on the applica-
tion level, in coordination with the resource pool level.
Step A1. Estimate application requirements; set ini-
tial AWLB parameters: Application requirements are
used to set initial values of the AWLB parameters (see
Section III-A). These parameters are automatically tuned
during runtime (Step A4).
Step A2. Matching resources I. Constraining factors: Use
the ranked resource list (Step R3) to filter out the resources
which do not meet the minimal application requirements
determined in Steps A1 and A7. In our computational ap-
plication example, memory is the constraining factor: in
case of insufficient memory, the processor is disregarded
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from the computation and removed from the resource pool.
For a large emerging class of multimedia streaming appli-
cations, free disk space may be a constraining factor.
Step A3. Matching resources II. Selecting resources:
1) Find the optimal number of processors. It is either
defined by the user or provided by the AWLB mechanism,
depending on the performance data of the processors.
2) Select best suited resources. The suitability is deter-
mined by the application characteristics: for the commu-
nication-bound applications, network links bandwidth is
the top priority ranking parameter, for the computation-in-
tensive applications the processing power is, and for the
intermediate cases the resources are chosen to best fit the
application communication to computation ratio, which
is discovered by the AWLB algorithm. Analogously,
resource selection for the memory-critical applications is
based on the memory metric, and for streaming applica-
tions network bandwidth and disk I/O speed are the key
parameters.
Steps A2 and A3 use the information from the resource
pool and send back the application requirements and the
requests on chosen resources. The requests are then pro-
cessed by the ULS environment to book or release the re-
sources.
Step A4. Tune AWLB parameters: The AWLB parameters
are tuned to provide better workload distribution, based
on the execution results analyzed in Step A7. Being an
adaptive heuristic, AWLB requires several steps of com-
putations to estimate optimal values of the parameters on
a given resource set. If the resources change between the
iterations, re-estimation of AWLB parameters is required.
Step A5. Resource mapping and load balancing: Actual
optimization of the workload distribution within the par-
allel tasks is performed, i.e., mapping the processes and
workload onto the allocated resources. This step is based
on the AWLB algorithm described in Section III-A. It in-
cludes a method to calculate the weighting factors for each
processor depending on the resource characteristics mea-
sured in Steps R3–R5 and application requirements esti-
mated in Steps A1 and A7.
Step A6. Iteration execution: Perform an iteration (in-
cluding calculations and communications) with the work-
load distribution defined in Step A4.
Step A7. Analyze execution and AWLB parameters: Mea-
sure the execution time of a single iteration with the current
AWLB parameters and quantitatively estimate the require-
ments of the application based on the results of resource
benchmarking (Step R2) and measurements of the appli-
cation response.

For dynamic resources, when performance is influenced by
other factors, a periodic re-estimation of resource parameters
and load redistribution is performed. If the application is dy-
namically changing (for instance due to adaptive meshes or dif-
ferent combinations of physical processes modeled at different
simulation stages), then the application requirements must be
periodically re-estimated even on the same set of resources.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To implement and validate the hybrid ap-
proach described in Section III-C, we have chosen the DIANE
[21], [22], which is a realization of user-level scheduling
environment developed at CERN. The framework provides an
execution environment for parametric parallel applications,
i.e., the applications that are not communication-bound and the
communications occur in regular patterns. This covers a broad
class of applications including parameter sweep, data-analysis
if data locality is assumed, Monte Carlo simulations, etc.
The communication backbone of the environment is based on
the Master/Worker model, however customization allows to
achieve more complex task synchronization patterns. DIANE
allows to plug-in user-defined scheduling algorithms and
failure-recovery strategies. DIANE layer runs as a set of regular
user jobs, and therefore it operates entirely inside the user
space. User-level scheduling does not require any modification
to the Grid middleware and infrastructure, nor the deployment
of special services in the Grid sites, thus it provides immediate
exploitation of Grid resources available to the user. Light-
weight, transient services, such as the Directory Service, are
run locally on user-controlled computer and may be enabled
or disabled at any time. The Directory Service controls the
resource pool.

DIANE has been used with a number of applications, from
black-box executables (e.g., image processing [24], telecom-
munications [25], physics simulation, regression testing,
data analysis [26]) to interfacing of the applications at the
source-code level (e.g., medical physics and bio-informatics
[14]). DIANE allows to increase the application performance,
minimize the feedback latency [2], and improve certain quality
of service (QoS) parameters of the Grid, such as reliability and
predictability.

DIANE provides a software plug-in framework and uses
Ganga [23] as a job abstraction and management layer. DIANE
user-level scheduling exploits the concept of late-binding also
known as placeholders or pilot agents similarly to Condor-G
glide-ins [7]. The Grid jobs run generic agents which get the
workload from a scheduler—a Run Master service. Deferring
the mapping of workload until the runtime helps to short-circuit
the overhead of hierarchical scheduling and to accurately react
to the dynamically changing characteristics of the resources or
of the application. The execution of tasks is controlled by the
Run Master service running on local user computer.

Typically the Grid worker nodes have the constraints of out-
bound-only direct connectivity with the outside networks. Cer-
tain subsets of Grid sites may provide inbound connectivity on
certain ports in order to support the cross-cluster MPI applica-
tions [31]. However, such support is not ubiquitous and may not
be relied upon for an average Grid user in an average VO. The
worker node crosstalk is still possible in DIANE, however, the
communication is routed via the Run Master service. In DIANE
model, the output of one task may trigger execution of another
task if decided by the Run Master. This is the only allowed way
of inter-worker communication. This model is more efficient for
applications with low parameter because the communication
even between neighboring workers is routed via a distant point
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in the wide area network. On the other hand the AWLB method-
ology may be applied directly because the resource parameter

is evaluated always against the same worker endpoint (Run
Master). Thus, the is invariant of any communicating worker
node pair.

The experiments were carried out on the EGEE Grid produc-
tion infrastructure [1], in the Geant4 VO [27]. The model appli-
cation is implemented as a python-based plug-in for DIANE en-
vironment. The master-worker model of execution is employed,
where the master selects the amount of workload to be processed
by a worker, sends the data to workers and receives the results.

We compare performance results achieved using the AWLB
algorithm and dynamic resource pool with the results shown by
the standard DIANE task dispatching technique—self-sched-
uling [also called a first-input–first-output (FIFO) scheduling
algorithm]. In self-scheduling all the workload is divided into
tasks of equal size; typically the number of tasks largely exceeds
the number of available worker nodes. As soon as a worker be-
comes available, the next task from the list is assigned to it. In
AWLB all the workload is divided into the number of available
workers, and the size of the workload assigned to each task is
calculated by the heuristic algorithm, using the resource and ap-
plication characteristics.

A. AWLB Parameters in Real Applications

In this section, we examine the Feynsect application [28]
which computes the generic Feynman diagrams with one and
two loops using one of the numerical algorithms available and
the Monte Carlo integration technique. The 5-D parameter
space of elementary particles in the minimal super-symmetric
standard model (MSSM) consists of around 1000 independently
computable points, so the problem is trivial to parallelize. The
computation of each MSSM point consists of execution of a
set of independent algorithms which correspond to different
Feynman diagrams and Monte Carlo integration sectors. The
number of algorithms (around 1000) is the same for all points.
Task parameters consist of the MSSM point (on average
500 bytes text file) and the algorithm source code (on average
50 kB gzipped Fortran code). The algorithm is sent to the
worker node and compiled on the fly, unless it is already in
the local worker cache. Additionally, common Feynsect C++
libraries (1 MB) are downloaded and compiled once for each
worker node. The algorithm execution time varies between 100
and 1000s. The output of the algorithm execution is a text file
(3–5 kB).

The Feynsect application is the simplest case of the applica-
tion with divisible workload, as all the points and algorithms are
independent from one another, thus the unit of granularity is a
single point with a single algorithm to execute. The more pow-
erful the worker node is, the more points and algorithms it can
process during a single workload balancing iteration.

The calibration runs showed that the value of for this appli-
cation lies in the range of [0.001, 0.5] b/Flop, but has only a few
discrete points corresponding to the different algorithms used.
The exact values of are automatically found by the AWLB
algorithm during several initial iterations. A detailed descrip-
tion of this procedure is given in [5]. In short, to discover the

Fig. 2. Search through the range of possible application parameters � . Auto-
matically discovered � � � provides the best load-balancing speedup.

application parameter , the search through the range of pos-
sible values of is performed. For each value of the cor-
responding weighting of resources and the load distribution is
calculated based on the resource parameters determined sep-
arately (see Section III-A). Then one time step (iteration) is per-
formed, and the execution time and balancing speedup are
measured. Selection of the next value of may be done by
any optimization method for unimodal smooth functions, such
as a simple line-search method. Fig. 2 shows a sample search
through the range of possible values of to find the that
provides the best balancing speedup . This value is the
application parameter we were looking for; it is later used for
calculating the load distribution and selecting the best fitting re-
sources from the pool.

To validate the methodology of the integrated
approach in a broader range of application parameters, we ex-
perimented with a model application with a synthesized work-
load and tunable ratio . This model application may represent
the whole range of possible use cases of Feynsect algorithm, and
in addition simulate a broader range of application parameters

.

B. AWLB and Self-Scheduling Performance

Fig. 3 presents the comparison of execution times of a
single iteration with the AWLB and self-scheduling (FIFO)
algorithms. In this figure COMP is the total amount of compu-
tational operations (in Flops) and COMM is the total amount
of communications for each simulation (in bytes transferred).
In this experiment the number of processors used is increased
by one processor for each iteration. In all cases, the AWLB
significantly outperforms the self-scheduling almost twice.
In some cases, the gain can be up to several times (data not
shown).

Fig. 4 shows how the application communication to compu-
tation ratio influences the execution time. During this exper-
iment, the computational load (COMP) was kept constant on a
fixed set of 16 processors, while the amount of data transferred
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Fig. 3. Comparison of AWLB and self-scheduling algorithms: Runtime depen-
dency on the number of processors acquired. � � ����.

Fig. 4. Comparison of AWLB and self-scheduling algorithms for different
values of application communication/computation ratio � with 16 workers
and 64 self-scheduling tasks.

between the master and the workers (COMM) is varied. For all
types of simulations, the AWLB algorithm is significantly faster
than the self-scheduling.

Table I illustrates a typical example of AWLB parameters on
a set of heterogeneous resources. Each worker is weighted ac-
cording to the resource parameters and application characteris-
tics (see Section III-A). In the table, PROC and NET are the
relative processor and network capacity of a worker (results of
benchmarking). The application values COMM and COMP are
the same as in Fig. 3.

Fig. 5 presents the statistics of an actual run using a dynami-
cally populated resource pool. The core feature of the ULS en-
vironment is the ability to change resources during the execu-
tion runtime, such that every iteration can run on a different set
of resources. Fig. 5(a) shows how the resources are gradually
added to the resource pool, depending on their availability. We
can also notice that some workers are removed from the pool:
the number of workers is not growing steadily, but experiences
dips every few iterations.

TABLE I
SAMPLE DISTRIBUTION OF PROCESSOR WEIGHTS (W)
BY AWLB ON A SET OF HETEROGENEOUS WORKERS

In Fig. 5(b), the basic resource matching and selection mech-
anism is demonstrated (Step A3). All the workers acquired at
each iteration [shown in Fig. 5(a)] are used for the execution,
and the execution time depends on the number of available
workers at the moment. Notice that at iterations number 9,13,16
when some resources left the pool, the execution time increases.

C. Adaptive Resource Selection

To illustrate the adaptive resource selection algorithm pre-
sented in Section III-B, we analyze the execution of the model
application on the dynamically acquired Grid resources. The
distribution of resources obtained for the experiments is pre-
sented in Fig. 6(a). Each point in the plot reflects a single avail-
able worker with the corresponding processor performance and
network connectivity to the master.

To check the behavior of different types of applications we
modeled different amount of computations and communications
(i.e., different ). The resource ranking used for resource se-
lection (see Section III-B) is based on application properties,
thus the rank of a single resource depends on the application it
is used to execute. Fig. 6(b) illustrates resource ranking for dif-
ferent application types (i.e., different values of ) for the same
processor/network parameter distribution shown in Fig. 6(a).

The general idea of resource selection is to provide the best
resource subset from the set of available resources to ensure
the fastest possible execution of the application. To estimate
the performance gain from the resource selection procedure, we
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Fig. 5. (a) Dynamic resource pool population. (b) Sample execution times
using dynamic pool.

analyzed execution times on the best, average, and worst sets
of available resources. The number of workers was fixed and
the resources were selected from the top, middle and bottom of
the ranked resource list. Thus, the performance was estimated
for the same number of workers with the highest, average and
lowest ranks. Fig. 7 illustrates the efficiency of the resource se-
lection algorithm by presenting the resulted performance differ-
ence.

The number of processors to be used for efficient execution
of a parallel application depends on both the application and re-
source characteristics; therefore, it is not possible to predict the
speedup saturation point (the number of workers to be used).
The adaptive resource selection mechanism (see Section III-B)
analyses the speedup growth with addition of every new worker
to the set of workers already used. The threshold of the min-
imal acceptable speedup growth is defined by the user.

Fig. 8 presents sample execution of applications with dif-
ferent on the same resource pool and . For each two
curves are shown: the execution time (using AWLB algorithm)
and the number of workers used for each iteration. The number
of workers is determined automatically using resource selection
algorithm and performance data from the previous iterations. As
expected, the speedup of the application with higher communi-
cation demand saturates on a smaller number of workers, which

Fig. 6. (a) Sample resource distribution: processor and network capacity for the
workers in the resource pool. (b) Resource ranks for the workers (dependency
on � ).

Fig. 7. Resource selection performance: comparison of the best, average, and
worst ranked resources. On �-axis the average rank of each resource set is
shown.

is tracked by the resource selection algorithm. The resources
providing only marginal speedup growth are not acquired from
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Fig. 8. Adaptive selection of the number of workers, � � ������ ������.

the resource pool, and can be more efficiently used for another
application accessing the same resource pool.

V. CONCLUSION

Evolution of the Grid paradigm to support High Performance
Computing is indispensable for a large number of applications
which require on-demand access to the Grid resources. In this
paper, we proposed an approach to enhance the quality of
handling multi-task jobs in Grid environment by integrating
the AWLB developed for parallel applications on heteroge-
neous resources and ULS environment. The latter provides
the missing link between the application and Grid resource
managers: this user-level middleware is a customizable, appli-
cation-centric scheduler and application hosting environment.
Dynamic benchmarking of resources and estimation of the
application characteristics is used to optimize the usage of
a dynamic user-level pool of Grid resources maintained by
the ULS. We devise a generic recipe on how to solve the
workload balancing problem on the Grid for arbitrary appli-
cations. To prove the concept we performed a series of tests
using a model application with configurable requirements. The
EGEE Grid resources and the DIANE user-level scheduler
with incorporated AWLB algorithm formed the infrastructure
for the experiments. We study the range of parameters which
correspond to an existing Feynsect application from theoretical
physics and present experimental results and discussion on
the way to manage the workload of divisible load parallel
applications on the Grid. We compare different workload dis-
tribution methods and illustrate the usage of dynamic resource
pool and application performance dependencies with adaptive
resource selection. We plan to enhance the resource selection
and match-making mechanisms by further development of
the automated application performance analysis, improvement
of handling the dynamic resource pool, and validation of the
approach by implementing a real-life distributed computing
application in the AWLB+ULS environment.
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