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Abstract— Visual analytics emphasizes the interplay between visualization, analytical procedures performed by computers and 
human perceptual and cognitive activities. Human reasoning is an important element in this context. There are several theories in 
psychology and HCI explaining open-ended and exploratory reasoning. Five of these theories (sensemaking theories, gestalt 
theories, distributed cognition, graph comprehension theories and skill-rule-knowledge models) are described in this paper. We 
discuss their relevance for visual analytics. In order to do this more systematically, we developed a schema of categories relevant 
for visual analytics research and evaluation. All these theories have strengths but also weaknesses in explaining interaction with 
visual analytics systems. A possibility to overcome the weaknesses would be to combine two or more of these theories. 
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INTRODUCTION 

It has been argued by Green et al. [13] that interaction with 
information visualizations can be conceptualized as problem solving 
activity. This is especially relevant for the explanation of exploratory 
interaction with visual analytics tools. When users interact with such 
systems, they formulate hypotheses, look for patterns in the data, and 
adapt the specific appearance of the data on the screen to find 
information substantiating their assumptions and hypotheses [2]. All 
these are problem-solving activities. The definition of visual 
analytics (VA) by Thomas and Cook as "the science of analytical 
reasoning facilitated by interactive visual interfaces" ([58], p.10) 
emphasizes the reasoning aspect of the process of getting insights 
from massive amounts of data provided by modern information 
systems. 

Keim et al. [21] argue that visual analytics combines humans and 
machines, exploiting their respective capabilities. It should be 
pointed out, however, that it is not the computer which engages in 
reasoning processes but the human user interacting with the visual 
interface. Consequently, visual analytics tools should be designed in 
a way to support human reasoning efficiently. While computers are 
able to process large amounts of information and search for specific 
items, humans have a great deal of knowledge about the context, 
which is not available to the computer. This enables humans to draw 
conclusions even in the absence of relevant pieces of information. 
We assume that a science of interaction [37] should take this 
interplay between humans and computers into account. According to 
Card et al., such questions have already been addressed in the early 
days of information visualization research [4]. However, these 
analytical processes are not fully understood. Progress in this area 
will improve visual analytic tools. 

Similar questions are raised by existing research concerning 
analytic provenance [10], [20], [28]. This area of research tries to 
clarify the users' reasoning processes while they interact with visual 
analytic tools. The goal is, however, to support analysts in their 
work. Previous exploration processes are made available to reuse 
insights gained at an earlier stage and compare these insights to their 

current work. Nevertheless, there is some overlap, and research on 
analytic provenance can provide useful information on how 
reasoning processes work in practice. 

The aim of this paper is to look more deeply into these human 
reasoning processes and how they relate to tool interaction, 
information interaction, and perceptual interaction. Several 
theoretical approaches from psychology and HCI might be relevant 
for a theoretical framework for this area of research. There are many 
theories explaining various aspects of human reasoning processes. 
Especially those theories targeted at explaining logical reasoning in a 
more narrow sense (see e.g. Evans [11]) can only clarify explorative 
interaction with VA systems to a limited extent. For our overview we 
have, therefore, chosen theories with a broader scope which can 
explain problem-solving activities in the real world and a more 
complex context. Many theories about human reasoning are based on 
empirical research using puzzles as problems to solve. Such puzzles 
(e.g. towers of Hanoi, missionaries and cannibals etc.) usually have a 
clear solution and a well-defined path to this solution. People can 
solve them by adopting generic strategies (e.g. means-ends analysis). 
It has to be pointed out that in realistic problem solving processes, in 
contrast, background knowledge plays a crucial role (Novick and 
Bassok [33]). In addition, problems in VA are seldom well-defined. 
Therefore, approaches based on research of puzzle-like problems 
only have a limited value for explaining interaction with VA 
systems. The theories described in this paper try to overcome these 
limitations. They also cover real-world and complex problem-
solving activities. All these theories highlight specific aspects of 
human reasoning which might be relevant for the different kinds of 
interaction with VA systems. We concentrate on theories explaining 
open ended and/or exploratory activities. All these theories 
emphasize visual forms of reasoning to a greater extent than 
symbolical, abstract reasoning. We assume that such theories are 
better able to describe processes of interaction with visual analytics 
systems. 

In this paper, we describe five theories (sensemaking theories, 
gestalt theories, distributed cognition theories, graph comprehension 
theories and skill-rule-knowledge theories) explaining human 
reasoning processes which seem to be relevant for explaining 
interaction with VA systems. In sections 1 to 5 we describe these 
theories. We also discuss how they might be applied in empirical 
research about VA systems. Then, we discuss their advantages and 
disadvantages in this context. The theories emphasize different 
aspects of the process of interaction with VA systems. We, therefore, 
developed a set of relevant categories to assess and compare these 
theories more systematically (see section 6). Based on this 
comparison, we suggest several possible ways in which these 
theories might be used to explain interaction with VA tools. The 
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comparison highlights which aspects of the exploration process of 
VA systems (e.g. perception and visualization, interaction strategies, 
hypothesis formulation, etc.) are reflected in which theory. This 
overview helps researchers to identify which of the theories might be 
used as a foundation of their empirical research. 

1 STARTING POINT: SENSEMAKING 

Russel et al. [47] and others assume that interaction with information 
visualizations can be described as sensemaking. They argue that 
there are several stages of sensemaking: acquire information, make 
sense of it, create something new, and act on it. Making sense of 
information consists of at least two processes, namely extraction of 
information and fusion of information from different sources. During 
sensemaking, representations of the information have to be 
generated. These representations may be altered by conflicting 
information. All these processes have to be supported specifically by 
information visualizations. 

1.1 Description of the Theory 

There are two different approaches based on the concept of 
sensemaking which are relevant for VA. One is the sensemaking 
loop developed by Pirolli and Card [40]. This approach has been 
influenced by the theory on information foraging (Pirolli, [39]). The 
other approach was developed by Klein et al. [24][25]. The concept 
of sensemaking is, therefore, quite complex and allows some 
interesting insights into exploration processes in VA. 

Pirolli and Card [40] developed a very influential model of 
sensemaking specifically shaped to reflect the work of intelligence 
analysts. They distinguish between a foraging loop aimed at 
searching for and filtering information and a sense-making loop 
which is supposed to interpret the found information and develop a 
consistent model out of it. Pirolli and Card point out that there are 
cost structures associated with this model (e.g. the trade off between 
wide exploration and detailed exploitation of the information). In this 
context, the process of abduction plays an important role. Abduction 
is a process which is adopted by humans to find explanations for 
perceived phenomena. From the observation of the circumstance b 
they infer that the antecedent a is given [3]. This process is essential 
for the generation of hypotheses which is central in the interaction 
with visual analytics tools. 

Though Pirolli and Card's sensemaking model [40] did find quite 
some resonance in the information visualization literature [22], the 
model does not seem to be suitable to explain user interaction with 
information visualizations in detail due to (1) a restricted 
conceptualization of user interaction, (2) open questions how to test 
the model empirically, and (3) the model's high level focus. 

First, the model mainly focuses on information interaction, that 
is, which information a user extracts, how (s)he enriches it with prior 
knowledge and which knowledge (s)he exploits. However, in the 
case of interactive information visualization and visual analytics 
tools, the user's tool interaction and perceptual interaction (making 
sense of information without physical interaction with the tool) are 
additionally relevant, but are not covered in Pirolli and Card's 
sensemaking model [40]. By using a tool's interactive features a user 
can actively determine which information is displayed and how. The 
design of these features is highly relevant for the success of 
information visualizations and, thus, findings on what drives tool 
interaction and how it connects to human problem solving. Also, a 
theoretical model on human reasoning with information 
visualizations should cover the user's perceptual interaction with the 
displayed information as well. Which information is perceived is not 
only controlled by top-down, user-driven processes (like searching 
for relevant information), but also by bottom-up, visualization-driven 
processes (like salience or Gestalt laws). 

The sensemaking theory relies on a fairly rigid assumption of 
stages building on one another. In evaluation practice, it is probably 
very difficult to distinguish between the different initial stages of 
information foraging and the later stages of sense-making as these 

stages are very tightly intertwined. From our evaluation experience 
in business intelligence, users jump back and forth from raising 
hypotheses (level 13) to searching for supporting information (level 
2) to building new schemata (level 10) or retrieving existing ones 
from memory. Therefore, it is difficult to distinguish clearly between 
these stages or to conceptualize them as one building on the one 
before (see Smuc et al. [57] for examples about the use of prior 
knowledge during the exploration process). Additionally, it remains 
unclear which processes are driven by the information provided and 
which are driven by the user's prior knowledge because from a 
cognitive perspective processes like 'schematize' or 'build case' have 
to be classified as top-down, knowledge-driven processes, but were 
classified as bottom-up processes in Pirolli and Card's model. 

Following Green and Fisher, the model only reflects more 
abstract processes of reasoning [14], but omits highly relevant, more 
detailed aspects of reasoning (e.g. whether subjects adopt deductive 
strategies). "For while descriptive models like the sensemaking loop 
do much to frame the big picture, intuitive interfaces will require a 
more detailed working-order understanding of what lies inside the 
frame" ([14], p.43). 

Klein et al. [24][25] propose another model of sensemaking. The 
authors assume that current psychological theories are not 
comprehensive enough to describe sensemaking in naturalistic 
settings. Their model is based on the concept of frames (which was 
inspired by work in Artificial Intelligence). Frames are developed 
when people want to make sense of the phenomena around them. 
Frames can either be elaborated or rejected. Elaboration means that 
additional detail is added to a frame. A frame can be rejected when it 
is not useful or accurate any more. Elaborating, questioning frames 
and reframing (substitution of one frame for a better one) are 
iterative processes which make up sensemaking. Klein et al. [25] 
argue that this model is able to represent real-world decision making 
in an appropriate way. Attfield et al. [3] used the approach of Klein 
et al. [24][25] as a conceptual basis to conduct their empirical 
research concerning fraud investigation. 

1.2 Application in Visual Analytics 

Sensemaking is a concept which is fairly influential in VA. It implies 
an iterative reasoning process which is driven by the continuous 
formulation of new hypotheses. This conforms to analytical 
processes undertaken by human users of VA systems. Sensemaking 
as a concept, therefore, seems to model such behavior quite well. 
Nevertheless, the model of the sensemaking loop developed by 
Pirolli and Card [40] has, to the best of our knowledge, not been 
applied in empirical investigations of reasoning processes in 
information visualization or VA. This might be due to the fact that 
this approach is specifically tailored to reflect the work process of 
intelligence analysts. The sensemaking approach of Klein et al. 
[24][25] has been used more often (see e.g. Attfield et al. [3]). This 
approach is more general and applies to any decision making 
processes of domain experts. It can, therefore, be used more easily to 
investigate exploration processes with VA. 

1.2.1 Advantages 

The concept of sensemaking seems to be very attractive to model the 
activities of users of VA systems. The theory can clarify complex 
problem-solving activities and exploration of data. Sensemaking also 
implies that different viewpoints of various users are taken into 
account. The approach of Klein et al. [24][25] also addresses the 
problem of cooperative sensemaking, that is, how groups of users 
can achieve a common interpretation of the data. 

1.2.2 Disadvantages 

Sensemaking models usually emphasize the representation and 
rearrangement of information in the user's mind. They are very well 
able to model these activities in detail. Other activities which are also 
highly relevant for the explanation of reasoning processes supported 
by VA tools are less well described by the theory such as perception 
and the interaction with VA systems. The sensemaking theory, 



therefore, contains no specific component explaining how 
visualizations should be designed to support human reasoning 
processes. Guidelines can only be derived from the general 
considerations of reasoning processes. This can make it difficult to 
model the specific character of interaction with VA tools. 

2 GESTALT PSYCHOLOGY AND INSIGHTS 

2.1 Description of the Theory 

Modern computers enable users to solve increasingly complex 
problems. As Mirel [32] pointed out, interfaces of computer 
programs have to be designed in a way to support such complex 
tasks. Many real-world problems which are addressed by computer 
software nowadays are ill-defined in nature. This implies that it is 
often not clear what exactly the problem is, how a solution might 
look like, and which methods might be used to reach a goal. There is 
usually no single right answer to the problem. Often several different 
ways to reach a solution exist, and users often change strategies and 
goals while dealing with such problems. Systems which typically 
support complex problem solving are interactive information 
visualization tools [32]. According to Andrienko and Andrienko [2] 
these systems support exploratory behavior of the users. 

In this context, the psychology of problem solving distinguishes 
between routine and non-routine problems. For routine problems, 
people have preexisting procedures for solving them. Davidson [8] 
assumes that non-routine problems involve conceptual change and 
insight. The concept of insight was first discussed by Gestalt 
psychologists and is defined as a process during which a problem is 
solved through restructuring [62]. Problem solvers try to redefine the 
representation of the problem to find a solution. Insights are a result 
of creative thinking going beyond the given information. Pretz et al. 
([43], p.18) describe insight "as a sudden understanding that results 
when the problem solver realizes how all parts of a problem fit 
together to form a coherent whole, or Gestalt". Mayer [30] discusses 
several assumptions of Gestalt psychology about problem solving. 
One central idea is that insight is a sudden reorganization of visual 
information. The problem solver looks at the given information in a 
completely new way. This does not imply, as is often assumed, that 
Gestalt psychology posits that solutions in problem solving processes 
occur immediately (the so-called "aha" experience). As suggested by 
Dominowski and Dallob, restructuring might sometimes take quite a 
lot of time and might be an iterative process [9]. 

Gestalt psychology emphasizes the representational aspect of 
problem solving. When the structure (or Gestalt) of a problem is 
made clear, a solution can be found fairly easily. Therefore, it is 
essential for problem solvers to understand the relations existing 
among the components of an entity [9]. Gestalt psychology has a 
highly dynamic view of problem solving. Problem representations 
are modified during the thought processes. 

One of the most serious difficulties in problem solving identified 
by Gestalt psychologists is fixation, that is, the situation when 
individuals do not perceive the underlying structure of a problem. 
They are fixated on an inappropriate representation of this structure. 
To overcome this problem, the representation must be transformed 
radically. Interactive information visualizations can support this 
transformation process as they offer the opportunity to show the data 
in different arrangements on the screen, to filter the data or 
sometimes even to represent the data in a completely different visual 
form. If used appropriately, such features can help to overcome 
fixation. 

In problem solving psychology, there is a renewed interest in the 
concept of insight. According to Novick and Bassok, this is related 
to a trend toward examining more complex, ill-structured problems 
[33]. Therefore, Gestalt psychology has gained in importance in 
problem solving research. It should be pointed out, however, that 
there is no common definition of insights, and it is still controversial 
whether gaining an insight is a specific process compared to other 
problem solving activities or not. 

2.2 Application in Visual Analytics 

There is some similarity between the insight definition of Gestalt 
psychology and the insight definition used in information 
visualization and visual analytics. Saraiya et al. [49] define insight 
"as an individual observation about the data by the participant, a unit 
of discovery". In this context, restructuring a problem plays an 
important role, and users may notice aspects of the presented 
information which were overlooked before. On the other hand, there 
are distinct differences between the concept of insight used in Gestalt 
psychology and visual analytics. Chang et al. [6] point out that in 
visual analytics insight is seen as a substance or product while 
cognitive psychology has a more process oriented view. North [34], 
for example, assumes that insights are complex, deep, qualitative, 
unexpected, and relevant. This view assumes that insights are the 
results of a problem solving process. Chang et al. [6] also argue that 
insight in cognitive psychology is seen as a subconscious process in 
which no predefined strategies or heuristics are used. Such processes 
are difficult to analyze. Yi et al. [64] also discuss that there is no 
common definition of the concept of insight in information 
visualization and visual analytics. Nevertheless, Lam et al. showed 
that there is some influential research aimed at the analysis of 
reasoning processes which yield insights [27]. Insight studies play 
some role in evaluating visualizations [41]. 

2.2.1 Advantages 

Gestalt psychology is an appropriate framework for explaining 
problem solving in ill-structured domains. It takes into account that 
problem-solving is often not a straightforward process based on a 
well-defined strategy. Solutions reflect that the structure of a 
problem situation emerges as a consequence of creative thought 
processes. These processes encompass repeated reorganization of 
information in the human mind. The representations of the problem 
situation are changed in the course of the individual's examination of 
the problem situation. The continuous reformulation of 
representations can neutralize the effect of fixation. All these 
assumptions from Gestalt psychology describe the process of 
interacting with VA tools very well. VA systems with various 
interactive possibilities are especially appropriate to overcome 
fixation because they are able to represent the problem situation in 
many different ways. 

2.2.2 Disadvantages 

Basic concepts of Gestalt psychology are not very well defined. 
Older research from Gestalt psychologists did not follow strict rules 
of experimentation. Therefore, it is difficult to use Gestalt 
psychology as a theoretical framework for explaining the interaction 
with information visualizations. Newer research is oriented towards 
scientific experimentation, and there is already a significant body of 
empirical research concerning Gestalt psychology. Still, the concepts 
are very general and cannot be easily applied to the analysis of 
interaction with VA tools. In addition, Gestalt psychology is not very 
much concerned about the different steps or strategies problem 
solvers might adopt. It tends to conceptualize reasoning processes as 
intuitive and opaque. This makes it less useful for explaining the 
interaction with VA systems. Without detailed results concerning the 
specific interaction of the users with these systems, it is very difficult 
to conduct research with the goal to improve VA systems. 

3 DISTRIBUTED COGNITION 

3.1 Description of the Theory 

Distributed cognition as a theoretical approach is relevant for visual 
analytics because it emphasizes the interaction between users and 
artefacts [17][18][36][48]. In contrast to most psychological theories, 
in the context of this theory cognitive processes are not only located 
in the human brain, but are conceptualized as distributed across the 
situation. Distributed cognition assumes that "knowledge" is 
distributed among users and artefact and that human knowledge is 



embodied in artefacts. Knowledge about measuring temperature, for 
example, is embodied in a thermometer or knowledge about 
computing in a computer. In many cases, people who use computer 
programs were never acquainted with the knowledge embodied in 
this program. Nevertheless, they are enabled to apply this knowledge 
in practice because of the availability of this program. In this sense, 
knowledge is distributed among users and computers. Therefore, 
O'Malley and Draper state that human users often have no coherent 
and comprehensive mental models of how things work [35]. Such 
mental models only emerge in the process of using a technology. 
Clark stated that artefacts act as scaffold [7]: We delegate knowledge 
to artefacts and thereby reduce the need to store information in 
memory and consequently the cognitive workload. Results achieved 
by using such cognitive tools emerge from the interaction between 
humans and artefacts and cannot be attributed to human activity 
alone. 

The crucial factor in the relationship between humans and 
computers is how knowledge is distributed between these two 
components and how they interact with each other. This issue is 
especially relevant for visual analytics where a visualization is 
complemented by a component for analytical reasoning. In visual 
analytics systems, tasks should be distributed between users and 
systems according to the specific strengths and weaknesses of those 
two components. Humans possess the ability to infer information 
from visualizations very quickly through visual thinking. They are 
superior to computers in many reasoning tasks, especially when a 
huge amount of background information is needed [21]. Computers, 
on the other hand are very good at processing large amounts of 
information and doing more formal reasoning processes. 

Liu et al. [29] point out that distributed cognition could form an 
appropriate theoretical framework for information visualization. 
They argue that the form of representation may evoke different 
solution strategies because of the different affordances of the 
systems. This phenomenon can be better explained by distributed 
cognition than by other theoretical approaches. They also posit that a 
science of interaction is at the core of an approach based on 
distributed cognition. Interaction mediates between the user and the 
artefact. These interaction processes are still not very well 
understood. A possible approach in this context is described in Pohl 
et al. [42]. We have little systematic knowledge of how people really 
work with visual analytics systems, and especially of which 
cognitive processes occur when they do this. We also do not know 
which cognitive processes are supported by what kind of 
visualization and analytical support. Therefore, designers of such 
systems are forced to use intuition to design appropriate systems. 

Another aspect emphasized by distributed cognition is the fact 
that human activities usually not only depend on artefacts but also on 
other human beings. Cooperation is increasingly seen by Isenberg et 
al. as a constituting element of visual analytics [19]. Many analytical 
processes occur in collaboration with others. Again, systems have to 
be designed appropriately to accommodate such processes. 

Methodologically, research within the distributed cognition 
tradition is ethnographically oriented (e.g., Hutchins [18]). 
Shneiderman and Plaisant point out that interaction with information 
visualizations is observed during everyday work and - combined 
with other research methodologies - provides valuable findings on 
how to re-design and improve those information visualizations [55]. 

3.2 Application in Visual Analytics 

The fact that insights emerge from the interaction between human 
and artefact implies that users of VA systems usually do not develop 
elaborate strategies in their minds before they start working but react 
interactively to what is represented on the screen (situated 
cognition). They use the information visualization as a scaffold for 
the ir problem solving process. How successful the user is depends 
also on what kinds of interaction (s)he perceives as afforded in the 
interface. 

Scaife and Rogers [50] described this process as external 
cognition. The question then is how to design systems to support 

these interaction processes. A specific challenge in this context is to 
clarify how the problem representations in the brain look like and 
whether they conform with, or are supported through the 
representation on the screen, as described by Mayr et al. [31]. A 
detailed, stepwise analysis of user interactions and their 
representations is needed. 

3.2.1 Advantages 

The theory of distributed cognition emphasizes the interaction 
between human and artefact. This makes it easier to conceptualize 
specific interaction processes between users and information 
visualizations. Studies conducted by Saraiya et al. using thinking 
aloud indicate that insight processes occur in close interaction of 
humans with machines [49]. The idea that insights emerge while 
users interact with the system corresponds to the assumption of 
visual Andrienko and Andrienko that insight generation is an 
explorative process [2]. Distributed cognition is also an appropriate 
framework to explain epistemic actions (see Kirsh and Maglio [23]). 
Epistemic actions are actions which help users to gain information 
about the problem at hand, in contrast to pragmatic actions which 
support users to get closer to achieve their goal. 

3.2.2 Disadvantages 

Distributed cognition is a fairly general and abstract theory. 
Researchers have described cases which demonstrate how distributed 
cogniton works. Nevertheless, there is no general concept of 
interaction, and this concept is not very well understood. It is 
especially challenging to develop systems exploiting the strengths of 
humans as well as that of visual analytics systems and to enable them 
to interact smoothly and efficiently. There are no general principles 
how the interaction between humans and artefacts might be 
supported by an appropriate design. In addition, distributed cognition 
does not specifically address issues of visualization. All this makes it 
difficult to derive concrete guidelines for the design of visual 
analytics systems from this approach. 

4 GRAPH COMPREHENSION 

4.1 Description of the Theory 

Graph comprehension theories deal with the "graph readers' abilities 
to derive meaning from graphs" (Friel et al. [12], p. 132). According 
to Tversky, graph comprehension is informed by theories of 
visuospatial reasoning [60]. Visuospatial thinking is a broad and 
interdisciplinary approach which tries to explain "how people 
represent and process visual information" (Shah and Miyake [52], 
p.xi). Such theories can, for example, explain how inferences can be 
drawn from simple diagrams, and they are typically based on 
perceptual principles and processes mostly focused on less complex 
graphs like line plots or bar charts. Past research has led to various 
cognitive models with distinct components that constitute a graph 
comprehension framework. Friel et al. [12] reviewed several graph 
comprehension models and concluded that they consist of three 
levels and cyclic structures, addressing the questions of how 
information gets extracted, which relationships in the data can be 
found and what can be done to make sense out of the data. Friel et al. 
differentiate between the levels of (1) reading the data (i.e. extracting 
data, locating), (2) reading between the data (i.e. finding 
relationships, integrating), and (3) reading beyond the data (i.e. 
extrapolating from the data and generating hypotheses). 

One of these models is Kosslyn's graph comprehension model 
[26] with syntactic, semantic, and pragmatic levels of processing. 
Shah and Miyake [52] distinguish between two major classes of 
graph comprehension models. The first class of models provides 
comprehensive descriptions of how users interact with graphs. The 
second class tries to explain how people interpret graphs, but make 
less detailed predictions about graph comprehension activities. The 
integrative model developed by Carpenter and Shah [5], which tries 
to combine both approaches, focuses on pattern encoding, the 



translation of the resulting visual chunks and the relation of this 
information to referents. For the first level of processing, the visual 
chunking process, graph comprehension theories meet Gestalt theory 
when dealing with a graph on a very basic level. Following Pinker 
[38], the principles of proximity, similarity, and good continuity are 
used to form the first useful entities of information. Shah et al. 
extended this integrative model by adding graphical skills and 
content knowledge as influential factors [53]. This has led to the 
(mental) interactive model where both bottom-up and top-down 
processes like expectations and prior knowledge interact. In another 
approach, Trafton and Tricket [59] proposed different components of 
visual integration which get cognitively integrated in a process of 
multiple cycles. Later, Ratwani et al. [44] extended their model by 
elements like spatial transformations and the application of mental 
models in graph comprehension. 

4.2 Application in Visual Analytics 

4.2.1 Advantages 

Graph comprehension theories are a well-tried instrument to reflect 
the micro-architectures of graphs in a very detailed manner and to 
get deeper insights about the cognitive structures involved when 
looking at (simple) charts or graphs like the ones often used with 
multiple view techniques. Therefore, they offer a rich basket of 
arguments and starting points on how to design and optimize graphs. 
Especially cognitive tasks like visual decoding, pattern recognition, 
the usage of referents, visual memory and spatial reasoning were 
examined to a huge extent in the last years and the results of this 
research should not be overlooked when designing visualizations. 

In graph comprehension frameworks, a basic "language" of 
graphs [26] was developed by Kosslyn, allowing the description of 
transformations of one graph type into another graph type. Although 
transformations depending on data types and their attributes are 
sometimes tackled as side aspects by VA task taxonomies (e.g. [54]), 
using the existing syntax and grammar of graph comprehension 
theories could be a fruitful starting point for further investigation in 
VA research. 

Another interesting aspect of graph comprehension research is the 
focus on graph reader characteristics which presumably originates in 
its educational research tradition, being one of its main research 
fields. The role of skills, expertise, experience and prior knowledge 
seems to play a secondary role in VA (for exceptions see [14][65]), 
since it is mainly focused on domain experts and expert skills have 
usually been treated without a shadow of doubt. 

4.2.2 Disadvantages 

Graph comprehension theories do not cope with tool interaction or 
dynamics in visual displays (except animation, see Tversky et al. 
[61]), visual displays are treated as fixed and completed. As pointed 
out earlier, graph comprehension theories have their strengths in 
explaining conventional (bar charts, line charts, pie charts, scatter 
plots etc.) and simple graph usage. However, in VA we deal with 
more complex visualizations and systems. Studies on novel 
visualizations and more complex graphs are often called for, but 
rarely conducted. One of these rare studies on complex graphs was 
conducted by Trafton and Trickett [59], who discussed the question 
whether graph comprehension theories could be easily scaled up 
from simple to complex graphs. In their view, spatial processing 
becomes more relevant for more complex data. Shah and Freedman 
[51] also noted other critical factors when dealing with complex 
graphs, like the decision making process on what to encode in the 
vast amount of data and the problem of multiple goals when 
interpreting graphs. 

Another weakness of graph comprehension theories is the lack of 
integration of problem solving theories for highly abstract levels of 
processing, when reading beyond the data. This topic is also 
connected to sensemaking which is, in the view of graph 
comprehension, very often based on making sense of one visual 

display instead of the whole exploration process, as in VA 
sensemaking theories (see section 1). 

5 SKILL-RULE-KNOWLEDGE MODELS 

5.1 Description of the Theory 

These models could provide a possible medium level link between 
the rather atomistic graph comprehension theories (often near to 
perception) and more abstract models like Card's sense-making-loop. 
J. Reason developed a cognitive model of users to analyze their 
errors in working contexts [45]. The model is based on the research 
of some prominent theories about cognition, memory and learning 
which are often used in cognitive task and cognitive work analysis. 
Although the objective of this model is to generate an error 
taxonomy with specific, diverging errors, dependent on the cognitive 
level of processing (GEMS - Generic Error Modeling System), it is 
also adaptable to and beneficial for interactive explorations with the 
help of VA tools (see also Smuc [56]). 

The core of Reason's model is a cyclic skill-rule-knowledge loop 
developed by Rasmussen and Goodstein [46], consisting of three 
hierarchical levels of cognitive processing: on the lowest level of 
processing, users act based on their learned skills, in a schematic and 
highly automatic manner. On the rule-based level, users make a 
diagnosis of the situation and try to minimize the mismatch of the 
situation and their internal representation by applying heuristics or 
previously learned rules. If the users do not find a satisfactory 
solution on this level, they have to switch to the cognitively most 
demanding level of processing, the knowledge based level. This is 
the level of classical reasoning and problem solving, i.e. the user 
applies his/her knowledge and mental models, undertakes abstract 
analysis or deploys analogies to interact with new situations. 

To sum up, this model consists of a three-fold hierarchy of 
processing levels which allows clear and distinct descriptions of how 
an operator or user handles known and unknown situations, taking 
his/her skills, learned rule-sets and his/her prior knowledge into 
account. As stated earlier, Reason's model gained a lot of empirical 
evidence for the creation of error taxonomies, especially for 
supervisory control and maintenance of large, highly complex 
systems like atomic power plants.  But how can these levels get 
linked to the cognitive processes needed in a visual data exploration 
process? 

5.2 Application in Visual Analytics 

 Focusing exclusively on errors to analyze visual data exploration 
has some drawbacks, since making some errors now and then, 
condemning and reconsidering hypotheses and occasionally taking 
the wrong turn are always an essential part of a vibrant visual 
exploration process - as long as these misapprehensions are managed 
appropriately and do not bias the final results. Although an analysis 
of errors based on differentiated error-categories can offer a lot of 
insights into the strengths and weaknesses of a VA tool, it makes 
more sense to place some emphasis on success parameters (like 
insights into the data) in combination with explorers' failures during 
the exploration process. This shift of perspective does not harm the 
model's integrity when it is deployed for VA, since success 
parameters simply represent the other side of the same coin. 

If we separate the two main aspects of VA tools, namely the 
visualization and the interaction part, we can find many similarities 
regarding the hierarchy of processing levels and some three-fold 
graph comprehension theories (see section 4) as well as tool 
interaction theories (see table 1). 

Let us imagine a professional visualization explorer who is so 
skilled in graph perception and tool handling that many operations 
are usually automatic. In case of problems s/he knows the grammar 
of graphs and has a repertoire of helpful cognitive interaction scripts.  



 If all that fails s/he has to apply her/his semantic domain 
knowledge to make sense of the data or s/he has to find novel ways 
of tool exploration to get more out of the tool.  In contrast to a novice 
in visual exploration, a professional will rarely have to move to the 
very demanding knowledge based processing level for simple, basic 
tasks. 

5.2.1 Advantages 

One of the advantages of this theory is that learning and users' efforts 
in understanding data become better traceable. The model can be 
seen as an instrument for differential diagnosis: users' skills, rule-sets 
and knowledge base are an integrative part of explorers' operations 
and become separable, since the hierarchy of levels allows analysis 
based on cognitive processes. The results of such a diagnosis can be 
integrated in design concepts about better visual analytics tools, for 
example by making some room for problem solving by shifting tasks 
from the knowledge level to the skill level, e.g. by finding another 
representation of the data which can more easily activate users' 
schemata. 

5.2.2 Disadvantages 

Since this model is designed for monitoring tasks and has not been 
applied to VA until now, the obstacles to adapt this model for a 
creative, open, and dynamic exploration process remain unknown. 

From a methodological point of view, the operationalization and 
measurement of success parameters could be problematic. While 
rule- and knowledge based processing is inspectable through time-
logs and verbal protocols to some extent, skill based processing may 
be only partly covered as spontaneous associations. Thus, analysis on 
the skill based level has to be supported by eyetracking studies and 
has to be reviewed by intricate experimental perception studies. 
Especially the integration of findings from graph comprehension 
studies should be taken into consideration. 

6 DISCUSSION 

An overall assessment of the different theories described in this 
paper is a challenging task. In order to make such an assessment 
more systematic, we developed a set of relevant categories. These 
categories reflect, on the one hand, requirements of visual analytics 
systems and, on the other hand, specific characteristics of human 
information processing. We want to discuss whether the five 
different theories enable researchers to model processes like 
sensemaking, insight generation, hypothesis testing, interpretation, 
collaboration or other processes which have been identified by 
researchers in the area as important for interacting with visual 

analytics systems. On the other hand, the theories reflect the 
information processing model developed in cognitive psychology 
(see Anderson [1]) in various degrees. This process incorporates 
activities as, for example, perception (preattentive processing as 
described by Healy at al. [15], visual pattern detection), 
understanding (especially of the chosen mapping for the 
visualization), problem solving and decision making; these activities 
are also part of the categories used for the assessment of the five 
theories. The category "interaction strategies" addresses the question 
whether a theory is able to model specified interaction processes of 
the users in the sense of a theory of interaction [63]. 
Operationalizability reflects whether it is easy to test a theory 
empirically. "Errors" signify the extent to which a theory explains 
user errors in a more sophisticated manner.  

The results of the categorization process are shown in figure 1. 
Intensity of the colors denotes to which extent a theory addresses a 
certain category. 

What can be seen is that the sensemaking approach is the most 
focused one of the five theories. It has a strong emphasis on 
interpretation, hypothesis testing and sensemaking, but it does not 
cover perceptual aspects of using visual analytics tools. In contrast, 
distributed cognition, graph comprehension and skill-rule-knowledge 
cover most of the categories we used. Gestalt psychology, graph 
comprehension and skill-rule-knowledge all reflect perception 
processes to a high degree. Graph comprehension has a distinctive 
focus on the perception processes and does not account for problem 
solving or reasoning processes to a large degree. Distributed 
cognition is good at modelling exploration and problem solving. It is 
the only theory which allows to incorporate the users' interaction 
strategies and collaborative processes. Here, a distinctive difference 
to the other categories can be seen. Skill-rule-knowledge covers 
many aspects of the categorization scheme quite evenly, but shows 
disadvantages in its operationalizability and does not cover 
interaction strategies. Further, it has not been used for interactive 
visualizations until now. It has a strong emphasis on the treatment of 
errors, a topic which is often ignored in other theories. 

It is our belief that, in addition to the description of the five 
different theories, the categorization scheme can show some 
strengths and weaknesses of the different theories in a more 
systematic way. The theories clearly have different focal points but 
also overlapping areas. Problem-solving and hypothesis 
generation/testing are covered quite well in all theories. On the other 
hand, we would like to point out that insight generation, a concept 
discussed to a great extent in information visualization and visual 
analytics, is not emphasized in most theories. A categorization 
scheme as the one in figure 1 makes it easier to detect such features 
of theories and might be of some practical interest when used as an 
aid to decide on analysis focus and analysis direction for the 
evaluation of visual analystics methods. 

6.1 Future Research Agenda 

In summary, the five theories described in this paper show that 
although a lot of research has been done in recent years, a 
comprehensive theory for human information processing in visual 
analytics is still missing. If we take figure 1 as starting point, three 
different paths to deal with this information deficit might be worth a 
second look: 

6.1.1 Path 1 - "Merge theories to a coherent theoretical 
framework" 

But which theories could or should be merged? For example, 
interaction theories, decision making processes and collaboration 
issues are only tackled in distributed cognition theories to a adequate 
extent. Depending on the research focus, either graph 
comprehensions theories, to add lower level processing, or sense 
making theories, to add higher level processing, could be interesting 
candidates for a merger with distributed cognition. 

Table 1. Possible links of Reason's model to graph 
comprehension, interaction and cognitive factors 

 
visualization 

tool /  
handling 

memory / 
response time 

skills syntax of graph 
perception 

handling / 
 automatic 

short-term 
memory / 

fast 

rules how to read the 
properties 

diagnosis / 
 easy scripts 

working 
memory / 
medium 

knowledge semantic content  
(domain) 

knowledge, 
(visual) problem 

solving 

novel ways of tool 
exploration /  

(tool) problem 
solving 

long term 
memory / 

slow 



However, it has to be considered that some of the theories are not 
suitable for merging, for example the sensemaking theory according 
to Pirolli and Card [40], which makes fairly specific assumptions 
about the reasoning process, which are to some extent not consistent 
with other approaches. 

6.1.2 Path 2 - "Extend or transfer theories" 

The white spaces in existing theories could be filled by merging parts 
of the five discussed theories, but also by including or transferring 
other concepts (e.g. interaction concepts) from other research areas. 
For example, graph comprehension theories could be better applied 
to VA if decision making could be covered more systematically, 
since there is a vast amount of decision making theories in cognitive 
psychology. Regarding interaction, also Shneiderman's Visual 
Information-Seeking Mantra [54] or similar models of interaction 
might be candidates to extend one of the theories described above. 

6.1.3 Path 3 - "Create novel theories" 

Another possible path aside from merging and patching might be the 
creation of a novel theory from scratch. Taking into consideration 
that the creation of a new theory leads to considerable expenditures 
not only in the theoretical development alone, but also in providing 
empirical evidence for the theory, this path might be the most risky 
and time-consuming. However, the categorization scheme provided 

above (see figure 1) might be supportive of setting the main 
components and priorities for the creation of a new theory. 

As a final remark, VA is sometimes seen as a "science for 
practitioners" by emphasizing the applicatory nature of this research 
field. This raises the question whether theories are needed in VA at 
all and what would be the benefits of more comprehensive theories. 
In our view, theories provide an explanation of the core part of VA, 
the understanding of analytical processes in the human mind. 
Without theories, designing and evaluating VA methods would be 
like fishing in muddy water. Theories allow to explicate users' 
behavior systematically, thus they can be used to make predictions, 
combine singular research results and enable the deduction of 
guidelines. Theories can put order into the "user puzzle". But current 
theories about analytical processes in VA are sorely lacking in 
comprehensiveness and completeness - and who wants to solve a 
puzzle with important pieces missing? 
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