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This paper is theoretical in nature and addresses applications of the acoustic analogy in helicopter rotor noise 
prediction. It is argued that in many instances the acoustic analogy has not been used with care in rotor noise 
studies. By this it is meant that approximate or inappropriate formulations have been used. By considering 
various mechanisms of noise generation, such abuses are identified and the remedy is suggested. The mechanisms 
discussed are thickness, loading, quadrupole, and blade-vortex interaction noise. The quadrupole term of the 
Ffowcs Williams-Hawkings equation is written in a new form which separates the contributions of regions of 
high gradients such as shock surfaces. I t  is shown by order of magnitude studies that such regions are capable 
of producing noise with the same directivity as the thickness noise. The inclusion of this part of quadrupole 
sources in current acoustic codes is quite practical. Some of the difficulties with the use of loading noise 
formulations of the first author in predictions of blade-vortex interaction noise are discussed. It appears that 
there is a need for development of new theoretical results based on the acoustic analogy in this area. Because 
of the impulsive character of the blade surface pressure, a time scale of integration different from that used in 
loading and thickness computations must he used in a computer code for prediction of blade-vortex interaction 
noise. 

Introduction 
n the last decade, there has been an intense interest in hel- I icopter noise prediction. Passenger comfort, impact on com- 

munities under the flight path, and detectability are some of 
the reasons for this interest. Helicopter manufacturers realize 
that in the future the noise issue will be an important factor in 
the domestic and the international markets. As is well known, 
the prediction of helicopter noise is a very difficult problem. 
The theoretician has much to contribute to the solution of this 
problem. One of the most successful methods of attacking the 
problem is through the use of the acoustic analogy of Lighthill, 
Ref. 1. The fundamental equation relevant to rotor noise pre- 
diction was published in 1969 by Ffowcs Williams and Hawk- 
ings, Ref. 2, and is now known by their names as the Ffowcs 
Williams-Hawkings (FW-H) equation. 

This paper is theoretical in nature with the following aims: 
(i) to describe the uses and the power of the acoustic analogy 
in rotor noise prediction; and (ii) to describe some of the abuses 
of the acoustic analogy and how they can be corrected. The 
authors do not claim that the abuses in the past have been 
intentional but that they could have been avoided with some 
care in the application of the acoustic analogy. 
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One of the mathematical subtleties associated with the FW- 
H equation is the use of generalized functions and advanced 
differential geometry. Those who have tried to derive acoustic 
formulations for rotor noise calculation have discovered that 
there are many equivalent results, each having its own merits 
and shortcomings for number crunching, Ref. 3.  It is also true 
that in deriving these results, some algebraic manipulations 
become extremely complicated and intractable. The use of ad- 
vanced mathematics, such as generalized function theory and 
differential geometry, becomes imperative to simplify the de- 
rivation of the acoustic formulation and to give geometrical 
meaning to the terms appearing in the result. We will present 
several convincing examples of this fact. It is the opinion of 
the authors that in the prediction of rotor noise, mathematics 
plays as important a role as does fluid mechanics, experiments, 
or computers. It is this aspect of noise prediction which will 
be highlighted in the paper. 

The Acoustic Analogy 
Physically, the acoustic analogy replaces the effect of fluid 

motion in generation and propagation of sound by fictitious 
sources in an undisturbed fluid, Ref. 1. The strength of these 
sources are assumed to be known. In rotor acoustics, this means 
that blade surface pressure and the flow around the blade must 
be known. Of course, this information is very difficult to obtain 
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and much more work needs to be done both experimentally 
and theoretically. The requirement of aerodynamic input data 
is viewed by some as a weakness of the acoustic analogy. We 
will argue here that it is not. 

Mathematically, the application of the acoustic analogy is a 
boundary element method; as such, it is, in principle, able to 
supply its own input data. In the case of high speed propellers 
where the flow around the blades is much less complicated 
than helicopter rotors, the aerodynamic theory based on the 
acoustic results has been published by Hanson, Ref. 4, and 
Farassat and Myers, Ref. 5 .  Although this can also be accom- 
plished for rotors, it is more appropriate to use a direct nu- 
merical approach based on the Euler or Navier-Stokes equations. 
Most aerodynamic codes give satisfactory results near the blades 
because of small grid sizes, but the accuracy deteriorates far 
from the blades. It is thus necessary to use the acoustic analogy 
when the observer is in regions far from the blades, utilizing 
the aerodynamic information on and around the blades. 

Several methods to replace the acoustic analogy are avail- 
able. Hawkings, Ref. 6 ,  has proposed the use of numerical 
aerodynamic calculations to obtain boundary data on a surface 
surrounding the rotor and then using Kirchhoff's integral for 
an observer in the region exterior to the surface. Korkan, Von 
Lavante, and Bober, Ref. 7, have had some success with this 
method for high speed propellers. The method suffers from 
lack of resolution of aerodynamic data on the boundary surface. 
Kirchhoff's formula has also been used in rotor acoustics by 
Lyrintzis and George, Ref. 8, and Purcell, Strawn and Yu, 
Ref. 9, for high speed blade-vortex interaction noise studies. 
Recently, Farassat and Myers, Ref. 10, have derived and ex- 
tended a general Kirchhoff's formula for moving surfaces by 
Morgans, Ref. 11. The final result is presented in a form suit- 
able for use on a computer. Recently, a purely numerical wave 
propagation study has been attempted by Baeder, McCroskey , 
and Srinivasan, Ref. 12. This shows some promise for the 
future, particularly when more powerful computers become 
available. 

Since the unsteady flow field around rotors is very complex, 
it is very likely that, in the next decade, the attention of aero- 
dynamicists will be concentrated only on the prediction of the 
flow field around the blades. The acoustic analogy thus will 
remain a very useful tool in the future in rotor noise prediction. 
As will be shown below, many further improvements can be 
made in the application of the acoustic analogy which will 
extend its applicability and usefulness. 

The Governing Equation in a New Form 
In this section, we will write the FW-H equation in a new 

form by manipulating the quadrupole term in such a way that 
various noise generation mechanisms can be distinguished clearly. 
The FW-H equation in its conventional form is the following 
wave equation: 

a 
02p'  = $pov,IV flS(f)] thickness 

a 
axi - -[tilVf18(f)] loading 

3 2  + - [ T , p ( f ) ]  quadrupole (1) 
axiaxj 

where p'  is c2(p - p,) which is essentially the acoustic pres- 
sure. Here, po and c are the density and speed of sound in the 
undisturbed medium, v, and t i  are the local normal velocity 
and force intensity on the body, and Tlj is the Lighthill stress 
tensor. The body in motion is defined by f(3, t )  = 0, such 
that f > 0 outside the body. The functions H ( f )  and S ( f )  are 
the Heaviside and the Dirac delta functions, respectively. 

It is a useful practice to relate the various rotor noise gen- 
eration mechanisms to the source term in the FW-H equation. 
For example, the blade-vortex interaction noise is described by 
the loading noise term of the FW-H equation sincc the noise 
is generated by the sudden change in the blade surface pressure. 
We will now write the quadrupole term in Eq. (1) in a form 
which is more suitable for theoretical and numerical analysis 
than the conventional form given above. The derivation of this 
result is presented in Ref. 13. 

We begin by giving some definitions first. Consider the flow 
around an airfoil at high speed shown in Fig. 1. The body (rotor 
blade) is described by f = 0. We have regions with high ve- 
locity gradients in the boundary layer and the wake and dis- 
continuities in velocity and pressure across the shocks. The 
shock surfaces are definedky the equation k = 0, k > 0. Their 
edges are defined by k = k = 0. The unit normals to the body 
and shock surfaces are defined by Tf and Tf ' ,  respectively. Let 
the trailing edge (TE) of the blade be specified by equations 
f = f = 0 with the inward unit geodesic normal denoted by 
3. The geodesic normal is tangent to the airfoil surface and 
normal to the TE, Fig. 2. Note that, at the TE, there are two 
geodesic normals corresponding to the upper and the lower 
surfaces meeting at the TE. The inward unit geodesic normal 
of the shock surface is denoted by 3'. 

We now define the symbols related to the Lighthill stress 
tensor Tij .  Let the components of vectors and be defined 
as 

where A = ( ) 2  - ( ), and the subscripts refer to regions 1 
and 2 across the shock in Fig. 1. The following symbols are 
also needed: 

SHOCK: k=O, k-0 / 

TE: f=T=O 

3 

f > O  o f o "  
I 

SHOCK: k=O, K> 0 

Fig. 1 Schematic of high speed flow around an airfoil. 
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Fig. 2 The geodesic normals at the trailing edge of a blade. 
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With these definitions, we can now write the quadrupole term 
of the FW-H equation as follows: 

+ qn.S‘(k)  + q,.S(k)S(k) J terms 

trailing 

term 
(4) 

In this equation, H f  and Hk are the local mean curvature of the 
body and the shock surface, respectively. Also, the square 
bracket in the trailing edge term stands for (Qv)upper + (Qv)lower 
where the subscripts refer to the upper and lower surfaces 
meeting at the trailing edge. The surface divergence operator, 
Ref. 14, is denoted by V2. The quadrupole term in the FW-H, 
Eq. ( I )  can therefore be broken down into components which 
clearly show the contribution of various noise sources. The 
application of Eq. (4) will be discussed below. Some of the 
terms in this equation can be simplified further. For example, 
the last term in the shock surface terms will be shown by shock 
jump relations to vanish. Note that, in the original version of 
this paper, there were two errors in Eq. (4) (term Q ,  and qc 
missing), which are corrected here. 

The Uses, Abuses, and Their Remedy 
We will now concentrate on the applications of the solution 

of the FW-H equation. We consider three areas of use in rotor 
acoustics: i) thickness and loading noise, ii) quadrupole noise, 
and iii) blade-vortex interaction noise. In each case, we point 
out the incorrect use or “the abuse” and then describe the 
remedy. 

i) Thickness and hading Noise 
One of the simplest formulations for prediction of thickness 

and loading noise was given by Farassat, Ref. 15, as follows: 

+ 1 [PSI ret dI: 
F = O  

Here, we assume ti = pn,  ( p  = blade surface pressure), F = 
[ f ( 3 ,  7)lret = f ( 3 ,  r - rlc) and 0 is the angle between the 
normal to the body A and the radiation direction 3 = 3 - 
3. The source and observer space-time variables are denoted 
by (3, T )  and (3, t ) ,  respectively. The area of the surface F = 
0 is denoted by 2. The symbol A stands for 

A = ( 1  + M i  - 2M, ~ 0 ~ 0 ) ’ ’ ~  (6) 

where M ,  = v,/c is the local normal Mach number. Equation 
(5) is used for both steady and unsteady loading noise. Here, 
we consider nonimpulsive surface pressure only. The observer 
time derivative in Eq. (5) is taken numerically. 

In the application of Eq. (3, the following relations are used 

in place of - since direct construction of the C-surface is 

difficult, Ref. 15: 

a .  
A 

cd.rdr 
sin 0 

-- - 

where dS is element of the surface area of the body f = 0, 
and M ,  is the local Mach number of the body in the radiation 
direction. The symbol d r  is the element of the arc length along 
the intersection of the sphere r = c( t  - T )  with the body f = 
0. It was thought originally that, since there is a singularity at 
M ,  = 1 in Eq. (7-a), use of Eq. (7-b) in Eq. (5) would give 
a result valid in all range of Mach numbers, Refs. 16 and 17. 
This result is: 

pov, + p cos 0 
4mp’(3, t )  = - drdT 

at r sin 0 

It was found, however, that this equation is suitable for high 
speed blade motion but the accuracy deteriorated substantially 
at low speed. The reason is that, at low speed, the line integral 
in Eq. (8) changes rapidly so that the time integration must be 
performed at a much finer scale, which is impractical due to 
the excessive computer time usage. Therefore, Eq. (7-a) was ..- 

d Z  . 
A used for - in Eq. (5) for low speed. Such switching of the 

formulation was performed automatically in Ref. 17 with some 
success. 

There are two basic problems with Eq. (5). First, the integral 
in the first term on the right must be evaluated twice at t and 
t + dt for numerical differentiation. This increases computa- 
tion time. The second problem is that no matter how accurately 
the integration is performed, the numerical differentiation am- 
plifies the errors, which leads to unrealistic high frequency 
oscillations in acoustic signatures, Ref. 17. Equation (5) has 



also some problems for impulsive surface pressure, which will 
be discussed later. The remedy for the above problems was to 
take the time derivative in Eq. (5) inside the first integral. Two 
distinct formulations for low and high speeds were derived and 
used with much success, Refs. 18 and 19. Brentner gives some 
applications of the subsonic formulation to helicopter rotors in 
Ref. 20. 

ii) The Quadrupole Noise 
There has been much interest in the quadrupole noise pre- 

diction of rotors following the pioneering work of Hanson and 
Fink, Ref. 21, and the work for helicopter rotors by Schmitz 
and Yu, Ref. 22. It is not difficult to write the solution to the 
quadrupole term of the FW-H equation: 

(9) 

where p b  is the acoustic pressure due to quadrupoles and d R  
is element of the surface area of the sphere r = c(t - 7) .  The 
integration is carried out in the exterior region of the surface 
F = [f(Y, T ) ] ,  = 0. Assuming that the flow around the 
blades is known, use of Eq. (9) as it stands is a monumental 
task if the differentiation with respect to the space variables is 
performed numerically. In addition, a volume integration must 
be carried out over a suitably large volume. 

A way around numerical differentiation with respect to the 
space variables of Eq. (9) is to convert these variables to the 
observer time variable, as was done for loading noise, Ref. 
15. A simple, but approximate, method to accomplish this is 
to use the far field approximation 

where Pi = (x i  - y i ) / r  is the unit radiation vector. This changes 
Eq. (9) into 

I a 2  

C a t 2  F,O r 
4~rph(3, t )  = __ Trzdfldr 

where T,, = T,,P.,P,. Equation (1 1) is only valid in the far field. 
This, however, is not entirely satisfactory since, in some of 
the applications of Eq. (1 l) ,  one may want to predict the quad- 
rupole noise in the near and intermediate fields. A more com- 
pelling reason to have an exact result equivalent to Eq. (9) will 
be given below. 

Equation (9) can in fact be written as 

r 
where g = r - t + -. It can be shown that 

C 

1 + --[ cat r2 
1 a (3PiPJ - 6,j)6(g) 

+ 3PiPj - 6ij6(g)  
r3 

where 8, is the Kronecker delta. Using this 
(12), we obtain 

47~ph(3, t )  = --- I a2 T"dfldT 
r 

F>O 

(13) 

equation in Eq. 

Here the summation convention over the index i is used. This 
relation is now exactly equivalent to Eq. (9). It is obvious that, 
up to about one radius from the blade tip, the last two terms 
are of the same order as the first term. Because of the nature 
of the integrals in Eq. (14) ,  which are usually strong functions 
of observer time, it is estimated that the second integral in- 
volving a time derivative should at least be included in the 
intermediate (between near and far) field. 

There is one area where Eq. (14) is superior to Eq. (1 1) in 
application. Because of complexity of the rotor acoustic codes, 
these codes should be checked very carefully. Since Eq. (14) 
is in principle exact, moving the observer to the vicinity of the 
rotor can be used together with Eq. (5) to test if the aerodynamic 
input data can be recovered from the acoustic code. Equation 
(1 1) does not allow this important check of the acoustic code. 

Even Eq. (14) demands too much from the aerodynamicist. 
Does one really need to know everything about the quadrupoles 
in the near field? There are regions of large velocity gradients 
around airfoils moving at high speed. These regions are as 
follows: 

a) The boundary layer 
b) The shock surfaces 
c) Tip vorticity and the wake 

None of the current quadrupole theories bring out the contri- 
butions of these regions clearly. On intuitive grounds, it can 
be argued that the contribution of these regions to p b  should 
be substantial. We observe that Eq. (4) indeed can be used to 
study this problem, which will be presented next. First, how- 
ever, we note that the pure quadrupole term of Eq. (4) includes 
part of the boundary layer and all of the tip vorticity and wake 
contributions. 

a .  The Boundary Layer 

Eq. (4) as shown below: 
The boundary layer contribution consists of four terms in 

2V2 .&  + aQ, - 4H& - Q G ] 6 ( f )  
an 

The first term gives a volume integral, the second and third 
terms give surface integrals, and the last term gives a line 
integral over the trailing edge. We will next study the contri- 
bution of the volume term. The boundary layer contribution to 
p b ,  denoted by phSL, can be written as follows: 

L 



where g = 7 - t + rlc. 

a readily calculable form: 
The volume term of Eq. (15) in Eq. (16) can be written in 

where the interior integral is a line integral over the width of 
the boundary layer on the sphere r = c(t  - 7). Referring to 
Fig. 3, it is seen that the main contribution of the integrand is 
due to the gradient of the tangential component of velocity in 
the normal direction, i.e.: 

( 1 8-U) 

[3] dh - 2 ( PU- ad:) (18-b) 
aYiaYj BL 

where * indicates some mean quantity in the boundary layer. 
Here (u ,  v) are the fluid velocity components in the tangent 
and normal directions to the body surface with respect to the 
frame fixed to the undisturbed medium. This means that u is 
of the order of blade velocity. It is seen that, because of the 
high gradient of velocity in the boundary layer, the integral in 
Eq. (18-b) may be large. Incidentally, the nature of the integrals 
resulting from Eq. (15) is similar to the thickness noise and 
gives the same directivity. It is therefore important to include 
these terms in rotor acoustic calculations, particularly because 
the volume integral in Eq. (17) can be calculated in a similar 
manner to the surface integrals of loading and thickness noise. 

Assuming that the no-slip condition is satisfied, the last three 
aQ terms of EEL, with the exception of - of Eq. (15), are mainly an 

kinematic in the sense that they are obtained from the knowl- 
edge of blade motion and geometry only. They can be written 
in the form of surface and line integrals by the method described 
in Ref. 19. Current codes can be modified to incorporate these 
terms. Preliminary calculations have shown a contribution of 
up to 15 percent of the negative peak due to the thickness noise 
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Fig. 3 Evaluation of boundary layer contribution to quadrupole noise. 

by the surface integrals only. Our experience with high speed 
propellers, Ref. 19, indicates that the line integral of the type 
of the trailing edge term in Eq. (15) can also be significant. 

In summary, the boundary layer quadrupole contribution can 
be written in such a way that the current helicopter acoustic 
codes can be modified to evaluate it. Preliminary order-of- 
magnitude analysis shows thickness-like behavior with the pos- 
sibility of significant conribution to the quadrupole noise. 

b. The Shock Surfaces 
The contribution of the shock surfaces to p b  denoted by 

p i s s  is described by the terms in Eq. (4) involving 6 ( k ) .  Es- 
sentially, there is an infinite gradient of velocity across the 
shock surfaces. For this reason, it can be argued on a mathe- 
matical basis that the shock surface contribution to quadrupole 
noise can be important. An explicit formulation of shock sur- 
face noise was derived by Farassat, Ref. 23, and applied with 
limited success by Kitaplioglu and George, Ref. 24. The main 
difficulties were the lack of geometric interpretation of the 
many terms appearing in the formula as well as its complexity. 
The approach based on terms of Eq. (4) is much simpler. 

We denote by E ,  the shock surface source terms: 

The two terms involving S(k)  and 6 ’ ( k )  give surface integrals 
over the shock and the last involving 6(k )6 (k )  gives a line 
integral over the edge of the shocks. Using the unsteady shock 
jump relations, we can show that 

?T = (vn’Ap)tT ( 2 0 4 )  

9,’ = (vi, - c?)AP (20-b) 

q”. = 0. ( 2 0 4 )  

Here v,. is the shock speed with respect to the frame fixed to 
the undisturbed medium, and X T  is the velocity of the fluid 
tangent to the shock surface in this frame. The critical velocity 
of sound is denoted c*. Equation (20-c) indicates that there is 
no line integral over the perimeter of the shock surfaces. For 
conventional airfoils used in helicopter rotors, the shock sur- 
faces are normal with small curvature. This means that V, * 

q ~ ,  A aril , HH,, and qc are all small, so that the term 

involving S ( k )  is also small. One is therefore left with the 
following approximation of Ess: 

(21) E,  E (vi, - c?)Aps’(k) 

We will give an order of magnitude analysis of this term below. 
From the above equation, it is obvious that the shock contri- 
bution is dipole-like in character with the dipole axis in the 
direction of the motion of the blade (i.e., the peak directivity 
is in the rotor plane). Thus, the shock surface noise will also 
behave like the thickness noise. 

To study the strength of the source term in Eq. (21), we 
assume that the blade is moving at M = 0.90 with the flow 
Mach number ahead of the shock at M I  = 1.3. Then we can 
estimate the source term as follows: 

(v:, - cZ)AP = C’(M:, - 0.968)Ap (22-U) 

M,,, - M = 0.90 (22-b) 



5(M' - pI = 0.443 kg/m3 
Ap - (M: + 5 )  

(22-c) 

c2(M$ - 0.968)Ap - -8,091. Pa (22-4 

The source strength is therefore large enough that it should be 
included in quadrupole calculations. 

Incidentally, the contribution of Eq. (21) top; can be found 
by the method presented in Ref. 15 as follows: 

where Ql(Ess, Ess) and Q2(ESS) are some functions of source 
strength and K = [k(y, r)lrer. Here Ess is the time rate of 
variation of Ess. Thus, the shock oscillation is included in Eq. 
(23). 

It was found by Schmitz and coworkers, Ref. 25, that thick- 
ness and loading noise calculations together estimate the rotor 
noise with reasonable accuracy up to a tip Mach number, which 
essentially depends on blade thickness ratio and design. Above 
this Mach number the shocks in the tip region become extensive 
going beyond the tip region. This sudden change in flow around 
rotors is called delocalization by Schmitz, Ref. 15. It is the 
belief of the present authors that the major contribution to the 
quadrupole noise comes from the shock surfaces. This can be 
deduced from the above estimation and the fact that the surface c : K = 0 in Eq. (23) is highly time dependent and can produce 
large variations in p p .  

c .  Tip Vorticity and the Wake 
The tip vortex and blade wake are also regions of large 

velocity gradients. The source term for these in Eq. (4) is the 
pure quadrupole term, which is a volume term. The tip vorticity 
effect can be converted into a line integral along the vortex 
line involving the vortex strength. This can be included in 
current rotor acoustic codes. 

The blade wake contribution can be written in such a way 
that only the gradient of velocity normal to the wake appears. 
Extensive volume integration can be avoided by confining the 
integration to the regions of high velocity gradients near the 
trailing edge of the rotor blades. Like the boundary layer noise 
discussed above, these calculations can also be performed as 
surface integration because of the small thickness of the wake. 
Therefore, the wake calculation can also be included in the 
current rotor acoustic codes. 

iii) Blade-Vortex Interaction Noise 
Blade-vortex interaction noise is impulsive in nature and 

appears as sharp pulses in the acoustic signature. The main 
source term for this mechanism is the loading term in the FW- 
H equation, Eq. (1). Nakamura, Ref. 26, has used a result of 
Farassat, Ref. 15, for calculation of the vortex interaction noise. 
It is in the form of Eq. (5) of this paper without the thickness 
term. Although the surface pressure data has not been available 
in great detail, one can show that the disagreement with mea- 
sured data thus far is mainly due to the acoustic approach. We 
will demonstrate this by a simple example. 

Measured surface pressure data due to blade-vortex inter- 
action shows the impulsive nature of the pressure Ref. 26. In 
the following example, we assume that the impulsive blade 
pressure is like a delta function in time and acts on a circular 
region of radius u in the x,x2-plane as shown in Fig. 4. 

Let the impulse be applied at the time t = 0. We are inter- 
ested in solving 

SOURCE 
rREGION 

x3 

ER 

/ d = O P  
/ P 
/ 
x1 

Fig. 4 The geometry of the impulsive source distribution used in the 
example related to blade-vortex interaction noise. 

(24) n2p' = -I(x1, X2)8(t)8'(X3) 

where I (Y .  r,'l i c  the imniilw intensitv defined from 

I(x1, x2) = 1 p(xl, x2, t)dt (25) 
- -E  

Here p is the surface pressure in the source region. Note that 
this impulsive model of blade pressure corresponds to infinite 
rate of change of p .  The exact solution of Eq. (24), based on 
the method discussed in Refs. 3 and 15, is given as: 

dT (26) a [ I cot edr + 

at 
[ I cot e 

2?Tpf(3, t )  = - - r r2 
T = C f  T = C f  

These line integrals are integrated over the intersection of sphere 
of radius r = ct (with center at the observer) and the source 
region. The curve of intersection is part of a circle as shown 
in Fig. 5 .  

We will now assume that I(xl, x2) = constunt in order to 
show some surprising features of the acoustic field relevant to 
the blade-vortex interaction. Referring to Fig. 5 ,  we can see 
that cot 0 = hlR where R is the radius of the r-curve and h 
is the distance of the observer from xlx2-plane. We distinguish 
two regions of space with different acoustic characteristics. 

/----.. x 
\ v 

INTERSECTION OF , g = O  WITH x,x2- PLANE 

Fig. 5 
distribution. 

The definition of angle Jl,,(t) in the example of impulsive source 



The first is outside the cylinder of radius a with axis along x3- 
axis, and the second region is inside this cylinder. 

If + is the azimuthal angle along the r-curve, then dT = 
Rd+. For the observer in region 1, we have 

( 0  0 < t < 2  

l o  

where r 1  and r2 the distances from the observer to the nearest 
and farthest points of the perimeter of the source, Le., r! = 
h2 + ( d  - and r: = h2 + (d  + a)’. The angle +o(t) is 
half the arc angle of the r-curve covering the source region 
(Fig. 5) .  It is given by 

where d2 = l3I2 - h2 (i.e., d is the distance of the observer 

from the x3-axis). In the range - < t < -, Eq. (27) gives: rl r2 

C C 

From Eq. (28), we obtain 

Substitution of this result into Eq. (29)  gives the acoustic pres- 
sure in this range as required. However, $JA(t) is singular as 

t -+ 1 or t -+ 2. This can be tested eaily by substituting c2t2 = 

r! = h2 + (d  - and c2t2 = h2 + ( d  + a)’into Eq. (29) .  
Therefore, in region 1 (i.e., outside the cylinder of radius a) 
we get an acoustic signal with infinite pressure in its front and 
tail. Note, however, that this acoustic pressure is integrable in 
time so that a microphone will give a finite, but large, signal. 

When the observer is region 2 (i.e., inside the cylinder of 
radius a )  then d < a and we obtain from Eq. (26)  the same 
result as Eq. (27) ,  except that there is now an impulsive pressure 

at exactly the time t = - of the magnitude I. The equation of 

this signal can be written as: 

r r 
C C 

h 
C 

p ’ ( 3 ,  t )  = I6 t -  - ( 3 
Initially, this impulsive pressure does not decay with distance 
from the surface and is confined to the cylindrical region of 
radius a with axis along x3-axis (i.e., a highly directional signal). 
Again using Eq. (29) ,  we can show that we have other (in- 
tegrable) singularities at t = - and t = - in the acoustic 
pressure p ’ ( 3 ,  t ) .  

These results have serious implications for blade-vortex in- 
teraction noise studies. First, there is the possibility of highly 
directional impulsive sound which does not initially decay as 

I 1  r2 . 
C C 

1 
- from the blade surface. Such a phenomenon is observed in 
r 
some experiments, Ref. 27. Second, there is the possibility of 
large acoustic pressure amplitude from blade-vortex interaction 
in linear acoustic calculations. For this reason, it is not a good 
idea to compare peak to peak values of measured acoustic 
pressure signatures with predictions based on Eq. (5). The 
reasons are that: 

i) The current acoustic codes are not designed to capture 
impulsive surface pressure of the type observed. They 
use formulations and algorithms not suitable for calcu- 
lation of this kind of noise in blade-vortex interaction. 

ii) The microphone has integrated the signal over its surface 
so that the peak values have been reduced. 

The remedies for the above problems are: 

i) 

ii) 

iii) 

The acoustic codes should be modified to use two time 
scales for calculations, one for the conventional thick- 
ness and loading calculations and a second with much 
finer time steps for blade-vortex interaction noise cal- 
culation. 
The code should be able to detect impulsive blade surface 
pressure. Careful analytical study, of the type presented 
in the above example, is needed to select a good for- 
mulation suitable for calculation of the sharp pulses gen- 
erated by impulsive surface pressure. Equation (5) is 
perhaps a poor choice. A recent publication by Joshi, 
Liu and Boxwell, Ref. 28, evaluates codes based on two 
different formulations of Farassat, Refs. 15 and 18. 
Peak to peak comparison of experimental data with pre- 
dictions is not meaningful if the predictions do not take 
into account the finite area of the microphone. A better 
comparison is based on the acoustic spectrum. In this 
connection, it must be mentioned that an understanding 
of the microphone and the associated equipment response 
to impulsive acoustic pressure is needed in interpretation 
of the measured acoustic data. 

Concluding Remarks 
In this paper, we have discussed many improvements in the 

application of the acoustic analogy to rotor noise prediction. 
In particular, we have shown how the noise from the shock 
surfaces and the quadrupoles in the boundary layer can be 
calculated. These calculations can all be made similar to the 
surface integrals of the thickness and loading noise. Addition- 
ally, tip vortex and blade wakes contribute quadrupole noise 
which can again be calculated. Order of magnitude analysis 
shows that the shock surfaces and boundary layer quadrupoles 
should be included in acoustic calculations, and both have 
directivity similar to the thickness noise. 

We must emphasize the importance of theoretical acoustic 
analysis in rotor noise research. The acoustic analogy is a 
powerful method with great potential and capable of prediction 
of rotor noise. This potential is not realized if careful analysis 
of formulations and algorithms used in development of codes 
are not performed. Confusion has arisen in the past when this 
procedure was not followed and when sweeping statements 
about the unsuitability of linear analysis for rotor noise pre- 
diction have been made. 

Finally, the acoustic analogy would be useless if good aero- 
dynamic data were not available. There are codes under de- 
velopment which will eventually supply the unsteady blade 
surface pressure. However, it is imperative that experimental 
flow surveys be performed near the blade for both theoretical 
aerodynamicists and rotor acousticians. 
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