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The uses of the refined matrix model recursion

Andrea Brini,a) Marcos Mariño, and Sébastien Stevan
Département de Physique Théorique et Section de Mathématiques, Université de Genève,
Genève CH-1211, Switzerland

(Received 11 November 2010; accepted 14 April 2011; published online 31 May 2011)

We study matrix models in the β-ensemble by building on the refined recursion

relation proposed by Chekhov and Eynard. We present explicit results for the

first β-deformed corrections in the one-cut and the two-cut cases, as well as two

applications to supersymmetric gauge theories: the calculation of superpotentials

in N = 1 gauge theories, and the calculation of vevs of surface operators in

superconformal N = 2 theories and their Liouville duals. Finally, we study the

β-deformation of the Chern–Simons matrix model. Our results indicate that this

model does not provide an appropriate description of the �-deformed topological

string on the resolved conifold, and therefore that the β-deformation might provide a

different generalization of topological string theory in toric Calabi–Yau backgrounds.
C© 2011 American Institute of Physics. [doi:10.1063/1.3587063]

I. INTRODUCTION

Matrix models in the 1/N expansion have become a powerful tool in the study of supersymmetric

gauge theories and string theories. For example, as shown by Dijkgraaf and Vafa,19 the all-genus

free energies of type B topological string theories on certain non-compact Calabi–Yau manifolds

can be computed from the 1/N expansion of simple, polynomial matrix models, and this leads to

exact results for the superpotentials of a large class of N = 1 supersymmetric theories.20 Other

applications include the matrix model formulation of Chern–Simons theories44, 45 and the matrix

model-inspired remodeling of the B-model8, 46 for the mirrors of general toric geometries. As a

consequence of these relationships, the recent progress in solving the 1/N expansion of matrix

models23, 26 has found many applications in string theory and gauge theory.

Most of these applications involve the standard Hermitian matrix model ensemble. There is

a well-known one-parameter deformation of this ensemble, usually called the β-ensemble or the

β-deformation, which involves an extra parameter β. The standard Hermitian ensemble is obtained

when β = 1, and the special values β = 2 and 1/2 correspond to Sp(N ) real quaternionic and

SO(N ) real symmetric matrices, respectively. The 1/N expansion for the more general, β-deformed

ensemble, has been worked out in an algebro-geometric language by Chekhov and Eynard.14, 15

As in Refs. 23 and 26, explicit expressions for the expansion of correlators and free energies are

obtained through a “refined” recursion relation based on the spectral curve of the matrix model with

β = 1.58

The general β ensemble also has many applications. For example, the special values β = 2, 1/2

lead to the enumeration of non-orientable surfaces (see, for example, Refs. 11 and 50), and this can

be used to construct non-critical unoriented strings in an appropriate double-scaling limit11, 31 (see

Refs. 18 and 51 for a review of these ideas). These ensembles also appear naturally when one applies

the techniques pioneered by Dijkgraaf and Vafa to supersymmetric gauge theories with SO(N ) and

Sp(N ) gauge symmetry.3, 41, 42 More recently, there has been renewed interest in the β-ensemble

in the context of the so-called AGT (Alday-Gaiotto-Tachikawa) correspondence between N = 2

gauge theories and Liouville theory.5 In this correspondence, conformal blocks in Liouville theory

a)Author to whom correspondence should be addressed. Electronic mail: Andrea.Brini@unige.ch.
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are identified with �-deformed partition functions52 in N = 2 theories, and it has been argued in

Ref. 21 that the general �-deformation of N = 2 superconformal field theories can be implemented

by a β-deformed matrix model with a Penner-type potential.

In this paper we analyze in detail the recursive proposal by Chekhov and Eynard and its concrete

implementation in various examples. In Sec. II we thoroughly study the algebro-geometric solution

of the loop equations for the β-deformed eigenvalue model; in doing so, we first find a correction

to the diagrammatic solution of Ref. 15, which was also very recently pointed out by Chekhov,14

and discuss various technical issues associated to the β-deformation with respect to the ordinary

β = 1 case. We moreover present explicit formulae for the very first corrections to correlators and

free energies in the β-ensemble for a variety of situations and potentials; in the one-cut case and

for polynomial potentials, some of these formulae were already derived in Ref. 29 and used there

to analyze the universality properties of the asymptotic enumeration of graphs in non-orientable

surfaces (see also the recent paper7 for another derivation of explicit one-cut formulae). In Sec. III,

we use these results to study applications to supersymmetric gauge theories. The first application

is the computation of N = 1 superpotentials, where we recover and generalize previous results in

Refs. 3, 34, 41, and 42. Our second application is to the AGT correspondence, where we consider

surface operators6, 22, 40 in a very simple example associated to a sphere with three punctures. In this

case, we generalize the B-model computation in Ref. 40 and show that the β-deformed correlators

obtained with the formalism of Ref. 15 lead to correlation functions in Liouville theory for general

background charge.

One motivation for the present work was to find a matrix model formulation of topological string

theory in an �-background. This background provides a one-parameter deformation of topological

string theory (at least on certain toric Calabi–Yau manifolds) which was originally obtained via a

five-dimensional version of Nekrasov’s partition function.52 The �-deformed topological string was

reformulated later on in terms of the refined topological vertex.35 More recently, the holomorphic

anomaly equation has been generalized to the �-background for N = 2 gauge theories43 and more

generally for the A-model on local Calabi Yau manifolds,33 thus providing an important step toward

a B-model version of this deformed theory.

It is natural to try to extend the remodeling of the B-model8 to this deformation, and the

refined recursion relation of Chekhov and Eynard is a natural candidate for this, as suggested by

the arguments of Ref. 21 and by our computations in Sec. III B. In order to test this idea we

analyze, in Sec. IV, the β-deformed Chern–Simons (CS) matrix model of Ref. 44. When β = 1 this

model is dual to type A topological string theory on the resolved conifold, and its β-deformation

is a natural candidate for the �-deformation of this theory. Our explicit computations, verified by

perturbative calculations, show that the recursion of Ref. 15 works perfectly well for the CS matrix

model,59 but unfortunately they do not seem compatible with the �-deformation, at least when

taken at face value (this was mentioned as well in Ref. 33). An interesting feature we discover is

a highly involved analytic dependence of β-deformed amplitudes on the closed string moduli with

respect to their “refined” counterpart. This degree of sophistication only increases when moving

to multi-cut models, where the exact formulae we find, e.g., for the cubic matrix model, display a

more intricated analytic structure as compared to oriented, open amplitudes at higher genus.8, 26 In

particular, they cannot be immediately related to the same type of holomorphic quasi-modular forms

of the ordinary topological string in a self-dual background,2 and it would be interesting to see what

kind of generalization would be needed to encompass this more general case.

Our work indicates that the matrix model β-deformation can be defined and computed for the

mirrors of other toric Calabi–Yau manifolds. An important example is the mirrors of Ap fibrations

over P
1. These models can be described by Chern–Simons matrix models on lens spaces,1 and

one can generalize the computation performed in Sec. IV to this more general setting. In fact, it

is likely, in view of the progress in formulating the β-deformation in a geometric language,17 that

the β-deformation provides a generalization of the B-model for the mirrors of toric Calabi–Yaus.

According to our explicit results, it seems that this deformation will be in general different from the

�-deformation. If this is indeed the case it would be interesting to understand more aspects of this

deformation. For example, one could use the Chekhov–Eynard recursion, together with the strategy

of Ref. 25, to formulate a holomorphic anomaly equation for the β-deformed free energies. More

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.194.8.73 On: Mon, 24 Mar 2014 09:39:43



052305-3 The uses of the refined matrix model recursion J. Math. Phys. 52, 052305 (2011)

generally, one should try to understand this deformation in the language of the A-model and in the

gauge theory language.

II. BETA ENSEMBLE AND TOPOLOGICAL RECURSION

In this section, we review and analyze the formalism of Chekhov and Eynard,15 which proposes a

topological recursion for the beta ensemble of random matrices. We will discuss the implementation

of their formulae and present explicit expressions for various models.

A. General aspects

In terms of eigenvalues, the beta ensemble of random matrices is defined by the partition function

Z =
1

N !(2π )N

∫ N
∏

i=1

dλi |�(λ)|2βe
− β

gs

∑N
i=1 V (λi ). (2.1)

In what follows we will mainly follow the normalizations in Ref. 15. The connected correlators are

defined through

W (p1, . . . , ph) = g2−h
s βh−1

〈

Tr
1

p1 − M
· · · Tr

1

ph − M

〉(c)

, h ≥ 1. (2.2)

The correlator W (p) for h = 1 is usually called the resolvent of the matrix model. Both the free

energies and the connected correlators have an asymptotic expansion in gs , in which the ’t Hooft

parameters are kept fixed. In the case of the free energy F = log Z , we have

F =
∑

k,l≥0

g2k+l−2
s β1−l/2−kγ l Fk,l , (2.3)

where

γ =
√

β −
√

β−1. (2.4)

For the first few terms we find, explicitly,

F = g−2
s βF0,0 + g−1

s (β − 1)F0,1 + (β + β−1 − 2)F0,2 + F1,0

+ gs

(

(β − 1)3

β2
F0,3 + (1 − β−1)F1,1

)

+ g2
s

(

β−1 F2,0 +
(β − 1)2

β2
F1,2 +

(β − 1)4

β3
F0,4

)

+ · · ·

(2.5)

The gs expansion of the connected correlators is written as

W (p1, . . . , ph) =
∞
∑

g=0

�
2gWg(p1, . . . , ph), (2.6)

where g can be an integer or a half-integer, and � is defined as

� =
gs√
β

. (2.7)

This expansion defines the “genus” g correlators, which can be in turn expanded as

Wg(p1, . . . , ph) =
[g]
∑

k=0

γ 2g−2k Wk,2g−2k(p1, · · · , ph), (2.8)
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and leads to the following expansion for connected correlators,

〈TrMn1 · · · TrMnh 〉(c) =
(

gs

β

)h
∑

g≥0

[g]
∑

k=0

�
2g−2γ 2g−2k〈TrMn1 . . . TrMnh 〉(c)

k,l . (2.9)

The beta ensemble might be regarded as a natural deformation of the standard Hermitian ensemble,

since when β = 1 (2.1) becomes the standard partition function of the (gauged) Hermitian matrix

model. In this case, in the expansion of the free energy and the correlators only the terms Fg,0 and

Wg,0 contribute (with g a non-negative integer). This leads to the standard expansion in powers of

g2
s of the Hermitian matrix model. On the other hand, there are two special values of β which have

a matrix model realization: for β = 1/2, (2.1) describes an ensemble of real symmetric matrices

with orthogonal SO(N ) symmetry, while the case β = 2 describes an ensemble of quaternionic real

matrices with symplectic Sp(N ) symmetry.

Example 2.1: The Gaussian β ensemble. In the Gaussian case,

V (x) = x2, (2.10)

the matrix integral (2.1) can be computed at finite N by using Mehta’s formula,

∫ N
∏

i=1

dλi |�(λ)|2βe− 1
2

∑N
i=1 λ2

i = (2π )N/2

N
∏

j=1

Ŵ(1 + β j)

Ŵ(1 + β)
. (2.11)

The result can be expressed in terms of the double Gamma Barnes function,

Ŵ2(x |a, b) = exp

(

d

ds

∣

∣

∣

s=0
ζ2(s; a, b, x)

)

, (2.12)

where the rhs involves the Barnes double zeta function

ζ2(s; a, b, x) =
1

Ŵ(s)

∫ ∞

0

dt t s−1 e−t x

(1 − e−at )(1 − e−bt )
, (2.13)

see Ref. 55 for a summary of properties of these functions. Indeed, it is easy to show that

N
∏

j=1

Ŵ(1 + β j) = (2π )N/2βN/2+βN (N−1)/2Ŵ(1 + Nβ)Ŵ(N )Ŵ−1
2 (N ; 1/β, 1). (2.14)

We can now obtain the large N expansion of (2.1) by using the asymptotic expansion of the Barnes

double-Gamma function,55

log Ŵ2(x ; a, b) =
1

ab

(

−
1

2
x2 log x +

3

4
x2

)

+
1

2

(

a

b
+

b

a

)

x log x −
1

12

(

2 +
a

b
+

b

a

)

log x

− χ ′(0; a, b) +
∞
∑

n=3

(n − 3)!en−2(a, b)x2−n,

(2.15)

where en(a, b) are defined by the expansion

1

(1 − e−at )(1 − e−bt )
=

∞
∑

n=−2

en(a, b)tn (2.16)

and χ (s; a, b) is the Riemann–Barnes double zeta function,

χ (s; a, b) =
∑

(m,n)∈N2
0

(am + bn)−s, (2.17)
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with N
2
0 = N

2\{(0, 0)}. Up to some additive terms, one finds

F =
1

2
βt2

(

log(t) −
3

2

)

g−2
s , +

β − 1

2
t (log(βt) − 1) g−1

s

+
1 − 3β + β2

12β
log(βt) +

1 − β

24βt
gs +

1 − 5β2 + β4

720β3t2
g2

s + · · · ,

(2.18)

where as usual

t = gs N (2.19)

is the ’t Hooft coupling. From this expression we can read off the different Fk,l of the Gaussian

ensemble. The asymptotic expansion (2.18) can be written as

F = − log Ŵ2 (t ; −gs, gs/β) . (2.20)

B. The Chekhov–Eynard recursion for the beta ensemble

When β = 1, the full 1/N expansion (2.6), (2.3) of the matrix model was obtained in Refs. 16

and 23 in terms of residue calculus on the spectral curve of the model. We recall that the spectral

curve is defined by the following relation:

W0(x) =
1

2

(

V ′(x) − y(x)
)

, (2.21)

where W0(x) is the planar resolvent. In this paper we will be interested in the case of hyperelliptic

spectral curves. Here, y(x) can be written as

y(x) = M(x)
√

σ (x), (2.22)

where

σ (x) =
2s
∏

i=1

(x − xi ), (2.23)

and thus realizes the plane complex curve Ŵ = {(x, y(x)), x ∈ C} as a two-sheeted cover of the

complex plane, branched at x = xi ; if p ∈ Ŵ, we will denote by p̄ the conjugate point under the

projection map to the eigenvalue plane,

(x( p̄), y( p̄)) = (x(p),−y(p)). (2.24)

In the following, we will often denote the eigenvalue location as p, therefore writing x(p) = p

for the uniformization variable. The function M(p) in (2.22) is also called the moment function.

In matrix models with polynomial potentials M(p) is also a polynomial. If the potential contains

simple logarithms, as in the Penner model that we will analyze later on, M(p) is rather a rational

function. In many situations related to topological string theory, M(p) can be written in terms of an

inverse hyperbolic function.46 For future use, we will denote by C a contour encircling the branch

points and the branch cuts between them.

The Chekhov–Eynard recursion relation, proposed in Ref. 15, gives a solution to the 1/N

expansion (2.3), (2.6) in the general β ensemble, in terms of period integrals defined on the spectral

curve (2.22). As we will show in a moment, one important difference between the recursion proposed

in Refs. 23 and 26 and the one obtained in Ref. 15 is that, in the first case, the recursion can be

formulated in terms of residues in the branch points of the curve. However, in the recursion,15 the

expressions for Wg with g half-integer involve contour integrals where the integrand has branch

cuts, and they cannot be reduced to residues at the branch points.

The starting point to derive the recursion relations are the loop equations of the β ensemble. In

the following we will assume that V (p) is a polynomial of degree d. The loop equations have been

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.194.8.73 On: Mon, 24 Mar 2014 09:39:43



052305-6 A. Brini, M. Marino, and S. Stevan J. Math. Phys. 52, 052305 (2011)

written down explicitly in Ref. 24, and they read, with the notations above,

V ′(p1)W (p1, . . . , pk) − U (p1, . . . , pk)

= 2W (p1)W (p1, . . . , pk) + �
2W (p1, p1, . . . , pk) + �γ

∂

∂p1

W (p1, p2, . . . , pk)

+
k−2
∑

j=1

∑

I∈K j

W (p1, pI )W (p1, pK\I )

+
k
∑

j=2

∂

∂p j

W (p2, . . . , p j , . . . , pk) − W (p2, . . . , p1, . . . , pk)

p j − p1

,

(2.25)

for k ≥ 2, while for k = 1 we have simply

V ′(p)W (p) − U (p) = W 2(p) + �
2W (p, p) + �γ

∂

∂p
W (p). (2.26)

In these equations, U (p1, · · · , pk) is a polynomial in p1 of degree δk1 + deg(V ′) − 2. It turns out

that these equations can be solved recursively in the gs expansion. To see this, let us look at the

simple example of k = 1, and let us plug in the expansion (2.6). The first β-ensemble correction is

W1/2(p). It satisfies the equation

(

V ′(p) − 2W0(p)
)

W1/2(p) − U1/2(p) = γ
∂W0(p)

∂p
. (2.27)

This can be solved as

√

σ (p)W1/2(p) =
γ

M(p)

∂W0(p)

∂p
+

U1/2(p)

M(p)
. (2.28)

Notice that the rhs in this equation is not a rational function, as it happens in the solution of the loop

equations in the β = 1 case, since the derivative of the planar resolvent involves the multivalued

function
√

σ (p). However, one can still use the techniques developed in Refs. 16, 23 and 27 in order

to give an explicit expression for W1/2(p). Let dS(p, q) denote the unique third kind differential on

the spectral curve having a simple pole at p = q and p = q̄ with residues +1 and −1, respectively,

and vanishing A-periods. We can write

W1/2(p1) = −Resp=p1
dS(p1, p)W1/2(p), (2.29)

where p1 is a point outside C. We now take into account that W1/2(p) has no residues at points away

from the contour C, as well as no residue at p = ∞. The first fact follows from the assumption

that there are no eigenvalues of the matrix model away from the cut (see Ref. 23, Eq. (2.13)), and

the second fact follows from the expansion at infinity expressing W1/2(p) in terms of correlation

functions,

W (p) = gs

∑

n≥1

〈Tr Mn〉
pn+1

. (2.30)

By contour deformation, we find that

W1/2(p) =
1

2π i

∮

C

dS(p, q)W1/2(q). (2.31)

Using now the loop equation and the expression for the spectral curve, we find

W1/2(p) =
1

2π i

∮

C

dS(p, q)

y(q)
γ

∂

∂q
W0(q) +

∮

C

dS(p, q)

y(q)
U1/2(q). (2.32)

Since U1/2(q) is a polynomial in q, the last integral vanishes, and we obtain

W1/2(p) =
1

2π i

∮

C

dS(p, q)

y(q)

[

γ
∂

∂q
W0(q)

]

. (2.33)
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The same result can be obtained using the inversion operator of Refs. 15 and 16. Using the expansion

(2.8), we can rewrite this as

W0,1(p) = −
1

4π i

∮

C

dS(p, q)
y′(q)

y(q)
, (2.34)

where we have assumed that V ′′(q) is analytic inside C.

Let us now consider the case k = 2. The first non-trivial correction in the β ensemble to the

two-point function is W1/2(p1, p2). It satisfies the equation
(

V ′(p1) − 2W0(p1)
)

W1/2(p1, p2) − U1/2(p1, p2)

= 2W1/2(p1)W0(p1, p2) + γ
∂

∂p1

W0(p1, p2) +
∂

∂p2

[

W1/2(p2) − W1/2(p1)

p2 − p1

]

.
(2.35)

We can use the same contour deformation argument. There will not be any contribution from the

polynomial U1/2(p1, p2) nor from

∂

∂p2

[

W1/2(p2)

p2 − p1

]

. (2.36)

However, there is a contribution from

−
∂

∂p2

[

W1/2(p1)

p2 − p1

]

=
W1/2(p1)

(p1 − p2)2
(2.37)

and the final expression is

W1/2(p1, p2) =
∮

C

dS(p1, p)

y(p)

[

2W1/2(p1)

(

W0(p1, p2) +
1

2

1

(p1 − p2)2

)

+ γ
∂

∂p1

W0(p1, p2)

]

.

(2.38)

It involves the “corrected” two-point function as in Ref. 23 and subsequent works.60 Notice again

that the integrand in the above formula is not a rational function, due to the derivative term.

One can see that the general solution for the “genus” g correlators Wg(p1, . . . , ph) is

Wg(p, p1, . . . , pk) =
∮

C

dq

2π i

dS(p, q)

y(q)

( g
∑

h=0

∑

J⊂K

Wh(q, pJ )Wg−h(q, pK/J )

+ Wg−1(q, q, pK ) + γ
d

dq
Wg−1/2(q, p1, . . . , pk)

)

,

(2.39)

where

Wg(p1, . . . , pk) = Wg(p1, . . . , pk) +
1

2

δk2δg0

(p1 − p2)2
. (2.40)

The free energies can be computed by using the loop inversion operator introduced in Refs. 15, 16,

and 26. In the “stable” case, i.e., for (k, l) 
= (0, 0), (0, 1), (1, 0), and (0, 2), they are given by

Fk,l =
1

2 − 2k − l

∮

C

dq

2π i
�(q)Wk,l(q), (2.41)

where

�′(q) = y(q) (2.42)

is a primitive of the spectral curve. For the unstable cases, we have specific formulae which can be

found in Refs. 14 and 15. In this paper we will be particularly interested in the first correction to the

free energy, which is given by

F0,1 =
1

2π

∫

C

dq|y(q)| log |y(q)|. (2.43)

Here, the integration is over the union of the intervals where the density of eigenvalues is non-

vanishing. To make our notation simpler, we have denoted this support by C again.
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In order to obtain concrete results for the correlators using (2.39), we need explicit formulae for

the differential dS(p, q). When the spectral curve is of the form (2.22) we can proceed as follows.23

We define the A j cycle of this curve as the cycle around the cut

(x2 j−1, x2 j ), j = 1, . . . , s − 1. (2.44)

There exists a unique set of s − 1 polynomials of degree s − 2, denoted by L j (p), such that the

differentials

ω j =
1

2π i

L j (p)
√

σ (p)
dp (2.45)

satisfy
∮

A j

ωi = δi j , i, j = 1, . . . , s − 1. (2.46)

The ωi s are called normalized holomorphic differentials. The differential dS(p, q) can then be

written as

dS(p, q) =
√

σ (q)
√

σ (p)

⎛

⎝

1

p − q
−

s−1
∑

j=1

C j (q)L j (p)

⎞

⎠ dp, (2.47)

where

C j (q) :=
1

2π i

∮

A j

dp
√

σ (p)

1

p − q
. (2.48)

In this formula, it is assumed that q lies outside the contours A j . One has to be careful when q

approaches some branch point x j . When q lies inside the contour A j , then one has

C
reg

l (q) +
δl j√
σ (q)

=
1

2π i

∮

A j

dp
√

σ (p)

1

p − q
(2.49)

which is analytic in q when q approaches x2 j−1 or x2 j .

C. One-cut examples

In the one-cut case we simply have

dS(p, q)

y(q)
=

1

M(q)
√

σ (p)(p − q)
. (2.50)

We will now present some explicit formulae for the very first corrections to the connected correlators.

The first correction to the resolvent is given by (2.51), and we find

W0,1(p) = −
1

2
√

σ (p)

∮

C

dq

2π i

y′(q)

M(q)(p − q)
. (2.51)

An explicit, general formula for this correlator was obtained in Ref. 29 by using contour deformation.

Assuming we have a polynomial potential of degree d, we will write the moment function as

M(z) = c

d−2
∏

i=1

(z − zi ), (2.52)

where c is a constant. We can calculate (2.33) by deforming the contour. This picks a pole at q = p,

a pole at infinity, and poles at the zeroes of M(z). A simple computation gives

W0,1(p) = −
1

2

y′(p)

y(p)
+

1

2
√

σ (p)

[

d − 1 +
∑

i

√
σ (zi )

p − zi

]

. (2.53)
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This can be written in a way which makes manifest the absence of singularities at p = zi ,

W0,1(p) =
d − 1

2
√

σ (p)
−

1

4

2p − a − b

(p − a)(p − b)
−

1

2
√

σ (p)

∑

i

[√
σ (p) −

√
σ (zi )

p − zi

]

. (2.54)

In the one-cut case it is also possible to write a very explicit formula for F0,1 (or rather for its

derivative with respect to the ’t Hooft parameter t). Using that (see, for example, Ref. 18)

∂t y(q) = −
2

√
σ (q)

, (2.55)

we find

∂t F0,1 = 1 +
1

π

∫

C

dq
log |y(q)|
√

|σ (q)|
. (2.56)

This is easy to calculate in terms of the parameters (2.52) appearing in the moment function, and

one finds the general one-cut expression,

∂t F0,1 = 1 +
1

2
log
(b − a

4

)2

+ log c +
∑

i

log

[

1

2

(

zi −
a + b

2
+
√

σ (zi )
)

]

. (2.57)

For higher corrections, general formulae become cumbersome (see Ref. 7 for an example), but

expressions for particular potentials are easy to derive.

Example 2.2: The Gaussian potential. Let us consider the Gaussian potential,

V (x) =
x2

2
. (2.58)

In this case, the moment function M(p) is trivial and we simply obtain

W0,1(p) =
W ′

0(p)

y(p)
=

1

2

(

1
√

p2 − 4t
−

p

p2 − 4t

)

. (2.59)

Higher order correlators can be similarly computed in a straightforward fashion from (2.39). We

find, for example,

W0,2(p) =
p2 + t

(

p2 − 4t
)5/2

−
p

(

p2 − 4t
)2

,

W0,3(p) = 5

(

(

p2 + t
)

(

p2 − 4t
)7/2

−
(

p3 + 2pt
)

(

p2 − 4t
)4

)

,

W1,1(p) =
1

2

(

p2 + 6t
(

p2 − 4t
)7/2

−
p
(

p2 + 30t
)

(

p2 − 4t
)4

)

,

W1,2(p) =
1

2

(

21p4 + 422p2t + 200t2

(

p2 − 4t
)11/2

−
3
(

7p3 + 48pt
)

(

p2 − 4t
)5

)

. (2.60)

Example 2.3: The cubic potential. Let us consider a cubic potential

V (x) =
x2

2
+

g

3
x3 (2.61)

with a classical maximum at p = −1/g and a minimum at p = 0 (see Fig. 1). In the stable one-cut

phase the eigenvalue density is supported on an interval (a, b) around p = 0: the spectral curve then

takes the form

y(p) = M(p)
√

(p − a)(p − b), M(p) = g(p − p0), (2.62)
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p0 ba

V(p)

p

FIG. 1. (Color online) The cubic matrix model in the single-cut phase.

where

p0 = −
1

g
−

a + b

2
. (2.63)

The branch points can be expressed as a function of the (only) ’t Hooft parameter by imposing the

correct asymptotics for the planar resolvent,10 and one finds, as a power series in t ,

a = 2
√

t − 2gt + 4g2t3/2 − 12g3t2 + 36g4t5/2 − 128g5t3 + O
(

t7/2
)

,

b = −2
√

t − 2gt − 4g2t3/2 − 12g3t2 − 36g4t5/2 − 128g5t3 + O
(

t7/2
)

.

It is now straightforward to compute β-deformed correlators from (2.39). For example, (2.54) gives

W0,1(p) = −
a(2b − 3p + p0) − 3bp + bp0 + 4p2 − 2pp0

4σ (p)(p − p0)
−

√
(a − p0)(b − p0) − 2p + 2p0

2(p − p0)
√

σ (p)
.

(2.64)

As an instance we have, up to order t3 and g7,

〈

TrM3
〉

=
−4gt3 + · · ·

gs

+
(

1 − β−1
) (

9gt2 + 118g3t3 + · · ·
)

+ gsβ
−1
(

gt + 28g3t2 + 664g5t3 + · · ·
)

+ gs(1 − β−1)2

(

6

g
+ 17gt + 182g3t2 + 2228g5t3 + · · ·

)

+ g2
s (1 − β−1)

(

3g + 198g3t + 6959g5t2 + 202254g7t3 + · · ·
)

+ · · · (2.65)

〈

TrM2TrM
〉(c) =−4

(

gt2+10g3t3 + · · ·
)

+ gs

(

1−β−1
)

(

2

g
+8gt+106g3t2+1640g5t3

)

+ · · ·

(2.66)

Example 2.4: The quartic potential. Consider finally a potential of the form,

V (x) =
x2

2
+ gx4. (2.67)

The resolvent is given by10

W0(z) =
1

2

(

z + 4gz3 −
(

1 + 8ga2 + 4gz2
)

√

z2 − 4a2

)

, (2.68)
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where a is a function of g, t

a2 =
1

24g

(

−1 +
√

1 + 48gt

)

. (2.69)

The moment function has two zeros at

z2
0 = −

1 + 8ga2

4g
, (2.70)

and (2.54) gives29

W0,1(z) = −
1

2

z

z2 − 4a2
+

3

2z
√

1 − 4a2/z2
+

√

1 − 4a2/z2
0

1 − 4a2/z2

z2
0

z(z2 − z2
0)

−
z

z2 − z2
0

. (2.71)

This expression leads to explicit results for the enumeration of quadrangulations of the projective

plane RP
2, see Ref. 29 for more details.

D. Two-cut examples

Let us now consider the two-cut case, where we have s = 2. In this elliptic case there is one

single integral C1(p) (2.48) to compute, and we can obtain very explicit expressions in terms of

elliptic integrals:8

C1(p) =
2

π (p − x3)(p − x2)
√

(x1 − x3)(x2 − x4)

[

(x2 − x3)�(n4, k) + (p − x2)K (k)

]

,

C
reg

1 (p) =
2

π (p − x3)(p − x2)
√

(x1 − x3)(x2 − x4)

[

(x3 − x2)�(n1, k) + (p − x3)K (k)

]

,

L1 =
π

√
(x1 − x3)(x2 − x4)

2K (k)
,

(2.72)

where

k2 =
(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
, n4 =

(x2 − x1)(p − x3)

(x3 − x1)(p − x2)
, n1 =

(x4 − x3)(p − x2)

(x4 − x2)(p − x3)
, (2.73)

�(n, k) is the elliptic integral of the third kind,

�(n, k) =
∫ 1

0

dt

(1 − nt2)
√

(1 − t2)(1 − k2t2)
, (2.74)

and K (k) is the standard elliptic integral of the second kind. The leading correction W0,1 to the

resolvent is given by (2.51). We will split the rhs as W
(A)
0,1 (p) + W

(B)
0,1 (p), where

W
(A)
0,1 (p) := −

1

4π i
√

σ (p)

∮

C

y′(q)dq

M(q)(p − q)
, (2.75)

W
(B)
0,1 (p) :=

1

4π i
√

σ (p)

[∮

C1

C
reg

1 (q)L1 y′(q)dq

M(q)
+
∮

C2

C1(q)L1 y′(q)dq

M(q)

]

. (2.76)

When M(p) is a rational function of p, the integrand in (2.75) is a single valued meromorphic

function outside the cuts and we can compute W
(A)
0,1 (p) by deforming the contour and picking up

poles just as we did for the single cut case. On the other hand, as was pointed out in the discussion

of Sec. II B, this is not the case for the expressions (2.72) for C1(p) and C
reg

1 (p), which are only

well defined in the neighbourhood of the cuts [x3, x4] and [x1, x2], respectively. A way to treat the

integrals appearing in (2.76) is the following: for a fixed polarization of the spectral curve, the elliptic

modulus k in (2.73) vanishes by definition when we shrink the A-cycle. By expanding the complete
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elliptic integrals �(n, k) and K (k) appearing in (2.72) around k = 0 and integrating term by term,

we obtain an expansion of the form

W
(B)
0,1 (p) =

1

4π i
√

σ (p)

∞
∑

n=0

[

∮

C1

C
[n],reg

1 (q)L1 y′(q)dq

M(q)
+
∮

C2

C
[n]
1 (q)L1 y′(q)dq

M(q)

]

kn, (2.77)

where we denoted

f [n] :=
1

n!

∂n f

∂kn

∣

∣

∣

∣

k=0

. (2.78)

At any fixed order in k, by formulae (A2) and (A1), the integrands of (2.77) are algebraic functions

of q as long as the moment function is rational and can be computed exactly in terms of complete

elliptic integrals.

It should be stressed that, while (2.77) yields only a perturbative expression valid for small k,

this procedure holds true for a generic, fixed choice of polarization.61 It therefore provides a way

to expand the amplitudes around any boundary point in the moduli space where the spectral curve

develops a nodal singularity.

Example 2.5: The cubic matrix model. As a first application of our formulae, let us consider the

case of the cubic matrix model with

V (p) =
p2

2
+ g

p3

3
(2.79)

in the two-cut case. The spectral curve reads

y(p) = M(p)
√

σ (p), M(p) = g, σ (p) =
√

(p − x1)(p − x2)(p − x3)(p − x4). (2.80)

Following Refs. 13 and 38, we can parametrize the branch points in terms of a pair of “B-model”

variables (z1, z2) as
∑

i

xi = 2Q, x2 − x1 = 2
√

z1, x4 − x3 = 2
√

z2, −x1 − x2 + x3 + x4 = 2I, (2.81)

where

Q = −
1

g
, I =

√

1

g2
− 2(z1 + z2). (2.82)

The ’t Hooft parameters can be computed explicitly in terms of complete elliptic integrals32 as

t1 =
(x4 − x3)(x2 − x4)(x1 − x4)2

π
√

(x1 − x3)(x2 − x4)
� (ñ1, k) , (2.83)

t2 =
(x4 − x2)(x2 − x1)(x3 − x2)2

π
√

(x1 − x3)(x2 − x4)
� (ñ2, k) , (2.84)

where

k2 =
(x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4)
, ñ1 =

x3 − x4

x3 − x1

, ñ2 =
x1 − x2

x1 − x3

. (2.85)

This can be inverted as

z1 = −4t1 + 16g2t2
1 − 24g2t1t2 + · · · , (2.86)

z2 = 4t2 − 24g2t1t2 + 16g2t2
2 + · · · (2.87)

Let us turn to compute W
(B)
0,1 (p) first. We can write it as

W
(B)
0,1 (p) =

I1(t1, t2) + I2(t1, t2)
√

σ (p)
(2.88)
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with

I j =
∞
∑

n=0

[

∮

A j

C
[n],reg

1 (q)y′(q)

4π i M(q)L

]

kn.

We find

− I1 =
1

32
z1

(

8g + 24g3z2 + 81g5z2
2

)

+
1

64
z2

1

(

20g3 + 208g5z2 + 1269g7z2
2

)

+ · · ·

I2 =
(

gz2

4
+

5g3z2
2

16

)

+ z1

(

3g3z2

4
+

13g5z2
2

4

)

+ z2
1

(

81g5z2

32
+

1269g7z2
2

64

)

+ · · · ,

(2.89)

whereas the residue computation for W
(A)
0,1 (p) yields

W
(A)
0,1 (p) =

1

4

4
∑

i=1

1

xi − p
+

1 + 2gp

2g
√

σ (p)
. (2.90)

We can compare our result to explicit perturbative computations for the β-deformed cubic matrix

model, along the lines of Ref. 39. As an example, (2.88), (2.90) together yield up to quadratic order

in t1 and t2,

〈TrM〉 =
(

−
t1

g
− gt2

1 − gt2
2 + 4gt2t1 + 30g3t2

2 t1 − 30g3t2t2
1 − 708g5t2

2 t2
1 + · · ·

)

g−1
s

+
(

1 − β−1
) [

g(t1 + t2) + g3
(

9t2
2 − 9t2

1

)

+ g5
(

−162t2
1 t2 − 162t1t2

2

)

+ · · ·
]

+ · · · ,

(2.91)

which perfectly agrees with the computation from perturbation theory.

Interestingly, a closed form expression for W0,1(p) can be found as a function of the branch

points. It was shown in Ref. 34 that, for matrix models with constant moment function M(p) = g,

W0,1 is directly related to the planar resolvent as follows

W0,1(p) = ∂t W0(p) −
1

4
∂p ln σ (p). (2.92)

The first term of the rhs can be evaluated very explicitly upon expressing the derivative with respect

to the total ’t Hooft coupling in terms of derivatives with respect to the branch points, following.47

The partial derivatives Ai, j = ∂xi

∂t j
satisfy the linear system

4
∑

i=1

M(xi )x
k
i Ai, j = 4δk,2, (2.93)

4
∑

i=1

M(xi )Ki Ai, j = 4πδ j,2, (2.94)

where we denoted

Ki =
∫ x4

x3

√
σ (p)

p − xi

. (2.95)

As the Ai, j are completely determined by (2.93) and (2.94), it is straightforward to perform explicitly

the derivatives in (2.92) and obtain a compact expression for W0,1(p) as a function of the branch

points. We get

W0,1(p) =
1

√
σ (p)

[

(x2 − x3)
� (ñ2, k)

K (k)
−

π
√

(x1 − x3)(x2 − x4)

4K (k)
+ p − x3

]

−
σ ′(p)

4σ (p)
. (2.96)
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x
1

V(p)

px2 x4x3

FIG. 2. (Color online) The double-well potential in the symmetric 2-cut phase.

It is worthwhile to remark that this expression has a more involved dependence on the branch

points as compared to oriented, open string amplitudes at higher genus. The ordinary topological

recursion23, 26 prescribes the following general form for the β = 1 correlators in the two-cut case:

Wg,0(p1, . . . , ph) =
3g−3+2h
∑

n=0

(

E(k)

K (k)

)n

fn({xi }, {p j }) =
3g−3+2h
∑

n=0

(E2(τ ))n f̃n(τ, {p j }), (2.97)

where τ is the half-period ratio on the mirror curve, f̃n are holomorphic, weight −2n modular forms

for fixed p j , and E2(τ ) is the second Eisenstein series (see Refs. 9 and 12 for a detailed discussion).

In particular, only first- and second-kind elliptic integrals are involved for β = 1, whereas in the β-

deformed case, as (2.96) shows, we have a more sophisticated dependence on closed string moduli

due to the appearance of elliptic integrals of the third kind at prescribed values for the elliptic

characteristic. It would be interesting to track the origin of this higher degree of complexity for

β-deformed amplitudes.

Example 2.6: The symmetric double-well. As the simplest instance of a two-cut model with

non-trivial moment function, consider the double well potential,

V (p) = −
p2

2
+ g

p4

4
, (2.98)

depicted in Fig. 2. The potential has two minima at p = ±1/
√

g and a maximum at p = 0. For

simplicity we consider the case in which we equally distribute the eigenvalues between the two

minima, i.e., we restrict to the symmetric slice t1 = t3 = t/2, t2 = 0. The moment function in this

case takes the form

M(p) = gp. (2.99)

The branch points can be readily computed as a function of the total ’t Hooft coupling t by imposing

the Z2 symmetry between the cuts and the leading asymptotics of the resolvent. We get

x1 = −

√

1

g
+

2
√

t
√

g
, x2 = −

√

1

g
−

2
√

t
√

g
, x3 =

√

1

g
−

2
√

t
√

g
, x4 =

√

1

g
+

2
√

t
√

g
. (2.100)

We now turn to compute W
(B)
0,1 (p). In this case, the integrals in (2.76) can be computed exactly. To

see this, let us consider the P SL(2, C) transformation

p → p̃ =
αp + β

γ p + δ
, A =

(

α β

γ δ

)

∈ P SL(2, C) (2.101)

with

α = −δ = (x4x1 − x2x3) ζ,

β = (x1x2x3 − x1x3x4 + x2x3x4 − x1x2x4)ζ,

γ = (x1 + x4 − x2 − x3)ζ.

(2.102)
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In these equations, ζ is given by

ζ :=
(x4 − x1)

(x1 − x3)
√

(x1 − x4)(x1 − x2)(x2 − x4)(x3 − x4)
. (2.103)

Let us apply this transformation to the second integral on the rhs of (2.76). Then the sum of the two

integrals becomes the single definite integral

∮

C1

dq

4π i

[(

y′(q̃)

M(q̃)
+

y′(q)

M(q)

)

C
reg

1 (q)L1 +
(x1 − x2 − x3 + x4)y′(q̃)

(x1(x4 − q) + (x3 − x4)q + x2(q − x3))M(q̃)

]

.

(2.104)

In the case of the symmetric double-well, (2.100) implies

y′(q̃)

M(q̃)
= −

y′(q)

M(q)
, x1 + x4 − x2 − x3 = 0, (2.105)

therefore,

W
(B)
0,1 (p) = 0. (2.106)

For W
(A)
0,1 (p) we instead find

W
(A)
0,1 (p) =

√
1 − 4t + 3gp2

2pg
√

σ (p)
+

−3g2 p4 + g
(

4p2 + 4t
)

− 1

2pg2σ (p)
. (2.107)

As an example, this yields

〈

TrM4
〉

0,1
=

1

g2
−

2t

g
− t2 − 2gt3 − 5g2t4 − 14g3t5 + O(g4). (2.108)

III. APPLICATIONS TO SUPERSYMMETRIC GAUGE THEORIES

A. Superpotentials in N = 1 gauge theories

In Refs. 19 and 20 Dijkgraaf and Vafa argued that superpotentials in a large class of N = 1

supersymmetric gauge theories can be computed by using matrix models. Let us consider an N = 1

supersymmetric gauge theory with gauge group G = U(N ), SO(N ) or Sp(N ), where the superfield

strength is denoted by Wα . There is also a chiral superfield � in a representation R of the gauge

group G, with a tree level superpotential Wtree(�), which we will assume to be a polynomial of

degree d:

Wtree(�) =
d
∑

j=1

g j

j
Tr� j . (3.1)

If all roots of W ′
tree(x) = gd

∏d−1
i=1 (x − ai ) are distinct, the matter fields are all massive; a classical

vev for �, where Ni of its eigenvalues are equal to ai , spontaneously breaks part of the gauge

symmetry, and the massive fields can be integrated out to get an effective action for the unbroken

gauge degrees of freedom at low energy.

Depending on the gauge group and the representation, we will end up with different patterns of

gauge symmetry breaking (see the useful summary in Eq. (2.1) of Ref. 34)). We will be particularly

interested in the examples where G = SO(N ), Sp(N ) and R is, respectively, the symmetric and

the antisymmetric representations of the group. In this case, we have the simple patterns of gauge
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symmetry breaking

SO(N ) →
k
∏

i=1

SO(Ni ),

Sp(N ) →
k
∏

i=1

Sp(Ni ),

(3.2)

where 1 ≤ k ≤ d − 1, and there will be, correspondingly, various gluino superfields for the unbroken

gauge groups,

Si = −
1

32π
Tr
(

W (i), αW (i)
α

)

, (3.3)

where W (i)
α is the superfield strength for the i th gauge group. According to the proposal of Refs. 19

and 20, the effective superpotential for the glueball superfields, as well as the gauge coupling matrix

for the infrared-free abelian fields, should be computable from an auxiliary matrix model with

V (x) = Wtree(x). In particular, the glueball superpotential, as a function of the gluino superfields, is

given by34, 36, 42

Weff(Si ) = WVY(Si ) +
k
∑

i=1

Ni

∂ F0,0

∂Si

− 4ǫF0,1, (3.4)

where ǫ = ±1 for SO/Sp, respectively, and WVY(Si ) is the Veneziano–Yankielowicz superpotential

(see Ref. 34 for a detailed expression). In this equation, F0,0 and F0,1 are the first two free energies in

the expansion (2.3), obtained in the β-ensemble for a matrix model with potential V (x) = Wtree(x),

in the k-cut phase, and with ’t Hooft parameters Si . In addition, the gauge theory quantity

T (z) =
〈

Tr

(

1

z − �

)〉

(3.5)

can be computed from the generalized Konishi anomaly3 and expressed in terms of matrix model

resolvents:34, 41

T (z) =
k
∑

i=1

Ni

∂W0,0(z)

∂Si

− 4ǫW0,1(z), (3.6)

where again ǫ = ±1 for SO/Sp. Similarly, contributions to chiral ring observables induced by a

non-flat gravity background can be computed in terms of non-planar corrections to the resolvent.4

The formulae above for the solution of (2.39) in the polynomial matrix model case then give

explicit results for computing a large class of vevs of chiral observables for a general Wtree(x). In

particular, W0,1 and F0,1 yield the unoriented contribution to the effective superpotential (3.4) and

gauge theory resolvent (3.6) for a general tree-level superpotential.62 As an example and a test of our

computations, let us consider the case of classically unbroken gauge symmetry, where k = 1. This

corresponds to the one-cut case in the computations above. Using the well-known one-cut result

(see, for example, Ref. 18)

∂W0,0(z)

∂z
=

1
√

σ (z)
, (3.7)

as well as (2.53), we find the general formula

T (z) =
N

√
σ (z)

+ 2ǫ
y′(z)

y(z)
−

2ǫ
√

σ (z)

[

d − 1 +
∑

i

√
σ (zi )

p − zi

]

. (3.8)

This agrees with the explicit computation for the quartic potential in Ref. 3.
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B. Penner model and AGT correspondence

A more sophisticated example is given by the double Penner model,

V (x) = α1 log x + α2 log(x − 1). (3.9)

This model was recently considered by Dijkgraaf and Vafa21 in the context of the AGT

correspondence,5 where it was shown to give a matrix model representation of the chiral three-

point function in Liouville theory;63 its 4d counterpart arises28 as the dimensional reduction of the

6d A1 (2,0) theory compactified on a sphere with three punctures, and is a U (1) theory with four

hypermultiplets. The spectral curve for this case reads

M(p)
√

σ (p) =

√

α2
1(1 − p) + α2

3(p2 − p) + α2
2 p

p(p − 1)
, (3.10)

where α3 = −t − α1 − α2 and t = gs N .

An extension of the AGT correspondence in presence of defects was considered in Ref. 6, where

multiple insertions of surface operators on the 4d gauge theory side were mapped to insertions of

vertex operators corresponding to degenerate states on the Liouville theory side. In Refs. 22 and 40

both were mapped in turn to A-type open topological string amplitudes on the toric geometries that

engineer the relevant gauge theory. In particular the authors of Ref. 40 conjectured and checked that

the Liouville theory four–point function with one degenerate insertion and vanishing background

charge Q = b + 1/b,

Znull(p, �, b = i) =
〈

α1

�
|V−α2/�(1)V−b/2(p)| − α3

�
+ b

2

〉

〈

α1

�
|V−α2/�(1)| − α3

�

〉

∣

∣

∣

∣

b=i

, (3.11)

should be expressible in terms of oriented topological string amplitudes computed through the

Eynard-Orantin recursion applied to (3.10)

Znull(p, �, b = i) = exp

[

1

�
A

(0)
1 (p) +

1

2!
A

(0)
2 (p, p) + �

(

A
(1)
1 (p) +

1

3!
A

(0)
3 (p, p, p)

)

+ · · ·
]

,

(3.12)

with

A
(g)

h (p1, . . . , ph) =
∫

dp1 . . . dph W
(g)

h (p1, . . . , ph). (3.13)

On the other hand, it was proposed in Ref. 21 that turning on a background charge Q on the CFT

side should exactly correspond to the β-deformation of the matrix model, with the dictionary been

given by

Q2 = −γ 2, b2 = −β, � =
gs√
β

. (3.14)

This was checked by direct computation in Refs. 37, 48, 49, and 54 at the level of the free energy. It

is therefore tempting to look at a combination of the two claims above and compute refined open

string amplitudes via (2.39), corresponding to degenerate insertions in Liouville theory with non-

vanishing Q. A natural extension of (3.12) in the β-deformed case is through an expansion of the

form

Fnull(p, �, b) = log Znull(p, �, b)

=
∑

n=−1

(

√

β�

)n ∑

g,h,k|2g−2+h+k=n

1

h!
β1−g−k/2 A

(g)

h,k(p, . . . p)γ k .
(3.15)

The β-deformed topological recursion allows us to test this proposal in detail. On the CFT side,

it is well known that Ward identities for the normalized four point function (3.11) reduce to a

hypergeometric differential equation; more precisely we have that

Znull(p, �, b) = p
bα1
� (1 − p)

−bα2
� 2 F1(A1, A2; B1; p) , (3.16)
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where

A1 = b
α3 − α2 + α1

�
, A2 = b

(

α1 − α2 − α3

�
+ Q

)

, B1 =
2bα1

�
. (3.17)

By Taylor expanding around � = 0, b = i , we obtain

log Znull(p) =
b

�
A

(0)
1,0(p) +

[

−
b2

2
A

(0)
2,0(p, p) + (b2 + 1)A

(0)
1,1(p)

)

]

+
�

2b

[

(1 + b2)2 A
(0)
1,2(p) − b2(b2 + 1)

1

2
A

(0)
2,1(p, p) − b2 A

(1)
1,0(p) + b4 1

3!
A

(0)
3,0(p, p, p)

]

+
�

2

4b2

[

(b2 + 1)3 A
(0)
1,3(p) − b2(1 + b2)A

(1)
1,1(p) + b4 1

2
A

(1)
2,0(p, p) − (1 + b2)

b2 1

2
A

(0)
2,2(p, p) − b6 1

4!
A

(0)
4,0(p, p, p, p) +

1

3!
b4(b2 + 1)A

(0)
3,1(p, p, p)

]

+ O

(

�

b

)3

.

(3.18)

On the other hand, we can apply the refined recursion to the spectral curve (3.10). In this case, the

contour integrals also have contributions from the poles of M(x); as an instance, we find for the

one-crosscap correction to the resolvent

W0,1(p) = −
1

2

y′(p)

y(p)
+

1

2
√

σ (p)

3
∑

i=1

Resz=zi

[

1

p − z

(

M ′(z)

M(z)

√

σ (z) +
1

2

2z − a − b
√

σ (z)

)]

, (3.19)

where

z1 = 0, z2 = 1, z3 = ∞. (3.20)

The residues give the values

−
α1

α0

1

p
, −

α2

α0

1

p − 1
, −1, (3.21)

for i= 1, 2, and 3, respectively, and we finally obtain

W0,1(p) = −
1

2

M ′(p)

M(p)
−

1

4

2p − a − b

(p − a)(p − b)
−

1

2
√

σ (p)

(

1 +
α1

α0

1

p
+

α2

α0

1

p − 1
.

)

. (3.22)

The integrated refined amplitudes A
(g)

h,k(p, . . . p) can be similarly computed in a straightforward

fashion from (2.39); upon taking into account the dictionary (3.14), we find exact agreement with

the CFT expansion (3.18).

IV. THE β-DEFORMED CHERN–SIMONS MATRIX MODEL

A. Definition and relation to the Stieltjes–Wigert ensemble

The β-deformed Chern–Simons (CS) matrix model on S
3 is defined by the partition function,

ZCS(N , gs, β) =
1

N !

∫ N
∏

i=1

dxi

2π
e
− β

2gs

∑n
i=1 x2

i

∏

i< j

(

2 sinh
xi − x j

2

)2β

. (4.1)

When β = 1 we recover the standard CS matrix model considered in Refs. 44 and 45. This gener-

alization of the CS matrix model is the natural counterpart of the β-ensemble deformation of the

standard Hermitian matrix model.

In Ref. 57, Tierz pointed out that the standard CS matrix model could be written in the usual,

Hermitian form, i.e., with a Vandermonde interaction among eigenvalues, but with a potential

V (x) =
1

2
(log x)2 . (4.2)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.194.8.73 On: Mon, 24 Mar 2014 09:39:43



052305-19 The uses of the refined matrix model recursion J. Math. Phys. 52, 052305 (2011)

This potential defines the so-called Stieltjes–Wigert (SW) matrix model. It is very easy to show that

(4.1) is, up to a simple multiplicative factor, the partition function of the β-deformed version of the

SW matrix model. To do that, we perform the change of variables

ui = c exi , (4.3)

where c is given by

c = exp
(

t − gs(1 − β−1)
)

, t = gs N . (4.4)

A simple computation shows that

ZCS(N , gs, β) = e
− βN

2gs
(log c)2

ZSW(N , gs, β), (4.5)

where

ZSW(N , gs, β) =
1

N !

∫ N
∏

i=1

dui

2π
e
− β

2gs

∑n
i=1(log ui )

2
∏

i< j

(

ui − u j

)2β
(4.6)

is the partition function of the β-deformed SW ensemble. In terms of free energies, we have

FCS(N , gs, β) = −
βt3

2
g−2

s + g−1
s (β − 1)t2 − (β + β−1 − 2)

t

2
+ FSW(N , β, gs). (4.7)

The change of variables (4.3) has to be taken into account when computing correlation functions in

the CS matrix model from the SW matrix model, and we have the relationship

〈Tr U n〉SW = exp
(

nt − ngs(1 − β−1)
)

〈Tr enX 〉CS, (4.8)

where

U = diag(u1, . . . , uN ), X = diag(x1, . . . , xN ). (4.9)

It was shown in Ref. 45 that, though both the potential (4.2) and its first derivative are non-polynomial,

the SW model can be solved at large N with standard saddle-point techniques. In particular, the

resolvent is given by

W0(p) = −
1

p
log

[

1 + e−t p +
√

(1 + e−t p)2 − 4p

2p

]

, (4.10)

and the spectral curve is

y(p) = M(p)
√

(p − a)(p − b) =
2

p
tanh−1

[
√

(1 + e−t p)2 − 4p

1 + e−t p

]

, (4.11)

where

M(p) =
2

p
√

(p − a)(p − b)
tanh−1

[
√

(1 + e−t p)2 − 4p

1 + e−t p

]

(4.12)

and the positions of the endpoints are given by

a(t) = 2e2t − et + 2e
3t
2

√
et − 1,

b(t) = 2e2t − et − 2e
3t
2

√
et − 1. (4.13)

For t = 0, a(0) = b(0) = 1, which is indeed the minimum of (4.2).

B. Corrections to the resolvent and to the free energy

The SW ensemble is, from many points of view, a conventional one-cut matrix model, and its

correlation functions and free energies obey the standard recursion relations of Refs. 15 and 26. We

now proceed to calculate the first β-deformed corrections to the resolvent and the free energy by

using the recursion of Ref. 15.
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Let us first consider the correction for the 1-point correlator (2.51). As in the standard polynomial

case, there is no contribution from V ′′(q) (since both this function and M(q) are analytic on the cut).

In order to proceed, it will be useful to change variables from q to ζ through

q =
b − a

2
ζ +

a + b

2
. (4.14)

This maps the interval [a, b] to [−1, 1]. Explicitly,

q = 2et
√

et (et − 1)ζ + et
(

2et − 1
)

. (4.15)

In terms of ζ , we have

tanh−1

[
√

(1 + e−t q)2 − 4q

1 + e−t q

]

= tanh−1

(
√

ζ 2 − 1

ζ + (1 − e−t )−1/2

)

, (4.16)

and the moment function reads

M(ζ ) =
1

(c1 + c2ζ )
√

ζ 2 − 1
tanh−1

(
√

ζ 2 − 1

ζ + (1 − e−t )−1/2

)

, (4.17)

where

c1 = e5t/2
√

et − 1
(

2et − 1
)

, c2 = 2e3t
(

et − 1
)

. (4.18)

The integrand of (2.51) involves then

−
1

2
dp

y′(q)

M(q)
=

1

2q

√

(q − a)(q − b)dq − etM(ζ )dζ (4.19)

with

M(ζ ) =
√

et (et − 1)
(√

et (et − 1)ζ + et − 1
)

(

2
√

et (et − 1)ζ + 2et − 1
)

tanh−1

( √
ζ 2−1

ζ+(1−e−t )−1/2

) . (4.20)

We then obtain

W0,1(p) =
1

2

p − et

p
√

σ (p)
−

1

2p
−

et

√
σ (p)

∮

C

M(ζ )

p − 2et
√

et (et − 1)ζ − et (2et − 1)

dζ

2π i
, (4.21)

where the integral involving the first term in (4.19) has been calculated through a contour deformation

and picking residues at q = 0,∞, p, and the contour C encircles the cut [−1, 1] in the ζ variable.

We have not been able to calculate the second term in (4.21) in closed form. In order to obtain

explicit results, we have to perform a series expansion in both p and t . To see an explicit example

of this procedure, we expand around p = ∞ to obtain

W0,1(p)

∣

∣

∣

p−2
= −et (et − 1) + et S(t), (4.22)

where

S(t) =
1

π i

∫ 1

−1

dζ M(ζ ). (4.23)

Notice that this integral depends on t only through the variable ν = et . It can be computed system-

atically as a power series in ν − 1, which can then be re-expanded as a power series in t . We obtain,

for the first few orders,

S(t) = −
t

2
−

7t2

24
−

71t3

720
−

2971t4

120960
−

17809t5

3628800
−

4843t6

5913600
−

51012187t7

435891456000
+ O

(

t8
)

.

(4.24)

The planar limit of the vev of Tr U is given by

〈Tr U 〉SW
0,0 = et (et − 1), (4.25)
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and its first correction is given by (4.22),

〈TrU 〉SW
0,1 = W0,1(p)

∣

∣

∣

∣

p−2

= et
(

S(t) − et + 1
)

. (4.26)

Together with (4.8) we then deduce that

〈Tr ex 〉CS
0,1 = S(t). (4.27)

On the other hand, a direct perturbative computation of the vev 〈Tr ex 〉CS in the CS matrix model

(4.1) gives

〈Tr ex 〉CS = N + gs

[

N 2

2
−

1

2
(1 − β−1)N

]

+ g2
s

[

N 3

6
−

7

24
(1 − β−1)N 2 −

1

24
β−1 N +

1

8
(1 − β−1)2 N

]

+ g3
s

[

N 4

24
−

71

720
N 3(1 − β−1) −

1

48
β−1 N 2 +

7

90
(1 − β−1)2 N 2

−
1

48
(1 − β−1)3 N +

11

720
β−2(β − 1)N

]

+ O(g4
s ),

(4.28)

in complete agreement with (4.27).

Using the same type of techniques, we can also compute the first correction to the free energy.

Using (2.56) we find

∂t FSW
0,1 = 1 +

∫ b

a

dp

π

log |M(p)|
√

|σ (p)|
+
∫ b

a

dp

2π

log |σ (p)|
√

|σ (p)|
. (4.29)

The last integral can be computed exactly

∫ b

a

dp

4π

log |σ (p)|
√

|σ (p)|
=

log(1 − e−t )

2
+ 2t. (4.30)

The first integral can be written, using again the change of variables (4.14), as

∫ b

a

dp

π

log |M(p)|
√

|σ (p)|
=
∫ 1

−1

dζ

π

1
√

1 − ζ 2
log

⎛

⎜

⎜

⎜

⎝

tan−1

( √
1−ζ 2

ζ+ 1√
1−e−t

)

(c1 + c2ζ )
√

1 − ζ 2

⎞

⎟

⎟

⎟

⎠

, (4.31)

where c1 and c2 are defined in (4.18). As before, this integral can be computed as a power series in

t around t = 0. Putting everything together, and taking into account (4.7), we find

FCS
0,1 (t) =

1

2
(log(t) + 1)t −

t2

12
+

t3

1440
+

17t4

45360
−

137t5

14515200
−

2t6

467775
+ O(t7). (4.32)

We have again verified the very first coefficients in this expansion against a direct perturbative

calculation in the CS matrix model.

It is worth pointing out that the corrections appearing in the CS matrix model when β 
= 1 are

much more complicated than the “standard” ones. For example, for β = 1 all the correlators are

polynomials in et , while the integral giving (4.23) is not.

C. β-deformation and the � background

One of the interesting aspects of the conventional CS matrix model with β = 1 is that its large

N expansion equals the 1/N expansion of topological string theory on the resolved conifold,30 since

it equals the partition function of CS theory on the three sphere. On the other hand, the partition

function of topological string theory on the resolved conifold admits a refinement given by the
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K-theoretic version of Nekrasov’s partition function for a U (1) theory.53 This partition function can

be also obtained from the refined topological vertex of Ref. 35. The first correction to the refined

free energy of the resolved conifold is simply

F ref
0,1 =

1

2
Li2(e−t ). (4.33)

This expression is much simpler than the result (4.32).

We can also compare the result for 〈Tr ex 〉CS with expectations coming from the theory of the

refined vertex. When β = 1, the correlation function 〈Tr ex 〉CS can be expressed in terms of the open

string amplitude

Z (t, gs) =
1 − Q

2 sinh
(

gs

2

)

for a D-brane in an external leg of the resolved conifold. Here, Q = e−t . The precise relation involves

a framing factor,

〈Tr ex 〉CS
β=1 = et Z (t, gs). (4.34)

The “refined” version of the D-brane amplitude is64

Z (t, gs, β) =
Q

√
q2 − √

q1

q2 − 1
(4.35)

with

q1 = e−
√

βgs , q2 = e−gs/
√

β . (4.36)

Expanding gs and β, we obtain

Z (t, gs, β) =
(

1 − e−t
) 1

gs

+
1

2
√

β
(1 − β−1) + · · · , (4.37)

so it is clear that the relationship (4.34) is no longer true when we consider the β-deformed CS

ensemble in the lhs, and the refined amplitude (4.35) in the rhs.

Of course, in the comparisons we have made, we assumed that the ’t Hooft parameter tCS in the

matrix model is equal to the parameter tTS appearing in the refined topological string. We have not

excluded the possibility that both sides are related by a more general relation of the form,

tCS = tTS + f (β, tTS), (4.38)

where f (β, tTS) vanishes for β = 1 (since the two parameters agree in that case). But in order to

reproduce the above results, the unknown function in (4.38) should be rather complicated. Another

possibility is that we have to modify the Gaussian potential as well in order to match the �-deformed

topological string. This has been suggested in a closely related context in Ref. 56.
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APPENDIX: USEFUL FORMULAE FOR ELLIPTIC INTEGRALS

In this section we collect a few formulae regarding the expansion of elliptic integrals for small

values of the elliptic modulus, which are relevant for the computations of Sec. II D,

�(n|m) =
π

2

∞
∑

k=0

mk

(k!)2

(

1

2

)2

k

⎛

⎜

⎜

⎝

n−kk!
√

1 − n
(

1
2

)

k

−
2k
∑k−1

j=0

(

(1− 1
n )

j
(1−k) j

( 3
2 ) j

)

n

⎞

⎟

⎟

⎠

, (A1)

K (m) =
π

2

∞
∑

k=0

mk
(

1
2

)

k
2

(k!)2
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