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Abstract

The Utah Raster Toolkit is a set of programs for manipulating and composing raster images. These tools are based on
the Unix concepts of pipes and filters, and operate on images in much the same way as the standard Unix tools operate
on textual data. The Toolkit uses a special run length encoding (RLE) format for storing images and interfacing
between the various programs. This reduces the disk space requirements for picture storage and provides a standard
header containing descriptive information about an image. Some of the tools are able to work directly with the
compressed picture data, increasing their efficiency. A library of C routines is provided for reading and writing the
RLE image format, making the toolkit easy to extend.

This paper describes the individual tools, and gives several examples of their use and how they work together.
Additional topics that arise in combining images, such as how to combine color table information from multiple
sources, are also discussed.

1. Introduction
Over the past several years, the University of Utah Computer Graphics Lab has developed several tools and

techniques for generating, manipulating and storing images. At first this was done in a somewhat haphazard manner
- programs would generate and store images in various formats (often dependent on particular hardware) and data
was often not easily interchanged between them. More recently, some effort has been made to standardize the
image format, develop an organized set of tools for operating on the images, and develop a subroutine library to
make extending this set of tools easier. This paper is about the result of this effort, which we call the Utah Raster
Toolkit. Using a single efficient image format, the toolkit provides a number of programs for performing common
operations on images. These are in turn based on a subroutine library for reading and writing the images.

2. Origins
The idea for the toolkit arose while we were developing an image compositor. The compositor (described in

detail in section 4.1) allows images to be combined in various ways. We found that a number of simple and
independent operations were frequently needed before images could be composited together.

With the common image format, the subroutine library for manipulating it, and the need for a number of
independent tools, the idea of a "toolkit" of image manipulating programs arose. These tools are combined using the

1Originally presented at the third Usenix Workshop on Graphics, Monterey California, November 1986
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URT was long made obsolete by modern tools such as Photoshop.  The pipeline approach required inefficient constant reading and writing of the image data.Still, the package was quite successful as an image conversion and procedureal manipulation tool, and was in wide use up to the early '90s.  It received a boost when Craig Kolb selected it as the format of choice for his popular RayShade package.-jp, Sep 1998
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Unix shell, operating on images much like the standard Unix programs operate on textual data. For example, a Unix
user would probably use the sequence of commands:

cat /etc/passwd | grep Smith | sort -t: +4.0 | lpr

to print a sorted list of all users named "Smith" in the system password file. Similarly, the Raster Toolkit user might
do something like:

cat image.rle | avg4 | repos -p 0 200 | getfb

to downfilter an image and place it on top of the frame buffer screen. The idea is similar to a method developed by
Duff [3] for three dimensional rendering.

3. The RLE format
The basis of all of these tools is a Run Length Encoded image format [8]. This format is designed to provide an

efficient, device independent means of storing multi-level raster images. It is not designed for binary (bitmap)
images. It is built on several basic concepts. The central concept is the channel. A channel corresponds to a single
color, thus there are normally separate red, green and blue channels. Up to 255 color channels are available for use;
one channel is reserved for coverage ("alpha") data. Although the format supports arbitrarily deep channels, the
current implementation is restricted to 8 bits per channel. An RLE file is treated as a byte stream, making it
independent of host byte ordering.

Image data is stored in an RLE file in a scanline form, with the data for each channel of the scanline grouped
together. Runs of identical pixel values are compressed into a count and a value. However, sequences of differing
pixels are also stored efficiently (i.e, not as a sequence of single pixel runs).

3.1. The RLE header
The file header contains a large amount of information about the image. This includes:

• The size and position on the screen,

• The number of channels saved and the number of bits per channel (currently, only eight bits per channel
is supported),

• Several flags, indicating: how the background should be handled, whether or not an alpha channel was
saved, if picture comments were saved,

• The size and number of channels in the color map, (if the color map is supplied),

• An optional background color,

• An optional color map,

• An optional set of comments. The comment block contains any number of null-terminated text strings.
These strings are conventionally of the form "name=value", allowing for easy retrieval of specific
information.

3.2. The scanline data
The scanline is the basic unit that programs read and write. It consists of a sequence of operations, such as Run,

SetChannel, and Pixels, describing the actual image. An image is stored starting at the lower left corner and
proceeding upwards in order of increasing scanline number. Each operation and its associated data takes up an even
number of bytes, so that all operations begin on a 16 bit boundary. This makes the implementation more efficient on
many architectures.

Each operation is identified by an 8 bit opcode, and may have one or more operands. Single operand operations
fit into a single 16 bit word if the operand value is less than 256. So that operand values are not limited to the range
0..255, each operation has a long variant, in which the byte following the opcode is ignored and the following word
is taken as a 16 bit quantity. The long variant of an opcode is indicated by setting the bit 0x40 in the opcode (this
allows for 64 opcodes, of which 6 have been used so far.)
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The current set of opcodes include:

SkipLines Increment the scanline number by the operand value, terminating the current scanline.

SetColor Set the current channel to the operand value.

SkipPixels Skip over pixels in the current scanline. Pixels skipped will be left in the background
color.

PixelData Following this opcode is a sequence of pixel values. The length of the sequence is given
by the operand value.

Run This is the only two operand opcode. The first operand is the length (N) of the run. The
2second operand is the pixel value, followed by a filler byte if necessary . The next N

pixels in the scanline are set to the given pixel value.

EOF This opcode has no operand, and indicates the end of the RLE file. It is provided so RLE
files may be concatenated together and still be correctly interpreted. It is not required, a
physical end of file also indicates the end of the RLE data.

3.3. Subroutine Interface
Two similar subroutine interfaces are provided for reading and writing files in the RLE format. Both read or

write a scanline worth of data at a time. A simple "row" interface communicates in terms of arrays of pixel values.
It is simple to use, but slower than the "raw" interface, which uses arrays of "opcode" values as its communication
medium.

In both cases, the interface must be initialized by calling a setup function. The two types of calls may be
interleaved; for example, in a rendering program, the background could be written using the "raw" interface, while
scanlines containing image data could be converted with the "row" interface. The package allows multiple RLE
streams to be open simultaneously, as is necessary for use in a compositing tool, for example. All data relevant to a
particular RLE stream is contained in a "globals" structure. This structure essentially echoes the information in the
RLE header, along with current state information about the RLE stream.

4. The tools

4.1. The image compositor - Comp
Comp implements an image compositor based on the compositing algorithms presented in [6]. The compositing

operations are based on the presence of an alpha channel in the image. This extra channel usually defines a mask
which represents a sort of a cookie-cutter for the image. This is the case when alpha is 255 (full coverage) for pixels
inside the shape, zero outside, and between zero and 255 on the boundary. When the compositor operates on images
of the cookie-cutter style, the operations behave as follows:

A over B (the default)The result will be the union of the two image shapes, with A obscuring B in the region of
overlap.

A atop B The result shape is the same as image B, with A obscuring B where the image shapes
overlap. (Note that this differs from "over" because the portion of A outside the shape of
B will not be in the result image.)

A in B The result is simply the image A cut by the shape of B. None of the image data of B will
be in the result.

A out B The result image is image A with the shape of B cut out.

A xor B The result is the image data from both images that is outside the overlap region. The
overlap region will be blank.

A plus B The result is just the sum of the image data. This operation is actually independent of the

2E.g., a 16 bit pixel value would not need a filler byte.
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alpha channels.
The alpha channel can also represent a semi-transparent mask for the image. It would be similar to the cookie-

cutter mask, except the interior of the shape would have alpha values that represent partial coverage; e.g. 128 is half
coverage. When one of the images to be composited is a semi-transparent mask, the following operations have
useful results:

Semi-transparent A over B
The image data of B will be blended with that of A in the semi-transparent overlap
region. The resulting alpha channel is as transparent as that of image B.

A in Semi-transparent B
The image data of A is scaled by the mask of B in the overlap region. The alpha channel
is the same as the semi-transparent mask of B.

If the picture to be composited doesn’t have an alpha channel present, comp assumes an alpha of 255 (i.e., full
coverage) for non-background pixels and an alpha of zero for background pixels.

Comp is able to take advantage of the size information for the two images being composited. For example, if a
small picture is being composited over a large backdrop, the actual compositing arithmetic is only performed on a
small portion of the image. By looking at the image size in the RLE header, comp performs the compositing
operation only where the images overlap. For the rest of the image the backdrop is copied (or not copied, depending
on the compositing operation). The "raw" RLE read and write routines are used to perform this copy operation, thus
avoiding the cost of compressing and expanding the backdrop as well.

4.2. Basic image composition - Repos and Crop
Repos and crop are the basic tools for positioning and arranging images to be fed to the compositor. Crop

simply throws away all parts of the image falling outside the rectangle specified. Repos positions an image to a
specific location on the screen, or moves it by an incremental amount. Repos does not have to modify any of the
image data, it simply changes the position specification in the RLE header. In order to simplify the code, the Raster
Toolkit does not allow negative pixel coordinates in images.

4.3. Changing image orientation and size - Flip, Fant and Avg4
Two tools exist for changing the orientation of an image on the screen. Flip rotates an image by 90 degrees

right or left, turns an image upside down, or reverse it from right to left. Fant rotates an image an arbitrary number
of degrees from -45 to 45. In order to get rotation beyond -45 to 45, flip and fant can be combined, for example:

flip -r < upright.rle | fant -a 10 > rotated.rle

rotates an image 100 degrees. Fant is also able to scale images by an arbitrary amount in X and Y. A common use
for this is to stretch or shrink an image to correct for the aspect ratio of a particular frame buffer. Many frame
buffers designed for use with standard video hardware display a picture of 512x480 pixels on a screen with the
proportions 4:3, resulting in an overall pixel aspect ratio of 6:5. If the picture kloo.rle is digitized or computed
assuming a 1:1 aspect ratio (square pixels), the command:

cat kloo.rle | fant -s 1.0 1.2 | getfb

correctly displays the image on a frame buffer with a 6:5 aspect ratio. Fant is implemented using a two-pass
subpixel sampling algorithm [4]. This algorithm performs the spatial transform (rotate and/or scale) first on row by
row basis, then on a column by column basis. Because the transformation is done on a subpixel level, fant does not
introduce aliasing artifacts into the image.

Avg4 downfilters an RLE image into a resulting image of 1/4th the size, by simply averaging four pixel values in
the input image to produce a single pixel in the output. If the original image does not contain an alpha channel, avg4
creates one by counting the number of non-zero pixels in each group of four input pixels and using the count to
produce a coverage value. While the alpha channel produced this way is crude (only four levels of coverage) it is
enough to make a noticeable improvement in the edges of composited images. One use for avg4 is to provide
anti-aliasing for rendering programs that perform no anti-aliasing of their own. For example, suppose huge.rle is
a 4k x 4k pixel image rendered without anti aliasing and without an alpha channel. Executing the commands:

cat huge.rle | avg4 | avg4 | avg4 > small.rle
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produces an image small.rle with 64 (8x8) samples per pixel and an alpha channel with smooth edges.

Images generated from this approach are as good as those produced by direct anti-aliasing algorithms such as the
A-buffer [2]. However, a properly implemented A-buffer renderer produces images nearly an order of magnitude
faster.

4.4. Color map manipulation - Ldmap and Applymap
As mentioned previously, RLE files may optionally contain a color map for the image. Ldmap is used to create

or modify a color map within an RLE file. Ldmap is able to create some standard color maps, such as linear maps
with various ramps, or maps with various gamma corrections. Color maps may also be read from a simple text file
format, or taken from other RLE files. Ldmap also performs map composition, where one color map is used as in
index into the other. An example use for this is to apply a gamma correction to an image already having a
non-linear map.

Applymap applies the color map in an rle file to the pixel values in the file. For example, if the color map in
kloo.rle contained a color map with the entries (for the red channel):

Index Red color map
0: 5
1: 7
2: 9

Then a (red channel) pixel value of zero would be displayed with an intensity of five (assuming the display
program used the color map in kloo.rle). When kloo.rle is passed through applymap,

cat kloo.rle | applymap > kloo2.rle

pixels that had a value of zero in kloo.rle now have a value of five in kloo2.rle, pixel values of one would
now be seven, etc. When displaying the images on a frame buffer, kloo2.rle appears the same with a linear map
loaded as kloo.rle does with its special color map loaded.

One use for these tools is merging images with different compensation tables. For example, suppose image
gam.rle was computed so that it requires a gamma corrected color table (stored in the RLE file) to be loaded to
look correct on a particular monitor, and image lin.rle was computed with the gamma correction already taken
into consideration (so it looks correct with a linear color table loaded). If these two images are composited together
without taking into consideration these differences, the results aren’t correct (part of the resulting image is either too
dim or washed out). However, we can use applymap to "normalize" the two images to using a linear map with:

cat gam.rle | applymap | comp - lin.rle | ldmap -l > result.rle

4.5. Generating backgrounds
Unlike most of the toolkit programs which act as filters, background just produces output. Background either

produces a simple flat field, or it produces a field with pixel intensities ramped in the vertical direction. Most often
background is used simply to provide a colored backdrop for an image. Background is another example of a
program that takes advantage of the "raw" RLE facilities. Rather than generating the scanlines and compressing
them, background simply generates the opcodes required to produce each scanline.

4.6. Converting full RGB images to eight bits - to8 and tobw
Although most of the time we prefer to work with full 24 bit per pixel images, (32 bits with alpha) we often need

the images represented with eight bits per pixel. Many inexpensive frame buffers (such as the AED 512) and many
personal color workstations (VaxStation GPX, Color Apollos and Suns) are equipped with eight bit displays.

To8 converts a 24 bit image to an eight bit image by applying a dither matrix to the pixels. This basically trades
spatial resolution for color resolution. The resulting image has eight bits of data per pixel, and also contains a
special color map for displaying the dithered image (since most eight bit frame buffers still use 24 bit wide color
table entries).
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Tobw converts a picture from 24 bits of red, green, and blue to an eight bit gray level image. It uses the standard
television YIQ transformation of

graylevel =0.35 ×red +0.55 ×green +0.10 ×blue.

These images are often preferred when displaying the image on an eight bit frame buffer and shading information is
more important than color.

5. Interfacing to the RLE toolkit
In order to display RLE images, a number of programs are provided for displaying the pictures on various

devices. These display programs all read from standard input, so they are conveniently used as the end of a raster
toolkit pipeline. The original display program, getfb, displays images on our ancient Grinnell GMR-27 frame
buffer. Many display programs have since been developed:

getcx displays images on a Chromatics CX1500

getiris displays an image on an Iris workstation (via ethernet)

getX for the X window system

getap for the Apollo display manager

gethp for the Hewlett-Packard Series 300 workstation color display
3rletops converts an RLE file to gray-level PostScript output

The getX, getap and gethp programs automatically perform the dithering required to convert a 24 bit RLE
image to eight bits (for color nodes) or one bit (for bitmapped workstations). Since all of these workstations have
high resolution (1Kx1K) displays, the trade of spatial resolution for color resolution produces very acceptable
results. Even on bitmapped displays the image quality is good enough to get a reasonable idea of an image’s
appearance.

Two programs, painttorle and rletopaint are supplied to convert MacPaint images to RLE files. This
offers a simple way to add text or graphic annotation to an RLE image (although the resolution is somewhat low).

6. Examples
A typical use for the toolkit is to take an image generated with a rendering program, add a background to it, and

display the result on a frame buffer:

rlebg 250 250 250 -v | comp image.rle - | getfb

What follows are some more elaborate applications:

6.1. Making fake shadows
In this exercise we take the dart (Figure 6-1a) and stick it into the infamous mandrill, making a nice (but

completely fake) shadow along the way.

First the image of the dart is rotated by 90 degrees (using rleflip -l and then stretched in the X direction
(using fant -s 1.3 1.0) to another image we can use as a shadow template, figure 6-1b. Then we take this
image, dart_stretch_rot.rle, and do:

rlebg 0 0 0 175 \
| comp -o in - dart_stretch_rot.rle > dart_shadow.rle

This operation uses the stretched dart as a cookie-cutter, and the shape is cut out of a black image, with a coverage
mask (alpha channel) of 175. Thus when we composite the shadow (figure 6-2a) over the mandrill image, it lets
32% of the mandrill through ((255 - 175) / 255 = 32%) with the rest being black.

3Rletops was used to produce the figures in this paper.
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Figure 6-1: a: Original dart image. b: Rotated and stretched dart.

Figure 6-2: a: Dart shadow mask. b: Resulting skewered baboon.

Now all we have left to do is to composite the dart and the shadow over the mandrill image, and the result is
figure 6-2b. Note that since the original dart image was properly anti-aliased, no aliasing artifacts were introduced
in the final image.

6.2. Cutting holes
In this example we start out out with a single bullet hole, created with the same modelling package that produced

4the dart. First the hole (which originally filled the screen) is downfiltered to a small size, with

4The bullet hole was modeled with cubic B-splines. Normal people probably would have painted something like this...

About the images
I wasn't able to easily get a hold of the original color images used for the dart example while creating a PDF version of the paper.  The images in the first place are much lower resolution than what is typically used these days for color printing.However, the results are easily good enough to understand the concepts presented.-jp, Sep 1998
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avg4 < big_hole.rle | avg4 | avg4 > smallhole.rle

Figure 6-3: a: A set of bullet holes. b: A shot-up turbine blade.

Now by invoking repos and comp several times in a row, a set of shots is built up (Figure 6-3a)

To shoot up the turbine blade, the atop operator of comp is used. This works much like over, except the bullet
holes outside of the turbine blade don't appear in the resulting image (Figure 6-3b) Note how the top left corner is
just grazed.

But there's still one catch. Suppose we want to display the shot-up turbine blade over a background of some sort.
We want to be see the background through the holes. To do this we come up with another mask to cut away the
centers of the bullet holes already on the turbine blade so we can see through them (Figure 6-4a).

Figure 6-4: a: Cut-away masks for the bullet hole centers.
b: Finished turbine blade
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Now we can see through the blade (Figure 6-4b).

6.3. Integrating digitized data
In this example, we take a raw digitized negative and turn it into a useful frame buffer image. Figure 6-5a shows

the original image from the scanner. First the image is cropped to remove the excess digitized portion, then rotated
into place with flip -r, resulting in Figure 6-5b.

Figure 6-5: a: The raw digitized negative. b: Cropped and rotated image

To get the image to appear as a positive on the frame buffer, a negative linear color map (stored as text file) is
loaded, then this is composed with a gamma correction map of 2.2, and finally applied to the pixels with the
command:

ldmap -f neg.cmap < neg_pahriah.rle | ldmap -a -g 2.2 \
| applymap > pahriah.rle

The result, Figure 6-6 now appears correct with a linear color map loaded.

7. Future Work
Needless to say, a project such as the Raster Toolkit is open ended in nature, and new tools are easily added. For

example, most of the tools we have developed to date deal with image synthesis and composition, primarily because
that is our research orientation. Additional tools could be added to assist work in areas such as vision research or
image processing (for examples, see [1, 7]).

Another interesting application would be a visual "shell" for invoking the tools. Currently, arguments to
programs like crop and repos are specified by tediously finding the numbers with the frame buffer cursor and
then typing them into a shell. The visual shell would allow the various toolkit operations to be interactively selected
from a menu. Such a shell could probably work directly with an existing workstation window system such as X
[5] to provide a friendly environment for using the toolkit.

8. Conclusions
The Raster Toolkit provides a flexible, simple and easily extended set of tools for anybody working with images

in a Unix-based environment. We have ported the toolkit to a wide variety of Unix systems, including Gould UTX,
HP-UX, Sun Unix, Apollo Domain/IX, 4.2 and 4.3 BSD, etc. The common interfaces of the RLE format and the
subroutine library make it easy to interface the toolkit to a wide variety of image sources and displays.
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Figure 6-6: Final image of the old Pahriah ghost town
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